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Abstract

It follows by Bixby’s Lemma that if e is an element of a 3-connected matroid M ,
then either co(M\e), the cosimplification of M\e, or si(M/e), the simplification of
M/e, is 3-connected. A natural question to ask is whether M has an element e such
that both co(M\e) and si(M/e) are 3-connected. Calling such an element “elastic”,
in this paper we show that if |E(M)| > 4, then M has at least four elastic elements
provided M has no 4-element fans and, up to duality, M has no 3-separating set S
that is the disjoint union of a rank-2 subset and a corank-2 subset of E(M) such
that M |S is isomorphic to a member or a single-element deletion of a member of a
certain family of matroids.

Mathematics Subject Classifications: 05B35
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1 Introduction

A result widely used in the study of 3-connected matroids is due to Bixby [1]: if e is
an element of a 3-connected matroid M , then either M\e or M/e has no non-minimal
2-separations, in which case, co(M\e), the cosimplification of M , or si(M/e), the sim-
plification of M , is 3-connected. A 2-separation (X, Y ) is minimal if min{|X|, |Y |} = 2.
This result is commonly referred to as Bixby’s Lemma. Thus, although an element e of a
3-connected matroid M may have the property that neither M\e nor M/e is 3-connected,
Bixby’s Lemma says that at least one of M\e and M/e is close to being 3-connected in
a very natural way. In this paper, we are interested in whether or not there are elements
e in M such that both co(M\e) and si(M/e) are 3-connected, in which case, we say e
is elastic. In general, a 3-connected matroid M need not have any elastic elements. For
example, all wheels and whirls of rank at least four have no elastic elements. The reason
for this is that every element of such a matroid is in a 4-element fan and, geometrically,
every 4-element fan is positioned in a certain way relative to the rest of the elements
of the matroid. However, 4-element fans are not the only obstacles to M having elastic
elements.

Let n > 3, and let Z = {z1, z2, . . . , zn} be a basis of PG(n− 1,R). Suppose that L is
a line that is freely placed relative to Z. For each i ∈ {1, 2, . . . , n}, let wi be the unique
point of L contained in the hyperplane spanned by Z − {zi}. Let W = {w1, w2, . . . , wn},
and let Θn denote the restriction of PG(n− 1,R) to W ∪Z. Note that Θn is 3-connected
and Z is a corank-2 subset of Θn. For all i ∈ {1, 2, . . . , n}, we denote the matroid Θn\wi

by Θ−n . The matroid Θ−n is well defined as, up to isomorphism, Θn\wi
∼= Θn\wj for

all i, j ∈ {1, 2, . . . , n}. For the interested reader, the matroid Θn underlies the matroid
operation of segment-cosegment exchange [7] which generalises the operation of delta-wye
exchange. A more formal definition of Θn is given in Section 5.

If n = 3, then Θ3 is isomorphic to M(K4). However, for all n > 4, the matroid Θn has
no 4-element fans and, also, no elastic elements. Furthermore, for all n > 3, the set W is
a modular flat of Θn [7]. Thus, if M is a matroid and W is a subset of E(M) such that
M |W ∼= U2,n, then the generalised parallel connection PW (Θn,M) of Θn and M exists.
In particular, it is straightforward to construct 3-connected matroids having no 4-element
fans and no elastic elements. For example, take U2,n and repeatedly use the generalised
parallel connection to “attach” copies of Θk, where 4 6 k 6 n, to any k-element subset
of the elements of U2,n.

Let M be a 3-connected matroid, and let A and B be rank-2 and corank-2 subsets of
E(M). We say that A ∪B is a Θ-separator of M if r(M) > 4 and r∗(M) > 4, and either
M |(A∪B) or M∗|(A∪B) is isomorphic to one of the matroids Θn and Θ−n for some n > 3.
We will show in Section 5 that if S is a Θ-separator of M , then S contains at most one
elastic element. Note that if r(M) = 3, then si(M/e) is 3-connected for all e ∈ E(M),
while if r∗(M) = 3, then co(M\e) is 3-connected for all e ∈ E(M). The main theorem of
this paper is that, alongside 4-element fans, Θ-separators are the only obstacles to elastic
elements in 3-connected matroids.

A 3-separation (A,B) of a matroid is vertical if min{r(A), r(B)} > 3. Now, let M be a
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matroid and let (X, {e}, Y ) be a partition of E(M). We say that (X, {e}, Y ) is a vertical
3-separation of M if (X ∪ {e}, Y ) and (X, Y ∪ {e}) are both vertical 3-separations and
e ∈ cl(X) ∩ cl(Y ). Furthermore, Y ∪ {e} is maximal in this separation if there exists no
vertical 3-separation (X ′, {e′}, Y ′) of M such that Y ∪{e} is a proper subset of Y ′ ∪{e′}.
Essentially, all of the work in the paper goes into establishing the following theorem.

Theorem 1. Let M be a 3-connected matroid with a vertical 3-separation (X, {e}, Y )
such that Y ∪ {e} is maximal. Then at least one of the following holds:

(i) X contains at least two elastic elements;

(ii) X ∪ {e} is a 4-element fan; or

(iii) X is contained in a Θ-separator.

Note that, in the context of Theorem 1, if X∪{e} is a 4-element fan, then it is possible
that X contains two elastic elements. For example, consider the rank-4 matroids M1 and
M2 for which geometric representations are shown in Fig. 1. For each i ∈ {1, 2}, the tuple
F = (e1, e2, e3, e4) is a 4-element fan of Mi and (F − {e1}, {e1}, E(Mi)− F ) is a vertical
3-separation of Mi. In M1, none of e2, e3, and e4 are elastic, while in M2, both e2 and
e3 are elastic. However, provided X ∪ {e} is a maximal fan, the instance illustrated in
Fig. 1(i) is essentially the only way in which X does not contain two elastic elements. This
is made more precise in Section 3. As noted above, if X is contained in a Θ-separator,
then X contains at most one elastic element. The details of the way in which this happens
is given in Section 5.

e1

e3

e2

e4

(i) M1

e1

e3

e2

e4

(ii) M2

Figure 1: For each i ∈ {1, 2}, the tuple (e1, e2, e3, e4) is a 4-element fan and the parti-
tion ({e2, e3, e4}, {e1}, E(Mi) − {e1, e2, e3, e4}) of E(Mi) is a vertical 3-separation of Mi.
Furthermore, in M1, none of e2, e3, and e4 are elastic, while in M2, both e2 and e3 are
elastic.

An almost immediate consequence of Theorem 1 is the following corollary.
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Corollary 2. Let M be a 3-connected matroid. If |E(M)| > 7, then M contains at least
four elastic elements provided M has no 4-element fans and no Θ-separators. Moreover,
if |E(M)| 6 6, then every element of M is elastic.

The condition in Corollary 2 that M has no 4-element fans and no Θ-separators is
not necessarily that restrictive. For example, if N is an excluded minor for GF (q)-
representability (or, more generally, for P-representability, where P is a partial field),
then N has no 4-element fans and no Θ-separators. The fact that N has no 4-element
fans is well known and straightforward to show. To see that N has no Θ-separators,
suppose that N has a Θ-separator. By duality, we may assume that N has rank-2 and
corank-2 sets W and Z, respectively, such that M |(W ∪ Z) is isomorphic to either Θn or
Θ−n , for some n > 3. Say M |(W ∪Z) is isomorphic to Θn. Then the matroid N ′ obtained
from N by a cosegment-segment exchange on Z is isomorphic to the matroid obtained
from N by deleting Z and, for each w ∈ W , adding an element in parallel to w. It is
shown in [7, Theorem 1.1] that the class of excluded minors for GF (q)-representability
(or, more generally, P-representability) is closed under the operation of cosegment-segment
exchange, and so N ′ is also an excluded minor for GF (q)-representability. But N ′ contains
elements in parallel, a contradiction. The same argument holds if M |(W∪Z) is isomorphic
to Θ−n except that, in applying a cosegment-segment exchange, we additionally add an
element freely in the span of W .

