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Abstract

The complexity of variants of 3-SAT and Not-All-Equal 3-SAT
is well studied. However, in contrast, very little is known about the
complexity of the problems’ quantified counterparts. In the first part
of this paper, we show that ∀∃ 3-SAT is ΠP

2 -complete even if (1) each
variable appears exactly twice unnegated and exactly twice negated,
(2) each clause is a disjunction of exactly three distinct variables, and
(3) the number of universal variables is equal to the number of exis-
tential variables. Furthermore, we show that the problem remains ΠP

2 -
complete if (1a) each universal variable appears exactly once unnegated
and exactly once negated, (1b) each existential variable appears exactly
twice unnegated and exactly twice negated, and (2) and (3) remain un-
changed. On the other hand, the problem becomes NP-complete for
certain variants in which each universal variable appears exactly once.
In the second part of the paper, we establish ΠP

2 -completeness for ∀∃
Not-All-Equal 3-SAT even if (1′) the Boolean formula is linear and
monotone, (2′) each universal variable appears exactly once and each
existential variable appears exactly three times, and (3′) each clause is
a disjunction of exactly three distinct variables that contains at most
one universal variable. On the positive side, we uncover variants of
∀∃ Not-All-Equal 3-SAT that are co-NP-complete or solvable in
polynomial time.

Keywords: 3-Sat, Not-All-Equal 3-Sat, quantified satisfiability, polynomial
hierarchy, bounded variable appearances, computational complexity.
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1 Introduction

The Boolean satisfiability problem SAT plays a major role in the theory
of NP-completeness. It was the first problem shown to be complete for the
class NP (Cook’s Theorem [3]) and many NP-hardness results are estab-
lished by using this problem, or restricted variants thereof, as a starting
point for polynomial-time reductions. Restricted variants of a problem that
remain NP-complete are particularly useful as they allow for the possibility
of simpler proofs and stronger results.

The most prominent NP-complete variant of the Boolean satisfiability
problem is 3-SAT. Here we are given a conjunction of clauses such that
each clause contains exactly three literals, where a literal is a propositional
variable or its negation. An instance of 3-SAT is a yes-instance if there is a
truth assignment to the propositional variables1 such that at least one literal
of each clause evaluates to true. Interestingly, even within 3-SAT, we can
restrict the problem further. For example, for instances of 3-SAT in which
each clause contains exactly three distinct variables, Tovey [17, Theorem
2.3] proved that 3-SAT remains NP-complete if each variable appears in
at most four clauses. Furthermore, this result also holds if each variable
appears exactly twice unnegated and exactly twice negated [1, Theorem 1].
On the other hand, the problem becomes trivial, i.e., the answer is always
yes, if each variable appears at most three times [17, Theorem 2.4].

A popular NP-complete variant of 3-SAT called Not-All-Equal 3-
SAT (NAE-3-SAT) asks whether we can assign truth values to the variables
such that at least one, but not all, of the literals of each clause evaluate to
true. Schaefer [15] first established NP-completeness of NAE-3-SAT in the
setting where each clause contains at most three literals. Subsequently,
Karpinski and Piecuch [9, 10] showed that NAE-3-SAT is NP-complete if
each variable appears at most four times. Furthermore, Porschen et al. [12,
Theorem 3] showed that NAE-3-SAT remains NP-complete if (i) each literal
appears at most once in any clause, and (ii) the input formula is linear and
monotone, that is, each pair of distinct clauses share at most one variable and
no clause contains a literal that is the negation of some variable. Following
on from this last result, Darmann and Döcker [5] showed recently that NAE-
3-SAT remains NP-complete if, in addition to (i) and (ii), each variable
appears exactly four times. By contrast, if a monotone conjunction of clauses
has the property that each variable appears at most three times, NAE-3-
SAT can be decided in linear time [11, Theorem 4, p. 186].

1From now on, we simply say variable instead of propositional variable since all vari-
ables used in the paper take only values representing true and false.
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In this paper, we consider generalized variants of 3-SAT and NAE-3-
SAT, namely ∀∃ 3-SAT and ∀∃ NAE-3-SAT, respectively. Briefly, ∀∃ 3-
SAT is a quantified variant of 3-SAT, where each variable is either universal
or existential. The decision problem ∀∃ 3-SAT asks if, for every assignment
of truth values to the universal variables, there exists an assignment of truth
values to the existential variables such that at least one literal of each clause
evaluates to true. Observe that, if an instance of ∀∃ 3-SAT does not contain
a universal variable, then this instance reduces to an instance of 3-SAT.
Analogously, we can think of ∀∃ NAE-3-SAT as a generalized variant of
NAE-3-SAT. Formal definitions of both problems are given in the next
section.

Stockmeyer [16] and Dahlhaus et al. [6] showed, respectively, that ∀∃
3-SAT and ∀∃ NAE-3-SAT are complete for the second level of the poly-
nomial hierarchy or, more precisely, complete for the class ΠP

2 . In this paper,
we establish ΠP

2 -completeness for restricted variants of these two quantified
problems. In particular, we show that ∀∃ 3-SAT is ΠP

2 -complete if each uni-
versal variable appears exactly once unnegated and exactly once negated,
and each existential variable appears exactly twice unnegated and exactly
once negated or each existential variable appears exactly once unnegated
and exactly twice negated. Although we do not consider approximation
aspects in this paper, by way of comparison, Haviv et al. [8] showed that
approximating a particular optimization version of ∀∃ 3-SAT is ΠP

2 -hard
even if each universal variable appears at most twice and each existential
variable appears at most three times. Whether optimization versions of the
ΠP

2 -complete problems presented in this paper are ΠP
2 -hard to approximate

is a question that we leave for future research. Furthermore, we establish
ΠP

2 -completeness for ∀∃ 3-SAT if each universal variable appears exactly
s1 times unnegated and exactly s2 times negated, each existential variable
appears exactly t1 times unnegated and exactly t2 times negated, and the
following three properties are satisfied: (i) s1 = s2, (ii) s1 ∈ {1, 2}, and (iii)
t1 = t2 = 2. These latter completeness results hold even if each clause is a
disjunction of exactly three distinct variables and the number of universal
and existential variables is balanced, that is, the number of universal and
existential variables are the same.

Turning to ∀∃ NAE-3-SAT, we show that the problem remains ΠP
2 -

complete if each universal variable appears exactly once, each clause contains
at most one universal variable, each existential variable appears exactly
three times, and the conjunction of clauses is both linear and monotone.
Interestingly, while one appearance of each universal variable is enough to
obtain a ΠP

2 -hardness result in this setting, the same is not true for ∀∃
3-SAT unless the polynomial hierarchy collapses [8, p. 55].
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The remainder of the paper is organized as follows. The next section
introduces notation and terminology, and formally states three variants of
∀∃ 3-SAT and ∀∃ Not-All-Equal 3-SAT that are the main focus of this
paper. Section 3 (resp. Section 4) investigates the computational complexity
of ∀∃ 3-SAT (resp. ∀∃ Not-All-Equal 3-SAT). Both sections start with
a subsection on enforcers that are needed for the subsequent hardness proofs
and that we expect to be of independent interest in future work.

2 Preliminaries

This section introduces notation and terminology that is used throughout
the paper.

Let V = {x1, x2, . . . , xn} be a set of variables. A literal is a variable
or its negation. We denote the set {xi, xi : i ∈ {1, 2, . . . , n}} of all literals
that correspond to elements in V by LV . A clause is a disjunction of a
subset of LV . If a clause contains exactly k distinct literals for k ≥ 1, then
it is called a k-clause. For example, (x1 ∨ x̄2 ∨ x4) is a 3-clause. A Boolean
formula in conjunctive normal form (CNF) is a conjunction of clauses, i.e.,
an expression of the form ϕ =

∧m
j=1Cj , where Cj is a clause for all j. In what

follows, we refer to a Boolean formula in conjunctive normal form simply
as a Boolean formula. Now, let ϕ be a Boolean formula. We say that ϕ is
linear if any pair of distinct clauses share at most one variable and that it is
monotone if no clause contains an element in {x1, x2, . . . , xn}. Furthermore,
if each clause contains at most k literals, it is said to be in k-CNF. For
each variable xi ∈ V , we denote the number of appearances of xi in ϕ plus
the number of appearances of xi in ϕ by a(xi). A variable assignment or,
equivalently, truth assignment for V is a mapping β : V → {T, F}, where T
represents the truth value True and F represents the truth value False. A
truth assignment β satisfies ϕ if at least one literal of each clause evaluates
to T under β. If there exists a truth assignment that satisfies ϕ, we say
that ϕ is satisfiable. For a truth assignment β that satisfies ϕ and has the
additional property that at least one literal of each clause evaluates to F ,
we say that β nae-satisfies ϕ. Lastly, let V and V ′ be two disjoint sets of
variables, let β be a truth assignment for V , and let β′ be a truth assignment
for V ∪ V ′. We say that β′ extends β (or, alternatively, that β extends to
V ∪ V ′) if β(xi) = β′(xi) for each xi ∈ V .

A quantified Boolean formula Φ over a set V = {x1, x2, . . . , xn} of vari-
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ables is a formula of the form

∀x1 · · · ∀xp∃xp+1 · · · ∃xn
m∧
j=1

Cj .

The variables x1, x2, . . . , xp are universal variables of Φ and the variables
xp+1, xp+2, . . . , xn are existential variables of Φ. Furthermore, for variables
xi, xi+1, . . . , xi′ with 1 ≤ i < i′ ≤ p and xi′′ , xi′′+1, . . . , xi′′′ with p+ 1 ≤ i′′ <
i′′′ ≤ n, we define

∀Xi′
i := ∀xi · · · ∀xi′ and ∃Xi′′′

i′′ := ∃xi′′ · · · ∃xi′′′ ,

respectively and, similarly,

Xi′
i := {xi, . . . , xi′} and Xi′′′

i′′ := {xi′′ , . . . , xi′′′},

respectively.

We next introduce notation that transforms a Boolean formula ϕ into an-
other such formula. Specifically, we use ϕ[x 7→ y] to denote the Boolean for-
mula obtained from ϕ by replacing each appearance of variable x with vari-
able y (i.e., replace x with y and replace x with y). For pairwise distinct pairs
(x1, y1), (x2, y2), . . . , (xk, yk) of variables, we use ϕ[x1 7→ y1, . . . , xk 7→ yk] to
denote the Boolean formula obtained from ϕ by simultaneously replacing
each appearance of variable xi by variable yi for 1 ≤ i ≤ k. Since the vari-
ables are pairwise distinct, note that this operation is well-defined. Lastly,
for a constant b ∈ {T, F}, the Boolean formula ϕ[x 7→ b] is obtained from ϕ
by replacing each appearance of variable x by b.

The polynomial hierarchy. An oracle for a complexity class A is a black
box that, in constant time, outputs the answer to any given instance of a
decision problem contained in A. The polynomial hierarchy is a system of
nested complexity classes that are defined recursively as follows. Set

ΣP
0 = ΠP

0 = P,

and define, for all k ≥ 0,

ΣP
k+1 = NPΣP

k and ΠP
k+1 = co-NPΣP

k ,

where a problem is in NPΣP
k (resp. co-NPΣP

k ) if we can verify an appropriate
certificate of a yes-instance (resp. no-instance) in polynomial time when
given access to an oracle for ΣP

k . By definition, ΣP
1 = NP and ΠP

1 = co-NP.
We say that the classes ΣP

k and ΠP
k are on the k-th level of the polynomial

hierarchy.
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For all k ≥ 0, there are complete problems under polynomial-time many-
one reductions for ΣP

k and ΠP
k . However, while, for example, the complex-

ity class ΠP
2 generalizes both NP and co-NP, it remains an open question

whether ΣP
k 6= ΣP

k+1 or ΠP
k 6= ΠP

k+1 for any k ≥ 0. For further details of the
polynomial hierarchy, we refer the interested reader to Garey and Johnson’s
book [7], an article by Stockmeyer [16], as well as to the compendium by
Schaefer and Umans [14] for a collection of problems that are complete for
the second or higher levels of the polynomial hierarchy.