Like Bixby’s Lemma, Corollary 2 is an inductive tool for handling the removal of
elements of 3-connected matroids while preserving connectivity. The most well-known
examples of such tools are Tutte’s Wheels-and-Whirls Theorem [10] and Seymour’s Split-
ter Theorem [9]. In both theorems, this removal preserves 3-connectivity. More recently,
there have been analogues of these theorems in which the removal of elements preserves
3-connectivity up to simplification and cosimplification. These analogues have additional
conditions on the elements being removed. Let B be a basis of a 3-connected matroid
M , and suppose that M has no 4-element fans. Say M is representable over some field F
and that we are given a standard representation of M over F. To keep the information
displayed by the representation in an F-representation of a single-element deletion or a
single element contraction of M , we need to avoid pivoting. To do this, we want to either
contract an element in B or delete an element in E(M)− B. Whittle and Williams [12]
showed that if |E(M)| > 4, then M has at least four elements e such that either si(M/e) is
3-connected if e ∈ B or co(M\e) is 3-connected if e ∈ E(M)−B. Brettell and Semple [2]
establish a Splitter Theorem counterpart to this last result where, again, 3-connectivity is
preserved up to simplification and cosimplification. These last two results are related to
an earlier result of Oxley et al. [6]. Indeed, the starting point for the proof of Theorem 1
is [6].

The paper is organised as follows. The next section contains some necessary pre-
liminaries on connectivity, while Section 3 considers fans and determines exactly which
elements of a fan are elastic. Section 4 establishes two results concerning when an element
in a rank-2 restriction of a 3-connected matroid is deletable or contractible, and Section 5
considers Θ-separators, and determines the elasticity of the elements of these sets. Sec-
tion 6 consists of the proofs of Theorem 1 and Corollary 2. Effectively, all of the work that
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proves these two results goes into proving Theorem 1. We break the proof of Theorem 1
into two lemmas depending on whether or not X contains at least one element that is
not contractible. The statements of these lemmas, Lemma 17 and Lemma 18, provide
additional structural information when X is contained in a Θ-separator. Throughout the
paper, the notation and terminology follows [3].

2 Preliminaries

Connectivity

Let M be a matroid with ground set E and rank function r. The connectivity function
λM of M is defined on all subsets X of E by

λM(X) = r(X) + r(E −X)− r(M).

Equivalently, λM(X) = r(X)+r∗(X)−|X|. A subset X of E or a partition (X,E−X) is
k-separating if λM(X) 6 k−1 and exactly k-separating if λM(X) = k−1. A k-separating
partition (X,E−X) is a k-separation if min{|X|, |E−X|} > k. A matroid is n-connected
if it has no k-separations for all k < n.

Let e be an element of a 3-connected matroid M . We say e is deletable if co(M\e) is
3-connected, and e is contractible if si(M/e) is 3-connected. Thus, e is elastic if it is both
deletable and contractible.

Two k-separations (X1, Y1) and (X2, Y2) cross if each of the intersections X1 ∩ Y1,
X1∩Y2, X2∩Y1, X2∩Y2 are non-empty. The next lemma is a standard tool for dealing with
crossing separations. It is a straightforward consequence of the fact that the connectivity
function λ of a matroid M is submodular, that is,

λ(X) + λ(Y ) > λ(X ∩ Y ) + λ(X ∪ Y )

for all X, Y ⊆ E(M). An application of this lemma will be referred to as by uncrossing.

Lemma 3. Let M be a k-connected matroid, and let X and Y be k-separating subsets of
E(M).

(i) If |X ∩ Y | > k − 1, then X ∪ Y is k-separating.

(ii) If |E(M)− (X ∪ Y )| > k − 1, then X ∩ Y is k-separating.

The next five lemmas are used frequently throughout the paper. The first follows from
orthogonality, while the second follows from the first. The third follows from the first and
second. A proof of the fourth and fifth can be found in [11] and [2], respectively.

Lemma 4. Let e be an element of a matroid M , and let X and Y be disjoint sets whose
union is E(M)− {e}. Then e ∈ cl(X) if and only if e 6∈ cl∗(Y ).

Lemma 5. Let X be an exactly 3-separating set in a 3-connected matroid M , and suppose
that e ∈ E(M)−X. Then X ∪ {e} is 3-separating if and only if e ∈ cl(X) ∪ cl∗(X).
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Lemma 6. Let (X, Y ) be an exactly 3-separating partition of a 3-connected matroid M ,
and suppose that |X| > 3 and e ∈ X. Then (X − {e}, Y ∪ {e}) is exactly 3-separating if
and only if e is in exactly one of cl(X − {e}) ∩ cl(Y ) and cl∗(X − {e}) ∩ cl∗(Y ).

Lemma 7. Let C∗ be a rank-3 cocircuit of a 3-connected matroid M . If e ∈ C∗ has the
property that cl(C∗)− {e} contains a triangle of M/e, then si(M/e) is 3-connected.

Lemma 8. Let (X, Y ) be a 3-separation of a 3-connected matroid M . If X ∩ cl(Y ) 6= ∅
and X ∩ cl∗(Y ) 6= ∅, then |X ∩ cl(Y )| = |X ∩ cl∗(Y )| = 1.

Vertical connectivity

A k-separation (X, Y ) of a matroid M is vertical if min{r(X), r(Y )} > k. As noted in
the introduction, we say a partition (X, {e}, Y ) of E(M) is a vertical 3-separation of M if
(X ∪{e}, Y ) and (X, Y ∪{e}) are both vertical 3-separations of M and e ∈ cl(X)∩ cl(Y ).
Furthermore, Y ∪ {e} is maximal if there is no vertical 3-separation (X ′, {e′}, Y ′) of M
such that Y ∪ {e} is a proper subset of Y ′ ∪ {e′}. A k-separation (X, Y ) of M is cyclic if
both X and Y contain circuits. The next lemma gives a duality link between the cyclic
k-separations and vertical k-separations of a k-connected matroid.

Lemma 9. Let (X, Y ) be a partition of the ground set of a k-connected matroid M . Then
(X, Y ) is a cyclic k-separation of M if and only if (X, Y ) is a vertical k-separation of
M∗.

Proof. Suppose that (X, Y ) is a cyclic k-separation of M . Then (X, Y ) is a k-separation
of M∗. Since (X, Y ) is a k-separation of a k-connected matroid, (X, Y ) is exactly k-
separating, and so r(X)+r(Y )−r(M) = k−1. Therefore, as r∗(X) = r(Y )+ |X|−r(M),
it follows that

r∗(X) = ((k − 1)− r(X) + r(M)) + |X| − r(M) = (k − 1) + |X| − r(X).

As X contains a circuit, X is dependent, so |X| − r(M) > 1. Hence r∗(X) > k. By
symmetry, r∗(Y ) > k, and so (X, Y ) is a vertical k-separation of M∗. A similar argument
establishes the converse.

Following Lemma 9, we say a partition (X, {e}, Y ) of the ground set of a 3-connected
matroid M is a cyclic 3-separation if (X, {e}, Y ) is a vertical 3-separation of M∗.

Of the next two results, the first combines Lemma 9 with a straightforward strength-
ening of [6, Lemma 3.1] and, in combination with Lemma 9, the second follows easily
from Lemma 6.

Lemma 10. Let M be a 3-connected matroid, and suppose that e ∈ E(M). Then si(M/e)
is not 3-connected if and only if M has a vertical 3-separation (X, {e}, Y ). Dually,
co(M\e) is not 3-connected if and only if M has a cyclic 3-separation (X, {e}, Y ).
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Lemma 11. Let M be a 3-connected matroid. If (X, {e}, Y ) is a vertical 3-separation
of M , then (X − cl(Y ), {e}, cl(Y ) − e) is also a vertical 3-separation of M . Dually, if
(X, {e}, Y ) is a cyclic 3-separation of M , then (X − cl∗(Y ), {e}, cl∗(Y ) − {e}) is also a
cyclic 3-separation of M .

Note that an immediate consequence of Lemma 11 is that if (X, {e}, Y ) is a vertical 3-
separation such that Y ∪ {e} is maximal, then Y ∪ {e} must be closed. We will make
repeated use of this fact.

3 Fans

Let M be a 3-connected matroid. A subset F of E(M) with at least three elements is a
fan if there is an ordering (f1, f2, . . . , fk) of F such that

(i) for all i ∈ {1, 2, . . . , k − 2}, the triple {fi, fi+1, fi+2} is either a triangle or a triad,
and

(ii) for all i ∈ {1, 2, . . . , k − 3}, if {fi, fi+1, fi+2} is a triangle, then {fi+1, fi+2, fi+3} is a
triad, while if {fi, fi+1, fi+2} is a triad, then {fi+1, fi+2, fi+3} is a triangle.

If k > 4, then the elements f1 and fk are the ends of F . Furthermore, if {f1, f2, f3}
is a triangle, then f1 is a spoke-end; otherwise, f1 is a rim-end. Observe that if F is a
4-element fan (f1, f2, f3, f4), then either f1 or f4 is the unique spoke-end of F depending
on whether {f1, f2, f3} or {f2, f3, f4} is a triangle, respectively. The proof of the next
lemma is straightforward and omitted.

Lemma 12. Let M be a 3-connected matroid, and suppose that F = (f1, f2, f3, f4) is a
4-element fan of M with spoke-end f1. Then ({f2, f3, f4}, {f1}, E(M) − F ) is a vertical
3-separation of M provided r(M) > 4, in which case, E(M)− {f2, f3, f4} is maximal.

We end this section by determining when an element in a fan of size at least four
is elastic. For subsets X and Y of a matroid, the local connectivity between X and Y ,
denoted u(X, Y ), is defined by

u(X, Y ) = r(X) + r(Y )− r(X ∪ Y ).

Let M be a 3-connected matroid and let k be a positive integer. A flower Φ of M
is an (ordered) partition (P1, P2, . . . , Pk) of E(M) such that each Pi has at least two
elements and is 3-separating, and each Pi ∪ Pi+1 is 3-separating, where all subscripts are
interpreted modulo k. If k > 4, we say Φ is swirl-like if

⋃
i∈I Pi is exactly 3-separating for

all proper subsets I of {1, 2, . . . , k} whose members form a consecutive set in the cyclic
order (1, 2, . . . , k), and

u(Pi, Pj) =

{
1, if Pi and Pj are consecutive;

0, if Pi and Pj are not consecutive

for all distinct i, j ∈ {1, 2, . . . , k}. For further details of swirl-like flowers and, more
generally flowers, we refer the reader to [5].
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Lemma 13. Let M be a 3-connected matroid such that r(M), r∗(M) > 4, and let F =
(f1, f2, . . . , fn) be a maximal fan of M .

(i) If n > 6, then F contains no elastic elements of M .

(ii) If n = 5, then F contains either exactly one elastic element, namely f3, or no elastic
elements of M .

(iii) If n = 4, then F contains either exactly two elastic elements, namely f2 and f3, or
no elastic elements of M .

Moreover, if n ∈ {4, 5} and F contains no elastic elements, then, up to duality, M has a
swirl-like flower (A, {f1, f2}, F − {f1, f2}, B) as shown geometrically in Fig. 2, or n = 5
and there is an element g such that M |(F ∪ {g}) ∼= M(K4).

Proof. It follows by Lemma 12 that the ends of a 4-element fan in M are not elastic.
Thus, if n > 6, then, as every element of F is the end of a 4-element fan, F contains
no elastic elements, and if n = 5, then, as every element of F , except f3, is the end of a
4-element fan, F contains no elastic elements except possibly f3. Thus (i) and (ii) hold,
and we assume that n ∈ {4, 5}. By applying the dual argument if needed, we may also
assume that {f1, f2, f3} is a triangle.

13.1. If f3 is contractible, then f3 is elastic unless n = 5 and there is an element g such
that M |(F ∪ {g}) ∼= M(K4), or n = 4 and f2 is not contractible.

Suppose that f3 is contractible. If f3 is not elastic, then co(M\f3) is not 3-connected.
First assume that n = 5. Then, as f2 is the end of a 4-element fan, co(M\f2) is not
3-connected, and so, by Bixby’s Lemma, si(M/f2) is 3-connected. By orthogonality,
{f2, f3, f4} is the unique triad containing f3, and so co(M\f3) ∼= M/f2\f3. But then
co(M\f3) is 3-connected unless there is an element g such that {f2, f4, g} is a triangle of
M , in which case M |(F ∪ {g}) ∼= M(K4). Now assume that n = 4. If f3 is contained in a
triad T ∗ other than {f2, f3, f4}, then, by orthogonality, either f1 or f2 is contained in T ∗.
If f1 ∈ T ∗, then F is not maximal, a contradiction. Thus f2 ∈ T ∗. But then T ∗ ∪ {f4}
has corank 2 and so, as M is 3-connected, (T ∗ ∪ {f4}) − {f2} is a triad, contradicting
orthogonality. Thus, as F is maximal, {f2, f3, f4} is the unique triad containing f3.
Hence co(M\f3) ∼= M/f2\f3. Thus co(M\f3) ∼= si(M/f2) and so, as co(M\f3) is not
3-connected, f2 is not contractible. This completes the proof of (13.1).

Since (f1, f3, f2, f4) is also a fan ordering for F if n = 4, it follows by (13.1) that we
may now assume si(M/f3) is not 3-connected. We next complete the proof of the lemma
for when n = 4. The remaining part of the lemma for when n = 5 is proved similarly and
is omitted.

As si(M/f3) is not 3-connected, it follows by Lemma 10 that

(A ∪ {f1, f2}, {f3}, B ∪ {f4})

is a vertical 3-separation of M , where |A| > 1 and |B| > 2. Say |A| = 1, where A = {f0}.
Then A∪ {f1, f2} is a triad, and so (f0, f1, f2, f3, f4) is a 5-element fan, contradicting the
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maximality of F . Thus |A| > 2. Since A ∪ B and B ∪ {f4} are 3-separating in M , it
follows by uncrossing that B is 3-separating in M . Similarly, A is 3-separating in M .
Hence

(A, {f1, f2}, {f3, f4}, B)

is a flower Φ. Since u({f1, f2}, {f3, f4}) = 1, it follows by [5, Theorem 4.1] that

u(A, {f1, f2}) = u({f3, f4}, B) = u(A,B) = 1.

To show that Φ is a swirl-like flower, it remains to show that

u({A, {f3, f4}) = u(B, {f1, f2}) = 0.