The following two ΠP
2 -complete problems are the starting points for the

work presented in this paper.

∀∃ 3-SAT
Input. A quantified Boolean formula

∀x1 · · · ∀xp∃xp+1 · · · ∃xn
m∧
j=1

Cj

over a set V = {x1, x2, . . . , xn} of variables, where each clause Cj is a dis-
junction of at most three literals.
Question. For every truth assignment for {x1, x2, . . . , xp}, does there ex-
ist a truth assignment for {xp+1, xp+2, . . . , xn} such that each clause of the
formula is satisfied?

∀∃ Not-All-Equal 3-SAT (∀∃ NAE-3-SAT)
Input. A quantified Boolean formula

∀x1 · · · ∀xp∃xp+1 · · · ∃xn
m∧
j=1

Cj

over a set V = {x1, x2, . . . , xn} of variables, where each clause Cj is a dis-
junction of at most three literals.
Question. For every truth assignment for {x1, x2, . . . , xp}, does there ex-
ist a truth assignment for {xp+1, xp+2, . . . , xn} such that each clause of the
formula is nae-satisfied?

Stockmeyer [16], and Eiter and Gottlob [6] established ΠP
2 -completeness for

∀∃ 3-SAT and ∀∃ NAE-3-SAT, respectively.

The main focus of this paper are the following three restricted variants
of ∀∃ 3-SAT and ∀∃ NAE-3-SAT. For the first two problems, s1, s2, t1, t2
are non-negative integers.
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Balanced ∀∃ 3-SAT-(s1, s2, t1, t2)
Input. A quantified Boolean formula

∀x1 · · · ∀xp∃xp+1 · · · ∃xn
m∧
j=1

Cj

over a set V = {x1, x2, . . . , xn} of variables such that (i) n = 2p, (ii) each
Cj is a 3-clause that contains three distinct variables, and (iii), amongst
the clauses, each universal variable appears unnegated exactly s1 times and
negated exactly s2 times, and each existential variable appears unnegated
exactly t1 times and negated exactly t2 times.
Question. For every truth assignment for {x1, x2, . . . , xp}, does there exist
a truth assignment for {xp+1, xp+2, . . . , xn} such that each clause of the
formula is satisfied?

We also consider the decision problem that is obtained from Balanced ∀∃
3-SAT-(s1, s2, t1, t2) by omitting property (i) in the statement of the input.
We refer to the resulting problem as ∀∃ 3-SAT-(s1, s2, t1, t2). Lastly, we
consider the following problem, where s and t are non-negative integers.

Monotone ∀∃ NAE-3-SAT-(s, t)
Input. A monotone quantified Boolean formula

∀x1 · · · ∀xp∃xp+1 · · · ∃xn
m∧
j=1

Cj

over a set V = {x1, x2, . . . , xn} of variables such that (i) each Cj is a 3-
clause that contains three distinct variables and (ii), amongst the clauses,
each universal variable appears exactly s times and each existential variable
appears exactly t times.
Question. For every truth assignment for {x1, x2, . . . , xp}, does there exist
a truth assignment for {xp+1, xp+2, . . . , xn} such that each clause of the
formula is nae-satisfied?

Enforcers. To establish the results of this paper, we will frequently use
the concept of enforcers. An enforcer (sometimes also called a gadget) [1]
is a Boolean formula, where the formula itself and each truth assignment
that satisfies it have a certain structure. Enforcers are used in polynomial-
time reductions to add additional restrictions on how yes-instances can be
obtained.

We next detail two unquantified enforcers that were introduced by Ber-
man et al. [1, p. 3] and that lay the foundation for several other enforcers
that are new to this paper and will be introduced in the following sections.
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First, let `1, `2 and `3 be three, not necessarily distinct, literals. Without
loss of generality, we may assume that `1 ∈ {x1, x1}, `2 ∈ {x2, x2}, and
`3 ∈ {x3, x3}. Now consider the following enforcer to which we refer to as
S-enforcer:

S(`1, `2, `3) =(`1 ∨ a ∨ b) ∧ (`2 ∨ b ∨ c) ∧ (`3 ∨ a ∨ c) ∧
(a ∨ b ∨ c) ∧ (a ∨ b ∨ c),

where a, b, and c are new variables such that {x1, x2, x3}∩{a, b, c} = ∅. Let
β : {x1, x2, x3, a, b, c} → {T, F} be a truth assignment. The next observation
is an immediate consequence from the fact that, if β(`1) = β(`2) = β(`3) =
F , then, as the first three clauses form a cyclic implication chain which can
only be satisfied by setting β(a) = β(b) = β(c), either the fourth or fifth
clause is not satisfied.

Observation 2.1. Consider the Boolean formula S(`1, `2, `3), where `i ∈
{xi, xi}, and let V be its associated set of variables. A truth assignment β
for the variables {x1, x2, x3} can be extended to a truth assignment β′ for V
that satisfies S(`1, `2, `3) if and only if β(`i) = T for some i ∈ {1, 2, 3}.

Remark. We denote the gadget obtained from S(`1, `2, `3) by viewing x1

as a universal variable and all other variables in {x2, x3, a, b, c} as existential
variables by Su(`1, `2, `3). Depending on the truth value assigned to the uni-
versal variable x1, the existential variables V −{x1}may take different values
in a truth assignment, say β, to satisfy the Boolean formula S(`1, `2, `3). In
particular, following Observation 2.1, for every truth assignment for x1 there
exist truth assignments for x2 and x3 such that the resulting truth assign-
ment, say β, for {x1, x2, x3} can be extended to a truth assignment β′ for V
that satisfies Su(`1, `2, `3) if and only if β(`i) = T for some i ∈ {1, 2, 3}. Note
that the variables in {x1, x2, x3} may be shared between different instances
of the gadget. Hence, although each individual instance can be satisfied
even if β(`1) = F , it may be impossible to satisfy them all at once.

In what follows, we will use enforcers that are built of several copies of
the S-enforcer. In such a case, for each pair of S-enforcer copies, the two
3-element sets of new variables are disjoint.

Again following the constructions from Berman et al. [1], consider a
second enforcer:

x(2) = S(x, y, y) ∧ S(x, ȳ, ȳ).

Note that x(2) is a Boolean formula over eight variables. Moreover, each
clause contains three distinct variables since the copies of y and ȳ are
distributed over different clauses in S(x, y, y) and S(x, ȳ, ȳ), respectively.
Lastly, each variable, except for x, appears exactly twice unnegated and
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twice negated in x(2). Now, the next observation follows by construction
and Observation 2.1.

Observation 2.2. Consider the Boolean formula x(2) over a set V of eight
variables, where x, y ∈ V . A truth assignment β for {x} can be extended to
a truth assignment β′ for V that satisfies x(2) if and only if β(x) = T .

We will use the S-enforcer and x(2) as well as extensions thereof in the proofs
of several results established in this paper.

3 Hardness of balanced and unbalanced versions
of ∀∃ 3-SAT-(s1, s2, t1, t2)

3.1 New enforcers

We start by describing three new enforcers, with the first one building upon
the enforcers introduced in the previous section. Consider the following
gadget:

E(x) = S(x, y, y) ∧ S(x, ȳ, ȳ) ∧ S(x̄, z, z̄) ∧ S(z, z̄, u) ∧ S(u, ū, ū)

which is an extended variant of the enforcer x(2). We call x the enforcer
variable of E(x). Note that every variable in {u, y, z} appears exactly twice
unnegated and exactly twice negated in E(x), and that x appears exactly
twice unnegated and exactly once negated in E(x). Moreover, by construc-
tion and Observation 2.2, it follows that E(x) is satisfiable by setting x to
be T , and by setting all remaining 18 variables appropriately.

Observation 3.1. Consider the gadget E(x), and let V be its associated
set of variables. A truth assignment β for {x} can be extended to a truth
assignment β′ for V that satisfies E(x) if and only if β(x) = T .

We now turn to two quantified enforcers whose purpose is to increase
the number of universal variables by one and three, respectively, relative to
the number of existential variables. First, let

Q1 =(u ∨ v ∨ a) ∧ (u ∨ v ∨ b) ∧ (u ∨ v ∨ a) ∧ (u ∨ v ∨ b) ∧
(a ∨ b ∨ r) ∧ (a ∨ b ∨ r) ∧ (c ∨ d ∨ r) ∧ (c ∨ d ∨ r) ∧
(w ∨ q ∨ c) ∧ (w ∨ q ∨ d) ∧ (w ∨ q ∨ c) ∧ (w ∨ q ∨ d),

9



where u, v, w, q, r are universal variables, and a, b, c, d are existential vari-
ables. Observe that each variable of Q1 appears exactly twice unnegated
and exactly twice negated. Second, let

Q3 =(u ∨ r ∨ a) ∧ (u ∨ b ∨ a) ∧ (v ∨ q ∨ b) ∧
(v ∨ r ∨ a) ∧ (w ∨ a ∨ b) ∧ (w ∨ q ∨ b),

where u, v, w, q, r are universal variables and a, b are existential variables.
Observe that each universal variable of Q3 appears exactly once unnegated
and exactly once negated, and that each existential variable of Q3 appears
exactly twice unnegated and exactly twice negated.

Lemma 3.2. The quantified Boolean formula

∀u∀v ∀w ∀q ∀r ∃a ∃b∃c∃d Q1

is a yes-instance of ∀∃ 3-SAT.

Proof. Let U = {u, v, w, q, r}, and let E = {a, b, c, d}. Furthermore, let
β : U → {T, F} be a truth assignment for U . We extend β to β′ : U ∪ E →
{T, F} as follows:

β′(a) = β′(b) = β(u), β′(c) = β′(d) = β(w).

It is now easy to verify that β′ satisfies all clauses. Thus, Q1 is a yes-instance
of ∀∃ 3-SAT.

Lemma 3.3. The quantified Boolean formula

∀u∀v ∀w ∀q ∀r ∃a∃b Q3

is a yes-instance of ∀∃ 3-SAT.

Proof. Let U = {u, v, w, q, r}, and let E = {a, b}. Futhermore, let β : U →
{T, F} be a truth assignment for U . We extend β to a truth assignment
β′ : U ∪ E → {T, F} for Q3 as follows:

β′(a) = β(u) ∧ β(r), β′(b) = β(w) ∨ β(q).

It is now straightforward to check thatQ3 is a yes-instance of ∀∃ 3-SAT.
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3.2 Hardness of Balanced ∀∃ 3-SAT-(s1, s2, t1, t2)

In this section, we show that Balanced ∀∃ 3-SAT-(s1, s2, t1, t2) is ΠP
2 -

complete when

(s1, s2, t1, t2) ∈ {(2, 2, 2, 2), (1, 1, 2, 2)}.

To this end, for a clause C, we use C to denote the clause obtained from C
by replacing each literal with its negation and call C the complement of C.
For example, if C = (x1 ∨ x2 ∨ x3), then C = (x1 ∨ x2 ∨ x3).

Theorem 3.4. Balanced ∀∃ 3-SAT-(2, 2, 2, 2) is ΠP
2 -complete.