If f1 6∈ cl(A), then, as f2 6∈ cl(A ∪ {f1}), it follows that r(A ∪ {f1, f2}) = r(A) + 2.
But then u(A, {f1, f2}) = 0, a contradiction. Thus f1 ∈ cl(A). Furthermore, f3 6∈ cl(A).
Assume that f4 ∈ cl(A ∪ {f3}). Then, as u({f3, f4}, B) = 1,

1 = rM/f3(A ∪ {f1, f2}) + rM/f3(B ∪ {f4})− r(M/f3)

= rM/f3(A ∪ {f1, f2, f4}) + rM/f3(B)− r(M/f3)

= r(A ∪ F )− 1 + r(B)− (r(M)− 1)

= r(A ∪ F ) + r(B)− r(M),

and so B is 2-separating in M , a contradiction. Thus f4 6∈ cl(A ∪ {f3}), and so
u(A, {f3, f4}) = 0. To see that u(B, {f1, f2}) = 0, first assume that f1 ∈ cl(B). Then, as
f1 ∈ cl(A),

1 = rM/f3(A ∪ {f1, f2}) + rM/f3(B ∪ {f4})− r(M/f3)

= rM/f3(A) + rM/f3(B ∪ {f1, f2, f4})− r(M/f3)

= r(A) + r(B ∪ F )− 1− (r(M)− 1)

= r(A) + r(B ∪ F )− r(M),

and so A is 2-separating in M . This contradiction implies that f1 6∈ cl(B). It fol-
lows that r(B ∪ {f1, f2}) = r(B) + 2, that is u(B, {f1, f2}) = 0. We deduce that
(A, {f1, f2}, {f3, f4}, B) is a swirl-like flower. Lastly, as f1 ∈ cl(A) and u(B, {f3, f4}) = 1,
it follows that (A∪{f1}, {f2}, B∪{f3, f4}) is a cyclic 3-separation of M , and so co(M\f2)
is not 3-connected, that is, f2 is not elastic. Hence (iii) holds.

4 Elastic Elements in Segments

Let M be a matroid. A subset L of E(M) of size at least two is a segment if M |L is
isomorphic to a rank-2 uniform matroid. In this section we consider when an element in
a segment is deletable or contractible. We begin with the following elementary lemma.

Lemma 14. Let L be a segment of a 3-connected matroid M . If L has at least four
elements, then M\` is 3-connected for all ` ∈ L.
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Figure 2: The swirl-like flower (A, {f1, f2}, F−{f1, f2}, B) of Lemma 13 where, if |F | = 5,
then f5 is an element in B.

In particular, Lemma 14 implies that, in a 3-connected matroid, every element of a seg-
ment with at least four elements is deletable. We next determine the structure which
arises when elements of a segment in a 3-connected matroid are not contractible.

Lemma 15. Let M be a 3-connected matroid, and suppose that L ∪ {w} is a rank-3
cocircuit of M , where L is a segment. If two distinct elements y1 and y2 of L are not
contractible, then there are distinct elements w1 and w2 of E(M) − (L ∪ {w}) such that
(cl(L)− {yi}) ∪ {wi} is a cocircuit for each i ∈ {1, 2}.

Proof. Let y1 and y2 be distinct elements of L that are not contractible. For each i ∈
{1, 2}, it follows by Lemma 10 that there exists a vertical 3-separation (Xi, {yi}, Yi) of
M such that yj ∈ Yi, where {i, j} = {1, 2}. By Lemma 11, we may assume Yi ∪ {yi}
is closed, in which case, L − {yi} ⊆ Yi. Furthermore, for each i ∈ {1, 2}, we may also
assume, amongst all such vertical 3-separations of M , that |Yi| is minimised. If w ∈ Yi,
then, as L ∪ {w} is a cocircuit, Xi is contained in the hyperplane E(M) − (L ∪ {w}),
and so yi 6∈ cl(Xi). This contradiction implies that w ∈ Xi. Thus, for each i ∈ {1, 2}, we
deduce that M has a vertical 3-separation

(Ui ∪ {w}, {yi}, Vi ∪ (L− {yi})),

where Ui ∪ {w} = Xi and Vi ∪ (L− {yi}) = Yi. Next we show the following.

15.1. For each i ∈ {1, 2}, we have w ∈ clM(Ui ∪ {yi})− clM(Ui).

Since L ∪ {w} is a cocircuit, the elements yi, w 6∈ clM(Ui). But yi ∈ clM(Ui ∪ {w}),
and so yi ∈ clM(Ui ∪ {w})− clM(Ui). Thus, by the MacLane-Steinitz exchange property,
w ∈ clM(Ui ∪ {yi})− clM(Ui).

15.2. For each i ∈ {1, 2}, we have yi 6∈ clM(Uj ∪ {w}), where {i, j} = {1, 2}.
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By Lemma 11,

(cl(Uj ∪ {w})− {yj}, {yj}, (Vj ∪ (L− {yj}))− cl(Uj ∪ {w}))

is a vertical 3-separation of M . If yi ∈ cl(Uj ∪ {w}), then, as yj ∈ cl(Uj ∪ {w}), the
segment L is contained in cl(Uj ∪ {w}). Therefore L ∪ {w} ⊆ cl(Uj ∪ {w}), and so
(Vj ∪ (L−{yj}))− cl(Uj ∪{w}) = Vj − cl(Uj ∪{w}). Since Vj − cl(Uj ∪{w}) is contained
in the hyperplane E(M)−(L∪{w}), it follows that yj 6∈ Vj−cl(Uj∪{w}), a contradiction.
Thus (15.2) holds.

Since M is 3-connected and (Ui ∪ {w}, {yi}, Vi ∪ (L−{yi})) is a vertical 3-separation,
it follows by (15.1) that

r(Ui) + r(Vi ∪ L)− r(M\w) = r(Ui ∪ {w})− 1 + r(Vi ∪ L)− r(M) = 1.

Thus (Ui, Vi ∪ L) is a 2-separation of M\w for each i ∈ {1, 2}. We next show that

15.3. |U1 ∩ V2| = |U2 ∩ V1| = 1.

Let {i, j} = {1, 2}. If Ui ⊆ Uj, then

yi ∈ cl(Ui ∪ {w}) ⊆ cl(Uj ∪ {w}),

contradicting (15.2). Therefore, for {i, j} = {1, 2}, we have |Ui ∩ Vj| > 1. Consider the
2-connected matroid M\w. Since |Uj ∩Vi| > 1, it follows by uncrossing that Ui ∪ (Vj ∪L)
is 2-separating in M\w. But, by (15.1), w ∈ clM(Ui ∪ L) and so Ui ∪ Vj ∪ (L ∪ {w}) is
2-separating in M . Since M is 3-connected, it follows that |Uj ∩ Vi| 6 1. Thus (15.3)
holds.

Let w1 and w2 be the unique elements of U2 ∩ V1 and U1 ∩ V2, respectively. Now
|(U1 ∪ {w})∩ (U2 ∪ {w})| > 2 and so, by uncrossing, V1 ∪L and V2 ∪L, as well as V1 ∪L
and V2 ∪ (L−{y1}), we see that (V1 ∩ V2)∪L and (V1 ∩ V2)∪ (L−{y1}) are 3-separating
in M . So

(U1 ∪ U2 ∪ {w}, {y1}, (V1 ∩ V2) ∪ (L− {y1}))

is a vertical 3-separation of M unless r((V1∩V2)∪ (L−{y1}) = 2. Since V1∪L and V2∪L
are closed, (V1 ∩ V2) ∪ L is closed. Furthermore,

|(V1 ∩ V2) ∪ (L− {y1})| < |V1 ∪ (L− {y1})|,

and so, by the minimality of |Y1|, we have r((V1 ∩ V2) ∪ (L − {y1}) = 2. Therefore, as
(U1 ∪ {w}, {y1}, V1 ∪ (L − {y1})) and (U2 ∪ {w}, {y2}, V2 ∪ (L − {y2})) are both vertical
3-separations, and

(V1 ∩ V2) ∪ (L− {yi}) ∪ {wi}= Vi ∪ (L− {yi}),

it follows that (V1 ∩ V2) ∪ (L − {yi}) ∪ {wi} is a cocircuit for each i ∈ {1, 2}. Since
y1 ∈ cl((V1 ∩ V2) ∪ (L − {y1})), we have (V1 ∩ V2) ∪ L = cl(L), thereby completing the
proof of the lemma.
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5 Theta Separators

We begin this section by formally defining, for all n > 2, the matroid Θn. Let n > 2, and
let M be the matroid whose ground set is the disjoint union of W = {w1, w2, . . . , wn} and
Z = {z1, z2, . . . , zn}, and whose circuits are as follows:

(i) all 3-element subsets of W ;

(ii) all sets of the form (Z − {zi}) ∪ {wi}, where i ∈ {1, 2, . . . , n}; and

(iii) all sets of the form (Z − {zi}) ∪ {wj, wk}, where i, j, and k are distinct elements of
{1, 2, . . . , n}.

It is shown in [7, Lemma 2.2] that M is indeed a matroid, and we denote this matroid by
Θn. If n = 2, then Θ2 is isomorphic to the direct sum of U1,2 and U1,2, while if n = 3, then
Θ3 is isomorphic to M(K4). Also, for all n, the matroid Θn is self-dual under the map that
interchanges wi and zi for all i [7, Lemma 2.1], and the rank of Θn is n. For all i, we say
wi and zi are partners. Furthermore, it is easily checked that, for all i, j ∈ {1, 2, . . . , n},
we have Θn\wi

∼= Θn\wj. Up to isomorphism, we denote the matroid Θn\wi by Θ−n .
Observe that if n = 3, then Θ−3 is a 5-element fan. We refer to the elements in W and Z
as the segment elements and cosegment elements, respectively, of Θn and Θ−n .

Recalling the definition of a Θ-separator, the next lemma considers the elasticity of
elements in a Θ-separator when n > 4. The analogous lemma for when n = 3 is covered
by Lemma 13. Observe that, if M is 3-connected and S is a Θ-separator of M such that
M |S ∼= Θn for some n > 3, then

r(M) = r(M\S) + n− 2.

Lemma 16. Let M be a 3-connected matroid, and let n > 4. Suppose that S is a Θ-
separator of M . If M |S ∼= Θn, then S contains no elastic elements of M . Furthermore,
if M |S ∼= Θ−n , then S contains exactly one elastic element, namely the unique cosegment
element of M |S with no partner, unless there is an element w of cl(S) − S such that
M |(S ∪ {w}) ∼= Θn.

Proof. Suppose that M |S ∼= Θn, where n > 4. Without loss of generality, we may assume
that S is the disjoint union of W = {w1, w2, . . . , wn} and Z = {z1, z2, . . . , zn}, where W
and Z are as defined in the definition of Θn. Let i ∈ {1, 2, . . . , n}. As M |S ∼= Θn, the
set Ci = (Z − {zi}) ∪ {wi} is a circuit of M . Now, as Z has corank 2, the circuit Ci has
corank 3, and so

λ(Ci) = r(Ci) + r∗(Ci)− |Ci| = (|Ci| − 1) + 3− |Ci| = 2.
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So Ci is 3-separating. Furthermore, zi ∈ cl∗(Ci) and, by Lemma 4, zi 6∈ cl(E(M)− (Ci ∪
{zi}). Thus, by Lemma 6, zi ∈ cl∗(E(M) − (Ci ∪ {zi}) and so, as E(M) − (Ci ∪ {zi})
contains a triangle in W − {wi},

(Ci, {zi}, E(M)− (Ci ∪ {zi}))

is a cyclic 3-separation of M . Therefore, by Lemma 10, zi is not deletable. Moreover, as

(Z − {zi}, {wi}, E(M)− ((Z − {zi}) ∪ {wi}))

is a vertical 3-separation of M , it follows by Lemma 10 that wi is not contractible. Thus
S contains no elastic elements of M .

Now suppose that M |S ∼= Θ−n , where n > 4. Without loss of generality, let S be the
disjoint union of W − {wj} and Z, where W = {w1, w2, . . . , wn} and Z = {z1, z2, . . . , zn}
are as defined in the definition of Θn. Let zi ∈ Z − {zj}. Then the argument in the last
paragraph shows that

((Z − {zi}) ∪ {wi}, {zi}, E(M)− (Z ∪ {wi})

is a cyclic 3-separation of M provided E(M) − (Z ∪ {wi}) contains a circuit. If n > 5,
then |W | > 4, and so E(M)− (Z ∪ {wi}) contains a circuit. Assume that n = 4. Then,
as r∗(M) > 4, we have |E(M)− (Z ∪ {wi})| > 3. Therefore, as wk ∈ cl(Z ∪ {wi}), where
wk ∈ W − {wi, wj}, and Z ∪ {wi} is exactly 3-separating, it follows by Lemma 6 that
wk ∈ cl(E(M) − (Z ∪ {wi, wk}). In particular, E(M) − (Z ∪ {wi}) contains a circuit.
Hence zi is not deletable. Furthermore, the argument in the previous paragraph shows
that if wi ∈ W − {wj}, then wi is not contractible.

We complete the proof of the lemma by considering the elasticity of zj. Since |Z| > 4,
it follows by Lemma 14 that zj is contractible. Assume that zj is not deletable. Let
i ∈ {1, 2, . . . , n} such that i 6= j. Then Ci = (Z − {zi}) ∪ {wi} is a circuit of M .
Furthermore,

r∗((Z − {zi}) ∪ {wi}) = (r(M)− (|Ci| − 3)) + |Ci| − r(M)

= 3.

Therefore, as zj ∈ Z − {zi} and all elements of Z − {zi} are not deletable, the dual of
Lemma 15 implies that there is an element w such that (Z−{zj})∪{w} is a circuit. But
then, as w ∈ cl(Z) − Z, it follows that w ∈ cl(W − {wj}), and it is easily checked that
M |(S ∪ {w}) ∼= Θn, thereby completing the proof of the lemma.

6 Proofs of Theorem 1 and Corollary 2

In this section, we prove Theorem 1 and Corollary 2. However, almost all of the section
consists of the proof of Theorem 1. The proof of this theorem is essentially partitioned
into two lemmas, Lemmas 18 and 19. Let M be a 3-connected matroid with a vertical
3-separation (X, {e}, Y ) such that Y ∪ {e} is maximal. Lemma 18 establishes Theorem 1
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for when X contains at least one non-contractible element, while Lemma 19 establishes
the theorem for when every element in X is contractible.

To prove Lemma 18, we will make use of the following technical result which is ex-
tracted from the proof of Lemma 3.2 in [6].

Lemma 17. Let M be a 3-connected matroid with a vertical 3-separation (X1, {e1}, Y1)
such that Y1 ∪ {e1} is maximal. Suppose that (X2, {e2}, Y2) is a vertical 3-separation of
M such that e2 ∈ X1, e1 ∈ Y2, and Y2 ∪ {e2} is closed. Then each of the following holds:

(i) None of X1 ∩X2, X1 ∩ Y2, Y1 ∩X2, and Y1 ∩ Y2 are empty.

(ii) r((X1 ∩X2) ∪ {e2}) = 2.

(iii) If |Y1 ∩X2| = 1, then X2 is a rank-3 cocircuit.