Proof. Noting that Balanced ∀∃ 3-SAT-(2, 2, 2, 2) is a special case of ∀∃
3-SAT, we deduce that the problem is in ΠP

2 . We show that the problem is
ΠP

2 -hard by a reduction from ∀∃ NAE-3-SAT. Let

Φ1 = ∀Xp
1∃X

n
p+1ϕ

be an instance of ∀∃ NAE-3-SAT, where

ϕ =

m∧
j=1

Cj

is a Boolean formula over a set V1 = {x1, x2, . . . , xn} of variables such that
Cj is a disjunction of at most three literals for all j ∈ {1, 2, . . . ,m} and no Cj
contains only a single literal since, otherwise, Φ1 is a no-instance. Following
Schaefer [13, p. 298] and noting that his reduction translates without changes
to ∀∃ NAE-3-SAT, we first modify Φ1 using the following transformation
that turns every universal variable xi of Φ1 into an existential variable yi
and introduces the set of new universal variables {z1, z2, . . . , zp}:

Φ2 = ∀Zp1∃X
n
p+1∃Y

p
1 ϕ[x1 7→ y1, . . . , xp 7→ yp] ∧

p∧
i=1

((z̄i ∨ yi) ∧ (zi ∨ ȳi)) .

= ∀Zp1∃X
n
p+1∃Y

p
1 ϕ
′,

where ϕ′ = ϕ[x1 7→ y1, . . . , xp 7→ yp] ∧
∧p
i=1 ((z̄i ∨ yi) ∧ (zi ∨ ȳi)). Let V2 be

the set of variables of Φ2.

3.4.1. Φ1 is a yes-instance of ∀∃ NAE-3-SAT if and only if Φ2 is a yes-
instance of ∀∃ NAE-3-SAT.

Proof. First, suppose that Φ1 is a yes-instance of ∀∃ NAE-3-SAT. Let β1

be a truth assignment for V1 that nae-satisfies Φ1, and let β2 be the following
truth assignment for V2:
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(i) set β2(xi) = β1(xi) for each i ∈ {p+ 1, p+ 2, . . . , n};
(ii) set β2(yi) = β1(xi) for each i ∈ {1, 2, . . . , p};
(iii) set β2(zi) = β2(yi) for each i ∈ {1, 2, . . . , p}.

By (iii), it is straightforward to check that β2 nae-satisfies Φ2 and that, for
every truth assignment for Zp1 , there exists a truth assignment for Xn

p+1∪Y
p

1

that nae-satisfies Φ2. Hence, Φ2 is a yes-instance of ∀∃ NAE-3-SAT.

Second, suppose that Φ2 is a yes-instance of ∀∃ NAE-3-SAT. Let β2

be a truth assignment for V2 that nae-satisfies Φ2. By construction of Φ2,
it follows that β2(zi) = β2(yi) for each i ∈ {1, 2, . . . , p}. Hence β1 with
β1(xi) = β2(yi) for each i ∈ {1, 2, . . . , p}, and β1(xi) = β2(xi) for each
i ∈ {p + 1, p + 2, . . . , n} is a truth assignment for V1 that nae-satisfies Φ2.
Thus Φ1 is a yes-instance of ∀∃ NAE-3-SAT

For each wi ∈ Xn
p+1 ∪ Y

p
1 , recall that a(wi) denotes the number of ap-

pearances of wi in ϕ′. Next, we apply, in turn, the following transformation
adapted from Berman et al. [1, p. 4] yielding an instance of ∀∃ 3-SAT.

1. Replace ∃Xn
p+1 in Φ2 with the following list of existential variables:

∃xp+1,1∃xp+1,2 · · · ∃xp+1,a(xp+1) · · · ∃xn,1∃xn,2 · · · ∃xn,a(xn)

Similarly, replace ∃Y p
1 in Φ2 with the following list of existential vari-

ables:
∃y1,1∃y1,2 · · · ∃y1,a(y1) · · · ∃yp,1∃yp,2 · · · ∃yp,a(yp).

Lastly, for each existential variable wi ∈ Xn
p+1 ∪ Y

p
1 and all k ∈

{1, . . . , a(wi)}, replace the k-th appearance of wi in ϕ′ by wi,k.

2. Replace each clause Cj with Cj ∧ Cj .

3. For each wi ∈ Xn
p+1 ∪ Y

p
1 , introduce the clauses

(wi,1∨wi,2)∧ (wi,2∨wi,3)∧· · ·∧ (wi,a(wi)−1∨wi,a(wi))∧ (wi,a(wi)∨wi,1).

4. Replace each 2-clause (`1 ∨ `2) by (`1 ∨ `2 ∨u)∧E(u), where u and all
18 variables introduced by E(u) are new existential variables. Append
all 19 new variables to the list of existential variables.

Let Φ3 denote the formula constructed by the preceding four-step procedure,
and let V3 be the set of variables of Φ3. To illustrate the construction of Φ3

from Φ1, we present an example after the proof of this theorem.
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3.4.2. Φ2 is a yes-instance of ∀∃ NAE-3-SAT if and only if Φ3 is a yes-
instance of ∀∃ 3-SAT.

Proof. First, suppose that Φ2 is a yes-instance of ∀∃ NAE-3-SAT. Let β2 be
a truth assignment for V2 that nae-satisfies Φ2. Obtain a truth assignment β3

for V3 as follows:

(i) set β3(zi) = β2(zi) for each i ∈ {1, 2, . . . , p};
(ii) set β3(xi,k) = β2(xi) for each i ∈ {p + 1, p + 2, . . . , n} and k ∈
{1, 2, . . . , a(xi)};

(iii) set β3(yi,k) = β2(yi) for each i ∈ {1, 2, . . . , p} and k ∈ {1, 2, . . . , a(yi)}.

Additionally, for each 2-clause C = (`1 ∨ `2) that is replaced with the S-
enforcer (`1∨`2∨u)∧E(u) in Step 4, set β3(u) = T , and set all 18 existential
variables introduced by E(u) such that the 25 clauses of E(u) are satisfied.
By construction of E(u) and Observation 3.1, this is always possible. If
C is a 2-clause of Φ2, then, as C is nae-satisfied by β2, it follows that β3

satisfies (`1 ∨ `2 ∨ u) ∧ E(u). If C is initially a 2-clause introduced in Step
3 and then replaced in Step 4, it follows by (ii) and (iii) that β3 satisfies
(`1 ∨ `2 ∨u)∧E(u). Noting that if a truth assignment nae-satisfies a clause,
then it also nae-satisfies its complement, it is now straightforward to check
that β3 satisfies Φ3 and, hence, Φ3 is a yes-instance of ∀∃ 3-SAT.

Second, suppose that Φ3 is a yes-instance of ∀∃ 3-SAT. Let β3 be a
truth assignment that satisfies Φ3. Let u be an enforcer variable such that
the 25 clauses associated with E(u) are clauses of Φ3 but not of Φ2. By
construction of E(u) and Observation 3.1, we have β3(u) = T . Now let wi ∈
Xn
p+1 ∪ Y

p
1 . As β3 satisfies Φ3 and each enforcer variable that is contained

in V3 is assigned to T under β3, it follows from the clauses introduced in
Step 3 that

β3(wi,1) = β3(wi,2) = · · · = β3(wi,a(wi)).

Let β2 be the truth assignment for Φ2 that is obtained from β3 as follows:

(i) β2(zi) = β3(zi) for each i ∈ {1, 2, . . . , p},
(ii) β2(xi) = β3(xi,1) for each i ∈ {p+ 1, p+ 2, . . . , n}, and

(iii) β2(yi) = β3(yi,1) for each i ∈ {1, 2, . . . , p}.

As β3 satisfies Φ3, it immediately follows that β2 satisfies Φ2. We complete
the proof by showing that β2 nae-satisfies Φ2. Assume that there exists a
clause C in Φ2 whose literals all evaluate to T under β2. Let D be the clause
obtained from C by applying Step 1. If C contains exactly three literals,
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then all three literals of D evaluate to F ; thereby contradicting that β3

satisfies Φ3. On the other hand, if C contains exactly two literals, then D is
replaced with a 3-clause, say D′, and an enforcer, say E(u′), in Step 4 and,
similarly, D is replaced with a 3-clause, say D′′, and an enforcer, say E(u′′),
in Step 4. Note that D′′ is not the complement of D′. Furthermore, again
by Observation 3.1, we have β3(u′) = β3(u′′) = T . Now, as each literal of C
evaluates to T , each literal of D′′ evaluates to F under β3; a contradiction.
Hence β2 nae-satisfies Φ2, and so Φ2 is a yes-instance of ∀∃ NAE-3-SAT.

We next obtain a quantified Boolean formula Φ4 from Φ3 such that
the number of universal variables in Φ4 is equal to the number of existential
variables in Φ4. Let pe be the number of existential variables in V3, and let pu
be the number of universal variables in V3. By construction, observe that
pu = p ≥ 0. Since a new existential variable yi has been introduced for each
universal variable xi in V1 with i ∈ {1, 2, . . . , p}, we have pe ≥ pu. Let Q1

k

be the enforcer with variables {ak, bk, ck, dk, qk, rk, uk, vk, wk} as introduced
in Section 3.1. Obtain Φ4 from Φ3 by adding Q1

k to the Boolean formula,
appending ∃ak∃bk∃ck∃dk to the list of existential variables, and appending
∀qk∀rk∀uk∀vk∀wk to the list of universal variables for each k ∈ {1, 2, . . . , pe−
pu}. It now follows that Φ4 contains pe + 4(pe − pu) = 5pe − 4pu existential
variables and pu + 5(pe − pu) = 5pe − 4pu universal variables. Moreover, by
Lemma 3.2, we have that Φ3 is a yes-instance of ∀∃ 3-SAT if and only if Φ4

is a yes-instance of ∀∃ 3-SAT.

We complete the proof by showing that Φ4 is an instance of Balanced
∀∃ 3-SAT-(2, 2, 2, 2). Let V4 be the set of variables of Φ4. By the transfor-
mation of Φ1 into Φ3 and the construction of Q1

k, it is easily checked that
each universal variable in V4 appears exactly twice unnegated and exactly
twice negated in Φ4. Now, consider the following three sets of existential
variables:

(I) S1 =
⋃pe−pu
k=1 {ak, bk, ck, dk},

(II) S2 =
⋃n
i=p+1{xi,1, xi,2, . . . , xi,a(xi)} and

(III) S3 =
⋃p
i=1{yi,1, yi,2, . . . , yi,a(yi)}.

It follows again from the construction of Q1
k that each variable in S1 appears

exactly twice unnegated and exactly twice negated in Φ4. Furthermore, by
Steps 1–3 in the construction of Φ3, it follows that each variable in S2 ∪ S3

appears exactly twice unnegated and exactly twice negated in Φ4. Lastly,
each existential variable in V4−(S1∪S2∪S3) has been introduced by replacing
a 2-clause (`1 ∨ `2) with (`1 ∨ `2 ∨ u) ∧ E(u) in Step 4 of the construction
of Φ3. Recall that u appears unnegated exactly twice and negated exactly
once in E(u), and that each of the 18 remaining variables introduced by
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E(u) appears exactly twice unnegated and exactly twice negated in E(u).
It now follows that Φ4 is an instance of Balanced ∀∃ 3-SAT-(2, 2, 2, 2).
We complete the proof of this theorem by noting that each clause of Φ4 is
a 3-clause that contains three distinct variables and that the size of Φ4 is
polynomial in the size of Φ1.

Example. We next present a simple example that illustrates the construc-
tion of Φ3 from Φ1 as described in the proof of Theorem 3.4. Using the same
notation as in this proof, let

Φ1 = ∀X1
1∃X4

2 (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4).

Loosely speaking, we obtain Φ2 from Φ1 by turning each universal variable
into an existential variable and introduce new universal variables. Specifi-
cally, we have

Φ2 = ∀Z1
1∃X4

2∃Y 1
1 (y1 ∨ x2 ∨ x3) ∧ (y1 ∨ x3 ∨ x4) ∧ (z1 ∨ y1) ∧ (z1 ∨ y1).