(iv) If |Y1 ∩X2| > 2, then r((X1 ∩ Y2) ∪ {e1, e2}) = 2.

Lemma 18. Let M be a 3-connected matroid with a vertical 3-separation (X1, {e1}, Y1)
such that Y1∪{e1} is maximal. Suppose that at least one element of X1 is not contractible.
Then at least one of the following holds:

(i) X1 has at least two elastic elements;

(ii) X1 ∪ {e1} is a 4-element fan; or

(iii) X1 is contained in a Θ-separator S.

Moreover, if (iii) holds, then X1 is a rank-3 cocircuit, M∗|S is isomorphic to either Θn

or Θ−n , where n = |X1 ∪ {e1}| − 1, and there is a unique element x ∈ X1 such that x is
a segment element of M∗|S and (X1 − {x}) ∪ {e1} is the set of cosegment elements of
M∗|S.

Proof. Let e2 be an element of X1 that is not contractible. Then, by Lemma 10, there
exists a vertical 3-separation (X2, {e2}, Y2) of M . Without loss of generality, we may
assume e1 ∈ Y2. Furthermore, by Lemma 11, we may also assume that Y2∪{e2} is closed.
By Lemma 17, each of X1 ∩X2, X1 ∩ Y2, Y1 ∩X2, and Y1 ∩ Y2 is non-empty. The proof is
partitioned into two cases depending on the size of Y1 ∩X2. Both cases use the following:

18.1. If X1∩X2 contains two contractible elements, then either X1 has at least two elastic
elements, or |X1 ∩ X2| = 2 and there exists a triangle {x, y1, y2}, where x ∈ X1 ∩ X2,
y1 ∈ Y1 ∩X2, and y2 ∈ X1 ∩ Y2.

By Lemma 17(ii), r((X1 ∩ X2) ∪ {e2}) = 2. Let x1 and x2 be distinct contractible
elements of X1∩X2. If |X1∩X2| > 3, then, by Lemma 14 each of x1 and x2 is elastic. Thus
we may assume that |X1 ∩X2| = 2 and that either x1 or x2, say x1, is not deletable. Let
(U, V ) be a 2-separation of M\x1 such that neither r∗(U) = 1 nor r∗(V ) = 1. Since x1 is
not deletable, such a separation exists. Furthermore, |U |, |V | > 3 as U and V each contain
a cycle. If x1 ∈ cl(U) or x1 ∈ cl(V ), then either (U∪{x1}, V ) or (U, V ∪{x1}), respectively,
is a 2-separation of M , a contradiction. So {x2, e2} 6⊆ U and {x2, e2} 6⊆ V . Therefore,
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without loss of generality, we may assume x2 ∈ U−cl(V ) and e2 ∈ V −cl(U). Since (U, V )
is a 2-separation of M\x1 and x2 6∈ cl(V ), we deduce that (U − {x2}, V ∪ {x1}) is a 2-
separation of M/x2. Thus, as x2 is contractible, si(M/x2) is 3-connected, and so r(U) = 2.
In turn, as Y1 ∪{e1} and Y2 ∪{e2} are both closed, this implies that |U ∩ (Y1 ∪{e1})| 6 1
and |U ∩ (Y2 ∪ {e2})| 6 1; otherwise, U ⊆ Y1 ∪ {e1} or U ⊆ Y2 ∪ {e2}. Thus |U | = 3 and,
in particular, U is the desired triangle. Hence (18.1) holds.

We now distinguish two cases depending on the size of Y1 ∩X2:

(I) |Y1 ∩X2| = 1; and

(II) |Y1 ∩X2| > 2.

Consider (I). Let w be the unique element in Y1∩X2. By Lemma 17, (X1∩X2)∪{e2}
is a segment of at least three elements and (X1 ∩ X2) ∪ {w} is a rank-3 cocircuit. Let
L1 = (X1 ∩X2) ∪ {e2}. As |Y1 ∩X2| = 1, we may assume that L1 is closed.

18.2. At most one element of X1 ∩X2 is not contractible.

Suppose that at least two elements in X1 ∩ X2 are not contractible, and let x be
such an element. Then, by Lemma 15, there is an element w′ distinct from w such that
(L1−{x})∪{w′} is a rank-3 cocircuit. If w′ ∈ Y1, then {w,w′} ⊆ cl∗(X1) and e1 ∈ cl(X1),
contradicting Lemma 8. Thus w′ ∈ X1. Since w′ ∈ cl∗(L1 − {x}), it follows by Lemma 5
that each of (L1 − {x}) ∪ {w′} and L1 ∪ {w′} are exactly 3-separating. Furthermore, as
x ∈ cl((L1−{x})∪{w′}), it follows by Lemma 6 that x 6∈ cl∗((L1−{x})∪{w′}). Therefore

((L1 − {x}) ∪ {w′}, {x}, E(M)− (L1 ∪ {w′}))

is a vertical 3-separation of M . But then, as L1∪{w′} ⊆ X1, we contradict the maximality
of Y1 ∪ {e1}. Hence (18.2) holds.

If |L1| > 4, then, by Lemma 14 and (18.2), L1 − {e2}, and more particularly X1,
contains at least two elastic elements. Thus, as |Y1 ∩X2| = 1, we may assume |L1| = 3,
and so (L1 − {e2}) ∪ {w} is a triad. Let L1 = {x1, x2, e2} and let {i, j} = {1, 2}.
18.3. For each i ∈ {1, 2}, the element xi is contractible.

If xi is not contractible, then, by Lemma 10, M has a vertical 3-separation
(Ui, {xi}, Vi), where e1 ∈ Vi. By Lemma 11, we may assume that Vi ∪ xi is closed. By
Lemma 17, Y1∩Ui is non-empty and r((X1∩Ui)∪{xi}) = 2. First assume that |Y1∩Ui| = 1.
Then |(X1 ∩ Ui) ∪ {xi}| > 3, and so xi is contained in a triangle T ⊆ (X1 ∩ Ui) ∪ {xi}.
If xj ∈ Vi, then, as Vi ∪ {xi} is closed, e2 ∈ Vi. Thus xj, e2 6∈ T and so, by orthogo-
nality, as {xi, xj, w} is a triad, w ∈ T . This contradicts w ∈ Y1. It now follows that
xj ∈ X1 ∩ Ui and so e2 ∈ X1 ∩ Ui. Thus, as L1 is closed and L1 ⊆ (X1 ∩ Ui) ∪ {xi}, we
have |(X1∩Ui)∪{xi}| = 3, and therefore T = {x1, x2, e2}. Let z be the unique element in
Y1∩Ui. Then, by Lemma 17 again, {xj, e2, z} is a triad, and so z ∈ cl∗(X1). Furthermore,
w ∈ cl∗(X1) and e1 ∈ cl(X1), and so, by Lemma 8, we deduce that z = w. This implies
that Y2 = Vi. But then cl(Y2 ∪ {e2}) contains xi, contradicting that Y2 ∪ {e2} is closed.
Now assume that |Y1∩Ui| > 2. By Lemma 17, r((X1∩Vi)∪{xi, e1}) = 2. If xj ∈ Vi, then,
as Vi ∪ {xi} is closed, e2 ∈ X1 ∩ Vi, and so {xj, e1, e2} is a triangle. Since {x1, x2, w} is a
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triad, this contradicts orthogonality. Thus xj ∈ Ui. Also, e2 ∈ Ui; otherwise, as Vi ∪ {xi}
is closed, xj ∈ Vi, a contradiction. By Lemma 17, X1 ∩ Vi is non-empty, and so M has
a triangle T ′ = {xi, e1, y}, where y ∈ X1 ∩ Vi. As {xi, xj, w} is a triad, T ′ contradicts
orthogonality unless y = w. But w ∈ Y1 and therefore cannot be in X1 ∩ Vi. Hence xi is
contractible, and so (18.3) holds.

Since x1 and x2 are both contractible, it follows by (18.1) that either X1 contains two
elastic elements or w is in a triangle with two elements of X1. If the latter holds, then
w ∈ cl(X1). As {x1, x2, w} is a triad and (Y1 ∪ {e1}) − {w} is contained in Y2 ∪ e2, it
follows that w 6∈ cl((Y1 ∪ {e1})− {w}). Therefore

(X1 ∪ {w}, (Y1 ∪ {e1})− {w})

is a 2-separation of M , a contradiction. Thus X1 contains two elastic elements. This
concludes (I).

Now consider (II). Let L1 = (X1 ∩X2)∪ {e2} and L2 = (X1 ∩ Y2)∪ {e1, e2}. By parts
(ii) and (iv) of Lemma 17, L1 and L2 are both segments. Since M is 3-connected, X1 is
3-separating, and Y1 ∪ {e1} is closed, it follows that X1 is a rank-3 cocircuit of M and L2

is closed.
First assume that |L2| > 4. Since X1 is a rank-3 cocircuit of M , we have r(Y1) + 1 =

r(M). Therefore, as |L2| > 4 and |X1 ∩ X2| > 1, it follows that r∗(M) > 4. Now,
Lemma 14 implies that each element of L2 is deletable. If |L1| > 3, then, by Lemma 7,
each element of L2−{e1, e2} is contractible, and so each element of L2−{e1, e2} is elastic.
Since |L2| > 4, it follows that X1 has at least two elastic elements. Thus we may assume
that |L1| = 2, that is |X1 ∩ X2| = 1. We may also assume that X1 ∩ Y2 contains at
most one contractible element; otherwise, X1 contains at least two elastic elements. Let
e3, e4, . . . , en denote the elements in L1 − {e1, e2}. Without loss of generality, we may
assume that if X1 ∩ Y2 contains a contractible element, then it is en. Let m = n − 1 if
en is contractible; otherwise, let m = n. Furthermore, let w1 denote the unique element
in X1 ∩ X2. Since (L2 − {e1}) ∪ {w1} is a rank-3 cocircuit, and at most one element of
L2 − {e1} is contractible, it follows by Lemma 15 that, for all i ∈ {2, 3, . . . ,m}, there
are distinct elements w2, w3, . . . , wm of Y1 such that (L2 − {ei}) ∪ {wi} is a cocircuit.
Let W = {w1, w2, . . . , wm}. As W is in the coclosure of the 3-separating set L2, we have
r∗(W ) = 2. It follows that (L2−{ei})∪{wj, wk} is a cocircuit of M for all distinct elements
i, j, k ∈ {1, 2, . . . ,m}. By a comparison of the circuits of Θn, it is straightforward to deduce
that M∗|(W ∪ L2) is isomorphic to either Θn if no element of X1 ∩ Y2 is contractible, or
Θ−n if en is contractible. Hence X1 is contained in a Θ-separator of M as described in the
statement of the lemma.

We may now assume that |L2| = 3. Let L2 = {e2, a, e1}. If |X1 ∩ X2| = 1, then
|X1| = 3, and so X1 is a triad. In turn, this implies that X1 ∪ {e1} is a 4-element fan.
Thus |X1 ∩X2| > 2. Let x1 and x2 be distinct elements in X1 ∩X2. Since {e1, a, e2} is a
triangle in M/xi for each i ∈ {1, 2}, it follows by Lemma 7 that xi is contractible for each
i ∈ {1, 2}. Thus, by (18.1), either X1 contains two elastic elements, or X1∩X2 = {x1, x2}
and a is in a triangle with two elements of X2. The latter implies that a ∈ cl(X2 ∪ {e2}).
As a 6∈ cl(Y1∪{e1}) and Y2−{a} is contained in Y1∪{e1}, it follows that a 6∈ cl(Y2−{a}).
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Hence, as
r(X2 ∪ {e2}) + r(Y2)− r(M) = 2,

we have r(X2 ∪ {e2, a}) + r(Y2 − {a}) + 1− r(M) = 2, and so

(X2 ∪ {a, e2}, Y2 − {a})

is a 2-separation of M , a contradiction. Thus X1 contains two elastic elements. This
concludes (II) and the proof of the lemma.

Lemma 19. Let M be a 3-connected matroid with a vertical 3-separation (X1, {e1}, Y1)
such that Y1 ∪ {e1} is maximal. Suppose that every element of X1 is contractible. Then
at least one of the following holds:

(i) X1 has at least two elastic elements;

(ii) X1 ∪ {e1} is a 4-element fan; or

(iii) X1 is contained in a Θ-separator S.

Moreover, if (iii) holds, then X1 ∪ {e1} is a circuit, M |S is isomorphic to either Θn or
Θ−n for some n ∈ {|X1|, |X1|+ 1}, and X1 is a subset of the cosegment elements of M |S.

Proof. First suppose that X1 is independent. Then, as r(X1) = |X1| and λ(X1) = r(X1)+
r∗(X1) − |X1|, we have r∗(X1) = 2. That is, X1 is a segment in M∗. As r∗(X1) = 2,
it follows that either (X1 − {x}) ∪ {e1} is a circuit for some x ∈ X1, or X1 ∪ {e1} is a
circuit. If (X1 − {x}) ∪ {e1} is a circuit, then either X1 ∪ {e1} is a 4-element fan, or it
is easily checked that (X1 − {x}, {e1}, Y1 ∪ {x}) is a vertical 3-separation, contradicting
the maximality of Y1 ∪{e1}. Thus we may assume that X1 ∪{e1} is a circuit of M . Now,
if two elements of X1 are deletable, then X1 contains at least two elastic elements, so
we may assume that at most one element of X1 is deletable. Assume first that X1 is
coclosed, and let X1 = {z1, z2, . . . , zn}. Without loss of generality, we may assume that if
X1 contains a deletable element, then it is zn. Let m = n− 1 if zn is deletable; otherwise,
let m = n. Since X1 ∪ {e1} has corank 3 and X1 is coclosed, it follows by the dual
of Lemma 15 that, for all i ∈ {1, 2, . . . ,m}, there are distinct elements w1, w2, . . . , wm

such that (X1 − {zi}) ∪ {wi} is a circuit. Let W = {w1, w2, . . . , wm}. Since X1 is 3-
separating and W ⊆ cl(X1), it follows that r(W ) = 2. As every 3-element subset of X1

is a cocircuit, it follows by orthogonality that (X1 − {zi}) ∪ {wj, wk} is a circuit for all
distinct i, j, k ∈ {1, 2, . . . ,m}. By a comparison with the circuits of Θn, it is easily checked
that M |(W ∪X1) is isomorphic to Θn if m = n, and M |(W ∪X1) is isomorphic to Θ−n if
m = n − 1, and so X1 is contained in a Θ-separator of M as described in the statement
of the lemma. Now assume that X1 is not coclosed. Then, as X1 ∪ {e1} is a corank-3
circuit, |cl∗(X1) − X1| = 1. Let {z1} = cl∗(X1) − X1, and denote the elements of X1 as
z2, z3, . . . , zn. Applying the previous argument to X1 ∪ {z1} and recalling that X1 ∪ {e1}
is a circuit, we deduce that X1 is again contained in a Θ-separator of M as described in
the statement of the lemma.
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Now suppose that X1 is dependent, and let C be a circuit in X1. As M is 3-connected,
|C| > 3. If every element in C is deletable, then X1 contains at least two elastic ele-
ments. Thus we may assume that there is an element, say g, in C that is not deletable.
By Lemma 10, there exists a cyclic 3-separation (U, {g}, V ) in M , where e1 ∈ V . By
Lemma 11, we may also assume that V ∪ {g} is coclosed. Note that, as (U, {g}, V ) is a
cyclic 3-separation, r∗(U) > 3, and so |U | > 3.