To obtain Φ3 from Φ2, we apply the four-step construction as described
immediately after the proof of Statement 3.4.1. It follows that

Φ′2 = ∀Z1
1∃x2,1∃x3,1∃x3,2∃x4,1∃y1,1∃y1,2∃y1,3∃y1,4

(y1,1 ∨ x2,1 ∨ x3,1) ∧ (y1,2 ∨ x3,2 ∨ x4,1) ∧ (z1 ∨ y1,3) ∧ (z1 ∨ y1,4) ∧
(y1,1 ∨ x2,1 ∨ x3,1) ∧ (y1,2 ∨ x3,2 ∨ x4,1) ∧ (z1 ∨ y1,3) ∧ (z1 ∨ y1,4) ∧
(x2,1 ∨ x2,1) ∧ (x3,1 ∨ x3,2) ∧ (x3,2 ∨ x3,1) ∧ (x4,1 ∨ x4,1) ∧
(y1,1 ∨ y1,2) ∧ (y1,2 ∨ y1,3) ∧ (y1,3 ∨ y1,4) ∧ (y1,4 ∨ y1,1)

is the formula obtained after the first three steps. Recalling that Step 4
introduces a copy of the enforcer E(u) for each of the twelve 2-clauses in
Φ′2, we have

Φ3 = ∀Z1
1∃x2,1∃x3,1∃x3,2∃x4,1∃y1,1∃y1,2∃y1,3∃y1,4∃U12

1 ∃H216
1

(y1,1 ∨ x2,1 ∨ x3,1) ∧ (y1,2 ∨ x3,2 ∨ x4,1) ∧
(z1 ∨ y1,3 ∨ u1) ∧ E(u1) ∧ (z1 ∨ y1,4 ∨ u2) ∧ E(u2) ∧
(y1,1 ∨ x2,1 ∨ x3,1) ∧ (y1,2 ∨ x3,2 ∨ x4,1) ∧
(z1 ∨ y1,3 ∨ u3) ∧ E(u3) ∧ (z1 ∨ y1,4 ∨ u4) ∧ E(u4) ∧
(x2,1 ∨ x2,1 ∨ u5) ∧ E(u5)

(x3,1 ∨ x3,2 ∨ u6) ∧ E(u6) ∧ (x3,2 ∨ x3,1 ∨ u7) ∧ E(u7) ∧
(x4,1 ∨ x4,1 ∨ u8) ∧ E(u8)

(y1,1 ∨ y1,2 ∨ u9) ∧ E(u9) ∧ (y1,2 ∨ y1,3 ∨ u10) ∧ E(u10) ∧
(y1,3 ∨ y1,4 ∨ u11) ∧ E(u11) ∧ (y1,4 ∨ y1,1 ∨ u12) ∧ E(u12),
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where u1, . . . , u10 are the twelve existential enforcer variables and h1, . . . , h216

are the new existential variables introduced by E(u1), E(u2), . . . , E(u12).

In Theorem 3.4, we have imposed the same bound on existential and
universal variables, i.e. s1 = s2 = t1 = t2. By allowing separate bounds, i.e.
s1 = s2 and t1 = t2, we obtain the following stronger result.

Theorem 3.5. Balanced ∀∃ 3-SAT-(1, 1, 2, 2) is ΠP
2 -complete.

Proof. Clearly, Balanced ∀∃ 3-SAT-(1, 1, 2, 2) is in ΠP
2 . We establish ΠP

2 -
hardness via a reduction from Balanced ∀∃ 3-SAT-(2, 2, 2, 2). Let

Φ1 = ∀Xp
1∃X

2p
p+1ϕ.

be an instance of Balanced ∀∃ 3-SAT-(2, 2, 2, 2). Let m be the number
of 3-clauses of ϕ. As 3m = 2p · 4, observe that p is divisible by 3. Following
a similar strategy as in the proof of Theorem 3.4, we apply the following
4-step process to transform Φ1 into an instance Φ4 of Balanced ∀∃ 3-SAT-
(1, 1, 2, 2).

1. Obtain

Φ2 = ∀Cp1∃X
2p
p+1∃Y

p
1 ∃Z

6p
1 ϕ[x1 7→ y1, . . . , xp 7→ yp] ∧

p∧
i=1

(Su(ci, yi, yi) ∧ Su(ci, yi, yi)) ,

by turning each universal variable in xi ∈ Xp
1 into an existential vari-

able yi, adding new universal variables c1, c2, . . . , cp, and adding new
existential variables z1, z2, . . . , z6p that are introduced as new variables
by copies of the S-enforcer. By construction, each yi ∈ Y p

1 appears
exactly four times unnegated and exactly four times negated in Φ2.

2. For each yi ∈ Y p
1 and k ∈ {1, 2, 3, 4}, replace the k-th negated appear-

ance of yi with yi,k and replace the k-th unnegated appearance of yi
with yi,k. Then replace ∃Y p

1 in Φ2 with the following list of existential
variables

∃y1,1∃y1,2∃y1,3∃y1,4 · · · ∃yp,1∃yp,2∃yp,3∃yp,4.

3. Add the following clauses to the Boolean formula resulting from Step 2:

p∧
i=1

[
(yi,1 ∨ yi,2 ∨ di,1) ∧ (yi,2 ∨ yi,3 ∨ di,1) ∧ d(2)

i,1 ∧

(yi,3 ∨ yi,4 ∨ di,2) ∧ (yi,4 ∨ yi,1 ∨ di,2) ∧ d(2)
i,2

]
,
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where di,1 and di,2 are new existential variables with i ∈ {1, 2 . . . , p},
and d

(2)
i,1 and d

(2)
i,2 are the corresponding enforcers as introduced in

Section 2. Then append

∃d1,1∃d1,2∃d2,1∃d2,2 · · · ∃dp,1∃dp,2∃E14p
1

to the list of existential variables, where E14p
1 is the set of new vari-

ables introduced by these enforcers (each of d
(2)
i,1 and d

(2)
i,2 introduces

seven such variables). Let Φ3 denote the resulting quantified Boolean
formula.

4. Note that each universal variable of Φ3 appears exactly once unnegated
and exactly once negated, and that each existential variable of Φ3

appears exactly twice unnegated and exactly twice negated. Let pe
(resp. pu) be the number of existential (resp. universal) variables in Φ3.
Then

pe = p+ 4p+ 6p+ 2p+ 14p = 27p and pu = p.

Evidently, pe ≥ pu. Furthermore, as p is divisible by 3, it follows that
pe and pu are both divisible by 3. Let ∆ = (pe− pu)/3. Now, for each
k ∈ {1, 2, . . . ,∆}, add the enforcer Q3

k as introduced in Section 3.1
to Φ3, append ∃ak∃bk to the list of existential variables, and append
∀qk∀rk∀uk∀vk∀wk to the list of universal variables.

Let Φ4 denote the formula resulting from the preceding 4-step process. By
construction, each clause in Φ4 is a 3-clause that contains three distinct
variables. Moreover, since, for each k, the enforcer Q3

k increases the number
of universal variables by five and the number of existential variables by two,
it follows that Φ4 is an instance of Balanced ∀∃ 3-SAT-(1, 1, 2, 2).

Noting that the size of Φ4 is polynomial in the size of Φ1, we complete
the proof by establishing the following statement.

3.5.1. Φ1 is a yes-instance of Balanced ∀∃ 3-SAT-(2, 2, 2, 2) if and only
if Φ4 is a yes-instance of Balanced ∀∃ 3-SAT-(1, 1, 2, 2).

Proof. Let V1 be the set of variables of Φ1, and let V4 be the set of variables
of Φ4. First, suppose that Φ1 is a yes-instance of Balanced ∀∃ 3-SAT-
(2, 2, 2, 2). Let β1 be a truth assignment that satisfies Φ1. We obtain a truth
assignment β4 for a subset of V4, say V ′4 , from β1 as follows:

(i) for each i ∈ {1, 2, . . . , p}, set β4(ci) = β1(xi);
(ii) for each i ∈ {p+ 1, p+ 2, . . . , 2p}, set β4(xi) = β1(xi);
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(iii) for each i ∈ {1, 2, . . . , p} and k ∈ {1, 2, 3, 4}, set β4(yi,k) = β4(ci);
(iv) for each i ∈ {1, 2, . . . , p} and k ∈ {1, 2}, set β4(di,k) = T .

It is straightforward to check that each clause in Φ4 that does not contain
a variable in

(A∆
1 ∪B∆

1 ∪ E
14p
1 ∪Q∆

1 ∪R∆
1 ∪ U∆

1 ∪ V ∆
1 ∪W∆

1 ∪ Z
6p
1 )

is satisfied by β4. We next extend β4 in three steps. First, by (iv) and
Observation 2.2, it follows that β4 extends to V ′4∪E

14p
1 such that, for each i ∈

{1, 2, . . . , p}, the clauses of d
(2)
i,1 and d

(2)
i,2 are satisfied. Second, by Lemma 3.3,

β4 also extends to

V ′4 ∪A∆
1 ∪B∆

1 ∪Q∆
1 ∪R∆

1 ∪ U∆
1 ∪ V ∆

1 ∪W∆
1

such that each clause in Q3
1 ∧Q3

2 ∧ · · · ∧Q3
∆ is satisfied. Third, by (i), (iii),

and Observation 2.1 together with its subsequent remark, it follows that β4

extends to V ′4 ∪ Z
6p
1 such that the clauses in

p∧
i=1

(Su(ci, yi, yi) ∧ Su(ci, yi, yi))

are satisfied. We deduce that Φ4 is satisfiable.

Second, suppose that Φ4 is a yes-instance of Balanced ∀∃ 3-SAT-
(1, 1, 2, 2). Let β4 be a truth assignment that satisfies Φ4. It follows from
Observation 2.2, that β4(di,1) = β4(di,2) = T for each i ∈ {1, 2, . . . , p}.
Hence, the clauses introduced in Step 3 imply that

β4(yi,1) = β4(yi,2) = β4(yi,3) = β4(yi,4).

It is now easy to check that the truth assignment β1 for V1 obtained from
β4 by setting

(i) β1(xi) = β4(yi,1) for each i ∈ {1, 2, . . . , p} and
(ii) β1(xi) = β4(xi) for each i ∈ {p+ 1, p+ 2, . . . , 2p}

satisfies Φ1. Thus, Statement 3.5.1 holds.

This completes the proof of Theorem 3.5.

We end this section by remarking that Haviv et al. [8, p. 55] showed that
∀∃ 3-SAT-(s1, s2, t1, t2) is in NP if s1 + s2 ≤ 1 and in co-NP if t1 + t2 ≤ 2.
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The latter result implies that Balanced ∀∃ 3-SAT-(1, 1, 1, 1) is in co-NP.
Hence, unless the polynomial hierarchy collapses, the balanced bounds on
the number of appearances of universal and existential variables established
in Theorems 3.4 and 3.5 are the best possible ones (i.e., for smaller values,
the problems can be placed on a lower level of the polynomial hierarchy).

3.3 Hardness of ∀∃ 3-SAT-(s1, s2, t1, t2)

Following on from the results by Haviv et al. [8, p. 55] mentioned in the
last paragraph, ∀∃ 3-SAT-(s1, s2, t1, t2) with s1 + s2 ≤ 1 or t1 + t2 ≤ 2 is
not ΠP

2 -hard unless the polynomial hierarchy collapses. In this section, we
show which instances of ∀∃ 3-SAT-(s1, s2, t1, t2) are NP-complete and which
are ΠP

2 -complete. Specifically, we show that ∀∃ 3-SAT-(s1, s2, t1, t2) is NP-
complete for when s1 +s2 = 1 and (t1, t2) ∈ {(1, 2), (2, 1)}, and ΠP

2 -complete
for when s1 = s2 = 1 and (t1, t2) ∈ {(1, 2), (2, 1)}.

Let Φ be an instance of ∀∃ 3-SAT-(s1, s2, t1, t2) with s1 + s2 = 1, and
let Y p

1 be the set of universal variables of Φ. As noted by Haviv et al. [8,
p. 55], we can obtain an equivalent unquantified Boolean formula from Φ
by deleting all literals in {yi, yi : i ∈ {1, 2, . . . , p}} in the clauses of Φ.
Hence, if Φ has the additional property that t1 + t2 ≤ 2, it follows from
results by Tovey [17, Section 3] that it can be decided in polynomial time
whether or not Φ is a yes-instance. Hence, ∀∃ 3-SAT-(s1, s2, t1, t2) with
s1 + s2 = 1 and t1 + t2 ≤ 2 is polynomial-time solvable. The next theorem
shows that ∀∃ 3-SAT-(s1, s2, t1, t2) with s1+s2 = 1 becomes NP-complete if
(t1, t2) ∈ {(1, 2), (2, 1)}. To establish this result, we use a variant of 3-SAT
in which each clause is either a 2-clause or a 3-clause, and each variable
appears exactly twice unnegated and exactly once negated, or exactly once
unnegated and exactly twice negated. We refer to this variant as 3-SAT-(3).
It was shown by Dahlhaus et al. [4, p. 877f] that 3-SAT-(3) is NP-complete.
To establish the next theorem, we impose the following two restrictions on
an instance ϕ of 3-SAT-(3).

(R1) Each 2-clause (resp. 3-clause) contains 2 (resp. 3) distinct variables.
(R2) Amongst the clauses, each variable appears exactly twice unnegated

and exactly once negated.

Indeed, it follows immediately from Dahlhaus et al’s. [4, p. 877f] construction
that ϕ satisfies (R1). Moreover, standard pre-processing that replaces each
literal of a variable that appears exactly once unnegated and exactly twice
negated with its negation can be used to obtain an instance ϕ′ from ϕ that
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satisfies (R2) and that is equivalent to ϕ. We hence obtain the following
theorem.

Theorem 3.6. ∀∃ 3-SAT-(s1, s2, t1, t2) is NP-complete if s1 + s2 = 1 and
(t1, t2) ∈ {(1, 2), (2, 1)}.

Proof. It was shown by Haviv et al. [8, p. 55] that ∀∃ 3-SAT-(s1, s2, t1, t2)
with s1 +s2 = 1 is in NP. We first establish NP-completeness for ∀∃ 3-SAT-
(1, 0, 2, 1) via a reduction from 3-SAT-(3).

Let

ϕ =

p∧
j=1

C2
j ∧

m∧
j=p+1

C3
j

be an instance of 3-SAT-(3) over a set Xn
1 of variables and such that each

clause Ckj is a k-clause with k ∈ {2, 3}. As described prior to the statement
of Theorem 3.6, we may assume that ϕ satisfies (R1) and (R2). Construct
the following quantified Boolean formula Φ from ϕ:

Φ = ∀Y p
1 ∃X

n
1

 p∧
j=1

(C2
j ∨ yi) ∧

m∧
j=p+1

C3
j

 .

Since ϕ satisfies (R2), Φ is an instance of ∀∃ 3-SAT-(1, 0, 2, 1). First, sup-
pose that ϕ is satisfiable. Then there is a truth assignment β that satisfies
each clause in ϕ. In particular, β satisfies each clause C2

j and, hence, any
extension of β to Y p

1 with i ∈ {1, 2, . . . , p} is a truth assignment that satis-
fies Φ. Second, suppose that Φ is satisfiable. Let β′ be a truth assignment
for Φ such that β′(yi) = F for each i ∈ {1, 2, . . . , p}. By the existence of β′,
it follows that β(xi) = β′(xi) for each i ∈ {1, 2, . . . , n} is a truth assignment
that satisfies each clause in ϕ. As the size of Φ is polynomial in the size
of ϕ, NP-completeness of ∀∃ 3-SAT-(1, 0, 2, 1) now follows. To see that ∀∃
3-SAT-(s1, s2, t1, t2) is also NP-complete for when

(I) (s1, s2, t1, t2) = (0, 1, 2, 1),
(II) (s1, s2, t1, t2) = (1, 0, 1, 2), or

(III) (s1, s2, t1, t2) = (0, 1, 1, 2),

observe that an instance of any of (I)-(III) is equivalent to an instance of
∀∃ 3-SAT-(1, 0, 2, 1) by replacing each literal of a universal or an existential
(or both) variable with its negation.

Theorem 3.7. ∀∃ 3-SAT-(1, 1, t1, t2) with (t1, t2) ∈ {(1, 2), (2, 1)} is ΠP
2 -

complete.
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Proof. We first establish the theorem for (t1, t2) = (2, 1). Throughout the
proof, we make use of the following quantified enforcer for an existential
variable di,k:

E∀(di,k) = (di,k ∨ ui,k ∨ vi,k) ∧ (di,k ∨ ui,k ∨ vi,k),

where ui,k and vi,k are new universal variables for some i, k ∈ Z+. The
following property of E∀(di,k) is easy to verify.

(P1) The Boolean formula ∀ui,k∀vi,k∃di,kE∀(di,k) is a yes-instance of ∀∃ 3-
SAT. In particular, if a truth assignment β for {di,k, ui,k, vi,k} has
the property that β(di,k) = T , then β satisfies E∀(di,k). Furthermore,
if β satisfies E∀(di,k) and β(ui,k) = β(vi,k), then this implies that
β(di,k) = T .

As ∀∃ 3-SAT-(1, 1, 2, 1) is a special case of ∀∃ 3-SAT, it follows that the
former problem is in ΠP

2 . We show ΠP
2 -hardness by a reduction from Bal-

anced ∀∃ 3-SAT-(1, 1, 2, 2), for which ΠP
2 -completeness was established in

Theorem 3.5. Let
Φ1 = ∀Xp

1∃Y
2p
p+1ϕ

be an instance of Balanced ∀∃ 3-SAT-(1, 1, 2, 2). The reduction has two
steps:

1. For each existential variable yi of Φ1 with i ∈ {p + 1, p + 2, . . . , 2p},
replace the first (resp. second) unnegated appearance of yi with yi,1
(resp. yi,2), replace the first (resp. second) negated appearance of yi
with the negation of yi,3 (resp. yi,4), and add the new clauses

(yi,1 ∨ yi,2 ∨ di,1) ∧ E∀(di,1) ∧ (yi,2 ∨ yi,3 ∨ di,2) ∧ E∀(di,2) ∧
(yi,3 ∨ yi,4 ∨ di,3) ∧ E∀(di,3) ∧ (yi,4 ∨ yi,1 ∨ di,4) ∧ E∀(di,4),

to Φ1, where each di,k with k ∈ {1, 2, 3, 4} is a new existential variable.
For all i ∈ {p + 1, p + 2, . . . , 2p} and k ∈ {1, 2, 3, 4}, append yi,k and
di,k to the list of existential variables and append ui,k and vi,k to the
list of universal variables.

2. For each existential variable yi,k with k ∈ {3, 4}, replace each literal
yi,k with yi,k and each literal yi,k with yi,k.

Let Φ2 be the resulting quantified Boolean formula, and let V2 be the set of
variables of Φ2. (An example of this construction is given after the proof of
the theorem.) Note that each existential variable yi,k with k ∈ {3, 4} appears
exactly once unnegated and exactly twice negated in the Boolean formula
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resulting from Step 1. Hence, due to Step 2, it follows that Φ2 is an instance
of ∀∃ 3-SAT-(1, 1, 2, 1). Furthermore, for each i ∈ {p + 1, p + 2, . . . , 2p},
the clauses introduced in Step 1 are replaced with the following clauses in
Step 2:

(yi,1 ∨ yi,2 ∨ di,1) ∧ E∀(di,1) ∧ (yi,2 ∨ yi,3 ∨ di,2) ∧ E∀(di,2) ∧
(yi,3 ∨ yi,4 ∨ di,3) ∧ E∀(di,3) ∧ (yi,4 ∨ yi,1 ∨ di,4) ∧ E∀(di,4).

We complete the proof for (t1, t2) = (2, 1) by establishing the following
statement.

3.7.1. Φ1 is a yes-instance of Balanced ∀∃ 3-SAT-(1, 1, 2, 2) if and only
if Φ2 is a yes-instance of ∀∃ 3-SAT-(1, 1, 2, 1).

Proof. First, suppose that Φ1 is a yes-instance of Balanced ∀∃ 3-SAT-
(1, 1, 2, 2). Let β1 be a truth assignment that satisfies Φ1. For every truth
assignment β′2 for the universal variables in

{ui,k, vi,k : i ∈ {p+ 1, p+ 2, . . . , 2p} and k ∈ {1, 2, 3, 4}},

we extend β′2 to a truth assignment β2 for V2 as follows:

(i) set β2(xi) = β1(xi) for each i ∈ {1, 2, . . . , p};
(ii) set β2(yi,k) = β1(yi) for each i ∈ {p+ 1, p+ 2, . . . , 2p} and k ∈ {1, 2};
(iii) set β2(yi,k) = β1(yi) for each i ∈ {p+ 1, p+ 2, . . . , 2p} and k ∈ {3, 4};
(iv) set β2(di,k) = T for each i ∈ {p+ 1, p+ 2, . . . , 2p} and k ∈ {1, 2, 3, 4}.

Due to (iv) and Property (P1), it is now easily checked that Φ2 is a yes-
instance of ∀∃ 3-SAT-(1, 1, 2, 1).

Second, suppose that Φ2 is a yes-instance of ∀∃ 3-SAT-(1, 1, 2, 1). Let β2

be a truth assignment that satisfies Φ2 such that β2(ui,k) = β2(vi,k) for each
i ∈ {p+ 1, p+ 2, . . . 2p} and k ∈ {1, 2, 3, 4}. Since Φ2 is a yes-instance, this
implies that β2(di,k) = T by Property (P1). Moreover, by construction, we
have

β2(yi,1) = β2(yi,2) and β2(yi,1) = β2(yi,3) = β2(yi,4)

for each i ∈ {p+ 1, p+ 2, . . . 2p}. It now follows that β1 with

(i) β1(xi) = β2(xi) for each i ∈ {1, 2, . . . , p} and
(ii) β1(yi) = β2(yi,1) for each i ∈ {p+ 1, p+ 2, . . . , 2p}

is a truth assignment for the set of variables of Φ1 that satisfies each clause
in Φ1 and, thus, Φ1 is a yes-instance of Balanced ∀∃ 3-SAT-(1, 1, 2, 2).
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Noting that the size of Φ2 is polynomial in the size of Φ1, the theorem
now follows for (t1, t2) = (2, 1). Moreover, by observing that an instance of
∀∃ 3-SAT-(1, 1, 1, 2) is equivalent to an instance of ∀∃ 3-SAT-(1, 1, 2, 1) by
replacing each literal of an existential variable with its negation, the theorem
also follows for (t1, t2) = (1, 2).

Example. We next present a simple example that illustrates the construc-
tion of Φ2 from Φ1 as described in the proof of Theorem 3.7. Using the same
notation as in this proof, let

Φ1 = ∀X2
1∃Y 4

3 (x1 ∨ y3 ∨ y4) ∧ (x2 ∨ y3 ∨ y4) ∧ (x1 ∨ y3 ∨ y4) ∧ (x2 ∨ y3 ∨ y4).

Note that Φ1 is an instance of Balanced ∀∃ 3-SAT-(1, 1, 2, 2). In the
first step of the reduction, we reduce the number of appearances for each
existential variable by one and obtain

Φ′1 =∀X2
1∀u3,1∀u3,2∀u3,3∀u3,4∀u4,1∀u4,2∀u4,3∀u4,4

∀v3,1∀v3,2∀v3,3∀v3,4∀v4,1∀v4,2∀v4,3∀v4,4

∃y3,1∃y3,2∃y3,3∃y3,4∃y4,1∃y4,2∃y4,3∃y4,4

∃d3,1∃d3,2∃d3,3∃d3,4∃d4,1∃d4,2∃d4,3∃d4,4

(x1 ∨ y3,1 ∨ y4,3) ∧ (x2 ∨ y3,3 ∨ y4,1) ∧
(x1 ∨ y3,4 ∨ y4,4) ∧ (x2 ∨ y3,2 ∨ y4,2) ∧
(y3,1 ∨ y3,2 ∨ d3,1) ∧ E∀(d3,1) ∧ (y3,2 ∨ y3,3 ∨ d3,2) ∧ E∀(d3,2) ∧
(y3,3 ∨ y3,4 ∨ d3,3) ∧ E∀(d3,3) ∧ (y3,4 ∨ y3,1 ∨ d3,4) ∧ E∀(d3,4) ∧
(y4,1 ∨ y4,2 ∨ d4,1) ∧ E∀(d4,1) ∧ (y4,2 ∨ y4,3 ∨ d4,2) ∧ E∀(d4,2) ∧
(y4,3 ∨ y4,4 ∨ d4,3) ∧ E∀(d4,3) ∧ (y4,4 ∨ y4,1 ∨ d4,4) ∧ E∀(d4,4),

where ui,k and vi,k are the universal variables appearing in the quantified
enforcer E∀(di,k) for i ∈ {3, 4} and k ∈ {1, 2, 3, 4}. Now, each existential
variable appears either twice unnegated and once negated or once unnegated
and twice negated. In the second step, we negate all appearances of each
existential variable that appears twice negated and once negated in Φ′1,
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which yields the quantified Boolean formula

Φ2 =∀X2
1∀u3,1∀u3,2∀u3,3∀u3,4∀u4,1∀u4,2∀u4,3∀u4,4

∀v3,1∀v3,2∀v3,3∀v3,4∀v4,1∀v4,2∀v4,3∀v4,4

∃y3,1∃y3,2∃y3,3∃y3,4∃y4,1∃y4,2∃y4,3∃y4,4

∃d3,1∃d3,2∃d3,3∃d3,4∃d4,1∃d4,2∃d4,3∃d4,4

(x1 ∨ y3,1 ∨ y4,3) ∧ (x2 ∨ y3,3 ∨ y4,1) ∧
(x1 ∨ y3,4 ∨ y4,4) ∧ (x2 ∨ y3,2 ∨ y4,2) ∧
(y3,1 ∨ y3,2 ∨ d3,1) ∧ E∀(d3,1) ∧ (y3,2 ∨ y3,3 ∨ d3,2) ∧ E∀(d3,2) ∧
(y3,3 ∨ y3,4 ∨ d3,3) ∧ E∀(d3,3) ∧ (y3,4 ∨ y3,1 ∨ d3,4) ∧ E∀(d3,4) ∧
(y4,1 ∨ y4,2 ∨ d4,1) ∧ E∀(d4,1) ∧ (y4,2 ∨ y4,3 ∨ d4,2) ∧ E∀(d4,2) ∧
(y4,3 ∨ y4,4 ∨ d4,3) ∧ E∀(d4,3) ∧ (y4,4 ∨ y4,1 ∨ d4,4) ∧ E∀(d4,4).

4 Hardness ofMonotone ∀∃ NAE-3-SAT-(s, t) with
bounded variable appearances

4.1 Enforcers

In this section, we describe four monotone enforcers that have recently been
introduced in an unquantified context by Darmann and Döcker [5]. For
the purposes of this section, we use their enforcers in a quantified setting.
Specifically, for the first three enforcers, x can be a universally or existen-
tially quantified variable.

Auxiliary non-equality gadget. First, consider the auxiliary non-equality
gadget

NEaux(x, y) =(x ∨ y ∨ a) ∧ (x ∨ y ∨ b) ∧ (a ∨ b ∨ u) ∧
(a ∨ b ∨ v) ∧ (a ∨ b ∨ w) ∧ (u ∨ v ∨ w),

where a, b, u, v, w are five new existential variables, y is an existential vari-
able, and x is a universal or existential variable. To nae-satisfy the last
clause, at least one variable in {u, v, w} is set to be T and at least one is
set to be F . Then, by the three preceding clauses, we have that a truth
assignment that nae-satisfies NEaux(x, y) assigns different truth values to a
and b. The next observation follows by construction of the first two clauses.

Observation 4.1. Consider the gadget NEaux(x, y), and let V be its as-
sociated set of variables. A truth assignment β for {x, y} can be extended
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to a truth assignment β′ for V that nae-satisfies NEaux(x, y) if and only if
β(x) 6= β(y).

Equality gadget. The second enforcer is the equality gadget

EQ(x, y) = NEaux(p, q) ∧NEaux(p, r) ∧ (x ∨ q ∨ r) ∧ (y ∨ q ∨ r),

where p, q, r are three new existential variables, y is an existential variable,
and x is a universal or existential variable. By construction and Observa-
tion 4.1, a truth assignment that nae-satisfies EQ(x, y) assigns the same
truth value to q and r. The next observation follows by construction of the
last two clauses in the equality gadget.

Observation 4.2. Consider the gadget EQ(x, y), and let V be its associated
set of variables. A truth assignment β for {x, y} can be extended to a truth
assignment β′ for V that nae-satisfies EQ(x, y) if and only if β(x) = β(y).

Non-equality gadget. Combining the first and second enforcer, we now
obtain another non-equality gadget:

NE(x, y) = EQ(x, p) ∧ EQ(y, q) ∧NEaux(p, q),

where p and q are two new existential variables, y is an existential variable,
and x is a universal or existential variable. The next observation follows
immediately by construction, and Observations 4.1 and 4.2.

Observation 4.3. Consider the gadget NE(x, y), and let V be its associated
set of variables. A truth assignment β for {x, y} can be extended to a truth
assignment β′ for V that nae-satisfies NE(x, y) if and only if β(x) 6= β(y).

The next observation follows by construction of the last three enforcers.

Observation 4.4. Let E be an enforcer in {NEaux(x, y),EQ(x, y),NE(x, y)}.
Then each variable introduced by E appears at most four times in E.

Padding gadget. The fourth enforcer is the gadget

P1(x) =(x ∨ a ∨ b) ∧ (a ∨ c ∨ d) ∧ (a ∨ b ∨ e) ∧
(a ∨ d ∨ e) ∧ (b ∨ c ∨ d) ∧ (b ∨ c ∨ e) ∧ (c ∨ d ∨ e),

where x is an existential variable, and a, b, c, d, e are five new existential
variables each of which appears exactly four times in the gadget. For the
truth assignment β for {a, b, c, d, e} with β(a) = β(c) = β(e) = T and
β(b) = β(d) = F , the next observation follows immediately by construction.
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Observation 4.5. The gadget P1(x) is nae-satisfiable. Moreover, every truth
assignment for {x} can be extended to a truth assignment for {a, b, c, d, e, x}
that nae-satisfies P1(x).

Intuitively, P1(x) is used to increase the number of appearances of existential
variables in a Boolean formula until each variable appears exactly four times.

4.2 Hardness of Monotone ∀∃ NAE-3-SAT-(s, t)

In this section, we establish that a monotone and linear Boolean formula ϕ of
∀∃ NAE-3-SAT is complete for the second level of the polynomial hierarchy
even if each clause in ϕ contains at most one universal variable and, amongst
the clauses in ϕ, each universal variable appears exactly once and each
existential variable appears exactly three times. We start by establishing a
slightly weaker result without linearity.

Proposition 4.6. Monotone ∀∃ NAE-3-SAT-(1, 4) is ΠP
2 -complete if

each clause contains at most one universal variable.

Proof. Clearly, the decision problem Monotone ∀∃ NAE-3-SAT-(1, 4) as
described in the statement of the proposition is in ΠP

2 . We show that it is
ΠP

2 -complete by a reduction from ∀∃ NAE-3-SAT. For the latter problem,
ΠP

2 -completeness was established by Eiter and Gottlob [6]. Let

Φ1 = ∀Xp
1∃Y

n
p+1ϕ

be an instance of ∀∃ NAE-3-SAT over a set V1 = Xp
1 ∪ Y n

p+1 of variables.
We may assume that each clause contains exactly three literals and at most
one duplicate literal.

In what follows, we construct two quantified Boolean formulas that in-
clude copies of the enforcers introduced in Section 4.1. Each such enforcer
adds several new existential variables. For ease of exposition throughout
this proof, we use A to denote the set of all new existential variables that
are introduced by a copy of an enforcer in

{NEaux(x, y),EQ(x, y),NE(x, y),P1(x)}.

In particular, A is initially empty and, each time we use a new enforcer
copy, we add the newly introduced variables to A and append them to the
list of existential variables without mentioning it explicitly. We remark that
it will always be clear from the context that the number of elements in A is
polynomial in the size of Φ1.
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Now, let

Φ2 = ∀Zp1∃Y
n

1 ∃Aϕ[x1 7→ y1, . . . , xp 7→ yp] ∧
p∧
i=1

EQ(zi, yi)

be the quantified Boolean formula obtained from Φ1 by first creating a copy
zi of each of the universal variables xi, replacing each universal variable xi
of Φ1 with a new existential variable yi, and then, for all i ∈ {1, 2, . . . , p},
adding the enforcer EQ(zi, yi), where zi is a new universal variable. Further-
more, let V ′2 = Zp1 ∪ Y n

1 , and let V2 = V ′2 ∪ A. By construction, each clause
in Φ2 contains at most one universal variable and each universal variable
appears exactly once in Φ2.

4.6.1. Φ1 is a yes-instance of ∀∃ NAE-3-SAT if and only if Φ2 is a yes-
instance of ∀∃ NAE-3-SAT.

Proof. First, suppose that Φ1 is a yes-instance of ∀∃ NAE-3-SAT. Let β1

be a truth assignment for V1 that nae-satisfies Φ1, and let β′2 be the following
truth assignment for V ′2 :

(i) set β′2(yi) = β1(yi) for each i ∈ {p+ 1, p+ 2, . . . , n};
(ii) set β′2(zi) = β1(xi) for each i ∈ {1, 2, . . . , p};
(iii) set β′2(yi) = β1(xi) for each i ∈ {1, 2, . . . , p}.

By (iii) and Observation 4.2, it follows that there is a truth assignment
β2 for V2 that extends β′2 such that, for each i ∈ {1, 2, . . . , p}, the clauses
of EQ(zi, yi) are nae-satisfied. Furthermore, since Φ1 is nae-satisfiable for
every truth assignment for Xp

1 , if follows that Φ2 is nae-satisfiable for every
truth assignment for Zp1 . Hence, Φ2 is a yes instance of ∀∃ NAE-3-SAT.

Second, suppose that Φ2 is a yes-instance of ∀∃ NAE-3-SAT. Let β2 be a
truth assignment for V2 that nae-satisfies Φ2. By Observation 4.2, it follows
that β2(zi) = β2(yi) for each i ∈ {1, 2, . . . , p}. Hence β1 with β1(xi) = β2(zi)
for each i ∈ {1, 2, . . . , p}, and β1(yi) = β2(yi) for each i ∈ {p+1, p+2, . . . , n}
is a truth assignment for V1 that nae-satisfies Φ1. Furthermore, since Φ2 is
nae-satisfiable for every truth assignment for Zp1 , it follows that Φ1 is a
yes-instance of ∀∃ NAE-3-SAT.

Next, following Darmann and Döcker [5, Theorem 1], we transform Φ2

into a new quantified Boolean formula in four steps:

1. To remove all negated variables, we start by replacing each appear-
ance of an existential variable in Y n

1 with a new unnegated variable.
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Specifically, for each existential variable yi ∈ Y n
1 , let u(yi) and n(yi) be

the number of unnegated and negated appearances, respectively, of yi
in the Boolean formula of Φ2. Recall that u(yi) + n(yi) = a(yi). Now,
for each j ∈ {1, 2, . . . , u(yi)}, replace the j-th unnegated appearance
of yi in Φ2 with yi,j . Similarly, for each j ∈ {1, 2, . . . , n(yi)}, replace
the j-th negated appearance of yi in Φ2 with yi,u(yi)+j . Lastly, for all
i ∈ {1, 2, . . . , n}, append

∃yi,1∃yi,2 · · · ∃yi,a(yi)

to the list of existential variables and remove the obsolete variables ∃Y n
1 .

2. If u(yi) > 1, introduce the clauses

n∧
i=1

u(yi)−1∧
j=1

EQ(yi,j , yi,j+1).

Similarly, if n(yi) > 1, introduce the clauses

n∧
i=1

a(yi)−1∧
j=u(yi)+1

EQ(yi,j , yi,j+1).

3. For each i ∈ {1, 2, . . . , n} with u(yi) /∈ {0, a(yi)}, add the gadget

NE(yi,u(yi), yi,u(yi)+1).

4. Let Φ′2 be the quantified Boolean formula resulting from the last three
steps. For i ∈ {1, 2, . . . , n}, consider an existential variable yi in Φ2. If
yi appears exactly once in Φ2, then yi,1 only appears once in Φ′2 because
Steps 2 and 3 do not introduce any gadget that adds an additional
appearance of yi,1. Otherwise, if yi appears at least twice in Φ2, then
the enforcers introduced in the previous two steps increase the number
of appearances for each variable yi,j with j ∈ {1, 2, . . . , a(yi)} by at
least one and at most two. Hence, each variable yi,j appears at most
three times in Φ′2. Moreover, by construction and Observation 4.4,
each variable in A appears at most four times in Φ′2. Now, for each
existential variable v in Φ′2 (this includes all variables in A), add the
clauses

4−a(v)∧
k=1

P1(v)

to Φ′2, where a(v) denotes the number of appearances of v in Φ′2.

Let Φ3 be the quantified Boolean formula constructed by the preceding four-
step procedure. Furthermore, let V3 be the set of variables of Φ3, and let
V ′3 = V3 −A.
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4.6.2. Φ2 is a yes-instance of ∀∃ NAE-3-SAT if and only if Φ3 is a yes-
instance of ∀∃ NAE-3-SAT.

Proof. First, suppose that Φ2 is a yes-instance of ∀∃ NAE-3-SAT. Let β2 be
a truth assignment for V2 that nae-satisfies Φ2. Obtain a truth assignment
β′3 for V ′3 as follows:

(i) set β′3(zi) = β2(zi) for each i ∈ {1, 2, . . . , p};
(ii) set β′3(yi,j) = β2(yi) for each i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , u(yi)};
(iii) set β′3(yi,j) = β2(yi) for each i ∈ {1, 2, . . . , n} and j ∈ {u(yi)+1, u(yi)+

2, . . . , a(yi)}.

By (ii) and (iii) as well as Observations 4.2, 4.3, and 4.5, it follows that
there is a truth assignment β3 for V3 that extends β′3 and nae-satisfies Φ3.
Moreover, it follows by construction that for every truth assignment for Zp1 ,
there exists a truth assignment for V3−Zp1 that nae-satisfies Φ3. Hence, Φ3

is a yes-instance of ∀∃ NAE-3-SAT.

Second, suppose that Φ3 is a yes-instance of ∀∃ NAE-3-SAT. Let β3

be a truth assignment for V3 that nae-satisfies Φ3. By Steps 2 and 3 of the
construction, and by Observations 4.2 and 4.3, we have

(I) β3(yi,1) = β3(yi,2) = · · · = β3(yi,u(yi)),
(II) β3(yi,u(yi)) 6= β3(yi,u(yi)+1), and

(III) β3(yi,u(yi)+1) = β3(yi,u(yi)+2) = · · · = β3(yi,a(yi))

for all i ∈ {1, 2, . . . , n}. Now, obtain a truth assignment β2 for V2 as follows:

(i) set β2(zi) = β3(zi) for each i ∈ {1, 2, . . . , p};
(ii) set β2(yi) = β3(yi,1) for each i ∈ {1, 2, . . . , n} with u(yi) ≥ 1;

(iii) set β2(yi) = β3(yi,1) for each i ∈ {1, 2, . . . , n} with u(yi) = 0;
(iv) set β2(a) = β3(a) for each a ∈ A with a ∈ V2.

It is now straightforward to check that β2 nae-satisfies Φ2 and, hence, Φ2 is
a yes-instance of ∀∃ NAE-3-SAT.

We complete the proof by showing that Φ3 has the desired properties.
First, since all enforcers introduced in Section 4.1 are monotone, it follows
from Step 1 in the construction of Φ3 from Φ2 that Φ3 is monotone. Second,
again by Step 1 in the construction of Φ3 from Φ2, it follows that each clause
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in Φ3 is a 3-clause that contains three distinct variables. Third, turning
to the universal variables in Φ3 and as mentioned in the construction of
Φ2, each clause in Φ2, and hence in Φ3, contains at most one universal
variable and each universal variable in Φ2, and hence in Φ3, appears exactly
once. Fourth, recalling Step 4 in the construction of Φ3 from Φ2 and that
each new existential variable of P1(v) appears exactly four times in the
seven clauses associated with P1(v), it follows that each existential variable
appears exactly four times in Φ3. Noting that the size of Φ3 is polynomial
in the size of Φ, this establishes the proposition.

We are now in a position to establish the main result of this section.

Theorem 4.7. Monotone ∀∃ NAE-3-SAT-(1, 3) is ΠP
2 -complete if the

Boolean formula is linear and each clause contains at most one universal
variable.

Proof. Clearly, the decision problem Monotone ∀∃ NAE-3-SAT-(1, 3)
as described in the statement of the theorem is in ΠP

2 . We show ΠP
2 -

completeness by a reduction from Monotone ∀∃ NAE-3-SAT-(1, 4). Let

Φ1 = ∀Zp1∃Z
n
p+1ϕ

be an instance of Monotone ∀∃ NAE-3-SAT-(1, 4). By Proposition 4.6,
we may assume that each clause in Φ1 contains at most one universal vari-
able.

We start by defining the following four sets of variables which we use to
construct an instance Φ2 of Montone ∀∃ NAE-3-SAT-(1,3). Let

U = {ui,k : i ∈ {p+ 1, p+ 2, . . . , n} and k ∈ {1, 2, . . . , 8}} and

V = {vi,k : i ∈ {p+ 1, p+ 2, . . . , n} and k ∈ {1, 2, . . . , 8}}

be two sets of universal variables, and let

E = {ei,k : i ∈ {p+ 1, p+ 2, . . . , n} and k ∈ {1, 2, . . . , 8}} and

Z = {zi,k : i ∈ {p+ 1, p+ 2, . . . , n} and k ∈ {1, 2, . . . , 8}}

be two sets of existential variables. Now, for each i ∈ {p + 1, p + 2, . . . , n},
we replace the j-th appearance of zi with zi,j for all j ∈ {1, 2, 3, 4} and
introduce the clauses

7∧
k=1

((zi,k ∨ ei,k ∨ ui,k) ∧ (ei,k ∨ zi,k+1 ∨ vi,k))∧

(zi,8 ∨ ei,8 ∨ ui,8) ∧ (ei,8 ∨ zi,1 ∨ vi,8) ∧
(zi,5 ∨ ei,1 ∨ ei,2) ∧ (zi,6 ∨ ei,7 ∨ ei,8) ∧ (zi,7 ∨ ei,3 ∨ ei,4) ∧ (zi,8 ∨ ei,5 ∨ ei,6).
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Furthermore, we append each element in U ∪ V to the list of universal
variables, append each element in E ∪ Z to the list of existential variables,
and delete the obsolete variables Znp+1. Let Φ2 denote the resulting formula.
By construction, it is straightforward to check that Φ2 is an instance of
Monotone ∀∃ NAE-3-SAT-(1, 3) with at most one universal variable per
clause and whose set of variables is

U ∪ V ∪ Zp1 ∪ E ∪ Z.

Moreover, if any pair of clauses in Φ1 have two variables in common, then
both are existential variables and, hence, again by construction, Φ2 is linear.
Since Φ2 has all desired properties and the size of Φ2 is polynomial in the
size of Φ1, it remains to show that the following statement holds.

4.7.1. Φ1 is a yes-instance of Monotone ∀∃ NAE-3-SAT-(1, 4) if and
only if Φ2 is a yes-instance of Monotone ∀∃ NAE-3-SAT-(1, 3).

Proof. First, suppose that Φ1 is a yes-instance of Monotone ∀∃ NAE-3-
SAT-(1, 4). Let β1 be a truth assignment for Zp1∪Znp+1 that nae-satisfies Φ1.
Obtain a truth assignment β2 for Zp1 ∪ E ∪ Z as follows:

(i) set β2(zi) = β1(zi) for each i ∈ {1, 2, . . . , p};
(ii) set β2(zi,k) = β1(zi) for each i ∈ {p + 1, p + 2, . . . , n} and k ∈
{1, 2, . . . , 8};

(iii) set β2(ei,k) = β1(zi) for each i ∈ {p + 1, p + 2, . . . , n} and k ∈
{1, 2, . . . , 8}.

It is easily checked that every truth assignment for U ∪V ∪Zp1 ∪E ∪Z that
extends β2 nae-satisfies Φ2, and thus Φ2 is a yes-instance of Monotone ∀∃
NAE-3-SAT-(1, 3).

Second, suppose that Φ2 is a yes-instance Monotone ∀∃ NAE-3-SAT-
(1, 3). Let β2 be a truth assignment that nae-satisfies Φ2 such that β2(ui,k) =
F and β2(vi,k) = T for each i ∈ {p + 1, p + 2, . . . , n} and k ∈ {1, 2, . . . , 8}.
Since ui,k and vi,k are universal variables, β2 exists. We next show that β2

satisfies the property

β2(zi,1) = β2(zi,2) = β2(zi,3) = β2(zi,4)

for each i ∈ {p+ 1, p+ 2, . . . , n}. To this end, consider the subset of clauses

(zi,8 ∨ ei,8 ∨ F ) ∧ (ei,8 ∨ zi,1 ∨ T ) ∧
7∧

k=1

((zi,k ∨ ei,k ∨ F ) ∧ (ei,k ∨ zi,k+1 ∨ T ))
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of Φ2, where the universal variables are set according to β2. If β2(zi,1) = F ,
then the clause (zi,1 ∨ ei,1 ∨ F ) implies that β2(ei,1) = T and, hence, by
the aforementioned subset of clauses, β2(zi,j) = F for each j ∈ {1, 2, 3, 4}.
Otherwise, if β2(zi,1) = T , then the clause (ei,8 ∨ zi,1 ∨ T ) implies that
β2(ei,8) = F and, hence, again by the aforementioned subset of clauses,
β2(zi,j) = T for each j ∈ {1, 2, 3, 4}. It now follows that the truth assignment
β1 for Zp1 ∪ Znp+1 with

(i) β1(zi) = β2(zi) for each i ∈ {1, 2, . . . , p} and
(ii) β1(zi) = β2(zi,1) for each i ∈ {p+ 1, p+ 2, . . . , n}

nae-satisfies Φ1, and so Φ1 is a yes-instance of Monotone ∀∃ NAE-3-SAT-
(1, 4).

This completes the proof of Theorem 4.7.

4.3 Restrictions that alleviate the complexity of Monotone
∀∃ NAE-3-SAT-(s, t)

In this section, we discuss variants of Monotone ∀∃ NAE-3-SAT-(s, t)
that are in co-NP or solvable in polynomial time. More precisely, we investi-
gate the complexity of Monotone ∀∃ NAE-3-SAT-(s, 2). First note that
Monotone ∀∃ NAE-3-SAT-(0, t) is a special case of NAE-3-SAT and
therefore in NP. Furthermore, Monotone ∀∃ NAE-3-SAT-(s, 1) can be
solved in polynomial time since an instance of this problem is a yes-instance
if and only if each clause contains at least one existential variable. Now, let
t be a non-negative integer. Consider the following decision problem that
allows for a set of variables and the set {F, T} of constants.

Monotone-with-Constants-NAE-3-SAT-t (MC-NAE-3-SAT-t)
Input. A set V = {x1, x2, . . . , xn} of variables and a monotone Boolean
formula

m∧
j=1

Cj

such that each clause contains exactly three distinct elements in V ∪ {F, T}
and, amongst the clauses, each element in V appears exactly t times.
Question. Does there exist a truth assignment β : V → {T, F} such that
each clause of the formula is nae-satisfied?

Boolean formulas that include variables and the two constants F and T were,
for example, previously considered in the context of NAE-3-SAT [2, p. 275f].
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In particular, let ϕ be an instance of NAE-3-SAT that allows for constants.
Bonet et al. [2] showed that, given a solution to ϕ, it is NP-complete to
decide if a second solution to ϕ exists. This result was in turn used to
prove that two problems arising in computational biology are NP-complete.
Note that in the special case in which ϕ does not contain any constant, a
second solution can always be obtained from a given truth assignment that
nae-satisfies ϕ by simply interchanging T and F .

We next show that MC-NAE-3-SAT-t is solvable in polynomial time if
t = 2.

Proposition 4.8. MC-NAE-3-SAT-2 is in P.

Proof. Let ϕ =
∧m
j=1Cj be an instance of MC-NAE-3-SAT-2 over a set

V ∪ {F, T} of variables and constants, where V = {x1, x2, . . . , xn}. To
establish the proposition, we adapt ideas presented by Porschen et al. [11]
who developed a linear-time algorithm to decide if an instance of NAE-SAT,
i.e. a Boolean formula in CNF, is nae-satisfiable if each variable appears at
most twice.

Using the notation Cj = (`j,1 ∨ `j,2 ∨ `j,3) to denote the j-th clause
in ϕ for each j ∈ {1, 2, . . . ,m}, we next present an algorithm to decide
whether or not ϕ is a yes-instance of MC-NAE-3-SAT-2. At each step of
the algorithm, ϕ is transformed into a simpler Boolean formula.

1. For each clause Cj with `j,k = xi for some i ∈ {1, 2, . . . , n} and
`j,k′ , `j,k′′ ∈ {F, T} with {k, k′, k′′} = {1, 2, 3}, do the following.

(I) If `j,k′ 6= `j,k′′ , remove Cj from ϕ.
(II) If `j,k′ = `j,k′′ = F , remove Cj and reset ϕ to be ϕ[xi 7→ T ].

(III) If `j,k′ = `j,k′′ = T , remove Cj and reset ϕ to be ϕ[xi 7→ F ].

2. For each pair of variables xi, xi′ ∈ V with i 6= i′ that both appear in
two distinct clauses Cj and Cj′ , remove Cj and Cj′ from ϕ.

3. For each variable xi that appears in exactly one clause Cj , remove Cj
from ϕ.

4. For each clause Cj such that `j,1, `j,2, `j,3 ∈ {T, F}, do the following.

(I) If {`j,1, `j,2, `j,3} = {T, F}, remove Cj from ϕ.
(II) Otherwise, stop and return “ϕ is a no-instance”.

5. Stop and return “ϕ is a yes-instance”.
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The algorithm clearly terminates within polynomial time. Moreover, as a
variable that appears exactly once in a Boolean formula can be assigned
to either T or F without affecting any other clause, it is straightforward
to check that each step in the algorithm returns a Boolean formula that is
equivalent to ϕ. Hence, if a clause contains three equal constants, then the
algorithm correctly returns that ϕ is a no-instance in Step 4. Now, suppose
that the algorithm returns “ϕ is a yes-instance”. Let ϕ′ be the Boolean
formula that is obtained at the end of the last iteration of Step 4(I). Then,
ϕ′ is an instance of MC-NAE-3-SAT-2 such that each clause contains at
most one constant and each pair of clauses have at most one variable in
common. Hence, ϕ′ is linear. It remains to show that ϕ′ is a yes-instance of
MC-NAE-3-SAT-2.

Before continuing with the proof, we pause to give an overview of a
result established by Porschen et al. [11]. Let ψ =

∧m′

j=1C
′
j be a linear and

monotone Boolean formula where each variable appears exactly twice and
each clause contains at least two distinct variables. Furthermore, let Gψ be
the clause graph for ψ whose set of vertices is {C ′1, C ′2, . . . , C ′m′} and, for
each pair j, j′ ∈ {1, 2, . . . ,m′} with j 6= j′, there is an edge {C ′j , C ′j′} in Gψ
precisely if C ′j and C ′j′ have a variable in common. Then ψ is nae-satisfiable
if and only if there exists an edge coloring of Gψ that uses exactly two colors
c1 and c2 such that each vertex is incident to an edge that is colored c1

and incident to an edge that is colored c2. Moreover, if ψ does not have a
connected component that is isomorphic to a cycle of odd length, then such
an edge coloring exists.

We now continue with the proof of the proposition. Let ϕ′′ be the
Boolean formula obtained from ϕ′ by omitting all constants. By construc-
tion, each clause in ϕ′′ contains either two or three distinct variables. It
follows that, if ϕ′′ is nae-satisfiable, then ϕ′ is nae-satisfiable. Let Gϕ′′ be
the clause graph for ϕ′′. First, assume that Gϕ′′ does not have a connected
component that is isomorphic to a cycle of odd length. Then it immediately
follows from the result by Porschen et al. [11] that ϕ′′ is nae-satisfiable and,
hence, ϕ′ is also nae-satisfiable. Second, assume that Gϕ′′ has a connected
component that is isomorphic to a cycle of odd length. Then the vertices of
this component are of the form

(xi1 ∨ xi2), (xi2 ∨ xi3), . . . , (xip−1 ∨ xip), (xip ∨ xi1),

where p ≥ 3 is an odd integer and xij ∈ V . In other words,

Cϕ′′ =

p−1∧
j=1

(xij ∨ xij+1) ∧ (xip ∨ xi1),

is contained in ϕ′′. Although Cϕ′′ is not nae-satisfiable, we next show that
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the corresponding clauses Cϕ′ in ϕ′ are nae-satisfiable since each such clause
contains exactly one constant.

Consider

Cϕ′ =

p−1∧
j=1

(xij ∨ xij+1 ∨ bj) ∧ (xip ∨ xi1 ∨ bp),

where bj ∈ {T, F} for each j ∈ {1, 2, . . . , p}. Let β be the following truth
assignment for {xi1 , xi2 , . . . , xip}:

(i) set β(xij ) = bp for each j ∈ {1, 2, . . . , p} with j being odd;
(ii) set β(xij ) = bp for each j ∈ {1, 2, . . . , p} with j being even.

It follows that β nae-satisfies Cϕ′ . An analogous argument can be applied to
every other connected component in Gϕ′′ that is isomorphic to a cycle of odd
length. Furthermore, it again follows from Porschen et al.’s result [11] that
the edge set of each connected component in Gϕ′′ that is not isomorphic
to a cycle of odd length corresponds to a subset of clauses in ϕ′′ that is
nae-satisfiable. Altogether, ϕ′′ is nae-satisfiable and, hence, ϕ′ is also nae-
satisfiable. This completes the proof of the proposition.

We next establish three corollaries that pinpoint the complexity of Mono-
tone ∀∃ NAE-3-SAT-(s, 2).

Corollary 4.9. Monotone ∀∃ NAE-3-SAT-(s, 2) is in co-NP for any
fixed positive integer s.

Proof. A no-instance of Monotone ∀∃ NAE-3-SAT-(s, 2) can be identi-
fied by taking an assignment of the universal variables and applying the
algorithm presented in Proposition 4.8 to verify in polynomial time whether
or not the resulting MC-NAE-3-SAT-2 Boolean formula (with omitted lists
of universal and existential quantifies) is not nae-satisfiable.

Corollary 4.10. Monotone ∀∃ NAE-3-SAT-(s, 2) is trivially a yes-instance
for any fixed positive integer s if each clause contains at most one universal
variable.

Proof. Let Φ be an instance of Monotone ∀∃ NAE-3-SAT-(s, 2) such
that each clause contains at most one universal variable. We follow ideas
that are similar to those presented in the algorithm described in the proof
of Proposition 4.8. First, if there are two existential variables that both
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appear in two distinct clauses Cj and Cj′ , obtain a new Boolean formula by
removing Cj and Cj′ from Φ. Repeat this step until no such pair of variables
remains. Then, if there is an existential variable that appears in exactly one
clause Cj , obtain a new Boolean formula by removing Cj . Similar to the
proof of Proposition 4.8, it follows that the resulting Boolean formula, say Φ′,
is an instance of Monotone ∀∃ NAE-3-SAT-(s, 2) such that each clause
contains at most one universal variable and the formula is linear. Moreover,
Φ is a yes-instance if and only if Φ′ is a yes-instance. If Φ′ is empty, then Φ
is a yes-instance by correctness of the applied transformations. Otherwise,
it follows from the properties of Φ′ and the proof of Proposition 4.8 that Φ′

and, hence, Φ are yes-instances.

Corollary 4.11. Monotone ∀∃ NAE-3-SAT-(1, 2) is in P.

Proof. Let Φ be an instance of Monotone ∀∃ NAE-3-SAT-(1, 2). To
decide whether or not Φ is a yes-instance, we apply the following algorithm
to Φ.

1. If there exists a clause that contains three distinct universal variables,
then stop and return “Φ is a no-instance”.

2. For a clause Cj that contains one existential variable, say x, and two
distinct universal variables, say u and u′, let Cj′ be the unique clause
that contains the second appearance of x. Then remove Cj and turn
x in Cj′ into a new universal variable.

(I) If Cj′ now contains three distinct universal variables, stop and
return “Φ is a no-instance”.

(II) Otherwise, repeat until there are no clauses with two universal
variables.

3. Stop and return “Φ is a yes-instance”.

Since each universal variable appears exactly once in Φ and each existen-
tial variable appears exactly twice in Φ, it follows that the Boolean for-
mula obtained after each iteration of Step 2 is an instance of Monotone
∀∃ NAE-3-SAT-(1, 2). Therefore, if the algorithm eventually produces a
Boolean formula, Φ′ say, then Φ′ has at most one universal variable in each
clause and, by Corollary 4.10, Φ′ is a yes-instance. Hence, to see that the
algorithm works correctly, it suffices to show that an iteration of Step 2
preserves yes-instances. Suppose that Φ1 is the quantified Boolean formula
at the start of an iteration of Step 2 and Cj = (x ∨ u ∨ u′) is a clause in
Φ1 as described in Step 2. Let β be a truth assignment that nae-satisfies
Φ. If β(u) = β(u′) = F , then it follows that β(x) = T . On the other hand,
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if β(u) = β(u′) = T , then this implies that β(x) = F . It now follows that
the Boolean formula, Φ2 say, obtained by turning x into a universal variable
is also a yes-instance. Conversely, by reversing this argument, if Φ2 is a
yes-instance, then Φ1 is a yes-instance. Thus Step 2 preserves yes-instances.
We now establish the corollary by noting that the described algorithm has
a running time that is polynomial in the size of Φ.
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