We next show that

19.1. |X1 ∩ U |, |X1 ∩ V | > 2.

If either C − {g} ⊆ U or C − {g} ⊆ V , then g ∈ cl(U) or g ∈ cl(V ), respectively, in
which case either (U ∪ {g}, V ) or (U, V ∪ {g}) is a 2-separation of M , a contradiction.
Thus C ∩ (X1 ∩U) and C ∩ (X1 ∩ V ) are both non-empty, and so |X1 ∩U |, |X1 ∩ V | > 1.
Say X1 ∩ U = {g′}, where g′ ∈ C. Since C is a circuit, g ∈ clM/g′(V ). Therefore, as
Y1 ∪ {e1} is closed and so g′ 6∈ cl(Y1), and (U, V ) is a 2-separation of M\g, we have

λM/g′(U ∩ Y1) = rM/g′(U ∩ Y1) + rM/g′(V ∪ {g})− r(M/g′)

= rM(U ∩ Y1) + rM(V )− (r(M)− 1)

= rM(U ∩ Y1) + rM(V )− r(M\g) + 1

= rM(U)− 1 + rM(V )− r(M\g) + 1

= rM(U) + rM(V )− r(M\g)

= 1.

Thus (U∩Y1, V ∪{g}) is a 2-separation of M/g′. Since every element in X1 is contractible,
g′ is contractible, and so r(U) = 2. Since |U | > 3, it follows that |U ∩ Y1| > 2, and so
g′ ∈ cl(Y1∪{e1}), a contradiction as Y1∪{e1} is closed. Hence |X1∩U | > 2. An identical
argument interchanging the roles of U and V establishes that |X1 ∩ V | > 2, thereby
establishing (19.1).

Say |Y1 ∩ U | > 2. It follows by two application of uncrossing that each of (X1 ∩ V ) ∪
{g} and (X1 ∩ V ) ∪ {g, e1} is 3-separating. Since |X1 ∩ V | > 2 and M is 3-connected,
(X1 ∩ V ) ∪ {g} and (X1 ∩ V ) ∪ {g, e1} are exactly 3-separating. Therefore, by Lemma 5,
e1 ∈ cl((X1∩V )∪{g}) or e1 ∈ cl∗((X1∩V )∪{g}). Since e1 ∈ cl(Y1), it follows by Lemma 4
that e1 6∈ cl∗((X1 ∩V )∪{g}). So e1 ∈ cl((X1 ∩V )∪{g}). Thus, if r((X1 ∩V )∪{g}) > 3,
then ((X1∩V )∪{g}, {e1}, Y1∪U) is a vertical 3-separation, contradicting the maximality
of Y1 ∪ {e1}. Therefore r((X1 ∩ V ) ∪ {e1, g}) = 2. But then g ∈ cl(V ∩ X1) ⊆ cl(V ), a
contradiction.

Now assume that |Y1∩U | 6 1. Say Y1∩U is empty. Then U ⊆ X1. Let (U ′, {h}, V ′) be
a cyclic 3-separation of M such that V ∪{g} ⊆ V ′∪{h} with the property that there is no
other cyclic 3-separation (U ′′, {h′}, V ′′) in which V ′ ∪ {h} is a proper subset of V ′′ ∪ {h′}.
Observe that such a cyclic 3-separation exists as we can choose (U, {g}, V ) if necessary. If
every element in U ′ is deletable, then, as U ′ ⊆ X1 and |U ′| > 3, it follows that X1 has at
least two elastic elements. Thus we may assume that there is an element in U ′ that is not
deletable. By the dual of Lemma 18, either U ′, and thus X1, contains at least two elastic
elements or U ′ ∪ {h} is a 4-element fan, or U ′ is contained in a Θ-separator. If U ′ ∪ {h}
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is a 4-element fan, then, by Lemma 12,

((U ′ ∪ {h})− {f}, {f}, E(M)− (U ′ ∪ {h}))

is a vertical 3-separation, where f is the spoke-end of the 4-element fan U ′∪{h}. But then,
as X1∩V is non-empty, Y1∪{e1} is properly contained in E(M)−(U ′∪{h}), contradicting
maximality. If U ′ is contained in a Θ-separator, then, by the dual of Lemma 18, U ′ is a
circuit and there is an element w of U ′ such that (U ′ − {w}) ∪ {h} is a cosegment. But
then

((U ′ ∪ {h})− {w}, {w}, E(M)− (U ′ ∪ {h}))

is a vertical 3-separation of M , contradicting the maximality of Y1 ∪ {e1} as Y1 ∪ {e1} is
properly contained in E(M)− (U ′ ∪ {h}). Hence we may assume that |Y1 ∩ U | = 1.

Let Y1∩U = {y}. Since |Y1∩U | = 1, we have |Y1∩V | > 2 and so, by two applications
of uncrossing, X1 ∩ U and (X1 ∩ U) ∪ {g} are both 3-separating. Since M is 3-connected
and |X1 ∩ U | > 2, these sets are exactly 3-separating. If y 6∈ cl(X1 ∩ U), then, by
Lemma 4, y ∈ cl∗(V ∪ {g}). But then V ∪ {g} is not coclosed, a contradiction. Thus
y ∈ cl(X1 ∩ U), and so y ∈ cl((X1 ∩ U) ∪ {g}). Now y 6∈ cl∗(V ∪ {g}), and so y 6∈ cl∗(V ).
Hence as (X1∩U)∪{g} and, therefore, the complement V ∪{y} is 3-separating, Lemma 5
implies that y ∈ cl(V ). Therefore, as (X1 ∩ U) ∪ {g} and V each have rank at least
three, it follows that ((X1 ∩ U) ∪ {g}, {y}, V ) is a vertical 3-separation of M . Note that
r(V ) > 3; otherwise, (X1 ∩ V ) ⊆ cl({y, e1}), in which case, Y1 ∪ {e1} is not closed. But
(X1 ∩ U) ∪ {g} is a proper subset of X1, a contradiction to the maximality of Y1 ∪ {e1}.
This last contradiction completes the proof of the lemma.

We now combine Lemmas 18 and 19 to prove Theorem 1.

Proof of Theorem 1. Let (X, {e}, Y ) be a vertical 3-separation of M , where Y ∪ {e} is
maximal, and suppose that X ∪{e} is not a 4-element fan and X is not contained in a Θ-
separator. If at least one element in X is not contractible, then, by Lemma 18, X contains
at least two elastic elements. On the other hand if every element in X is contractible,
then by Lemma 19, X again contains at least two elastic elements. This completes the
proof of the theorem.

We end the paper by establishing Corollary 2.

Proof of Corollary 2. Let M be a 3-connected matroid. If every element of M is elastic,
then the corollary holds. Therefore suppose that M has at least one non-elastic element, e
say. Up to duality, we may assume that si(M/e) is not 3-connected. Then, by Lemma 10,
M has a vertical 3-separation (X, {e}, Y ). As r(X), r(Y ) > 3, this implies that |E(M)| >
7, and so we deduce that every element in a 3-connected matroid with at most six elements
is elastic. Now, suppose that M has no 4-element fans and no Θ-separators, and let
(X ′, {e′}, Y ′) be a vertical 3-separation such that Y ′∪{e′} is maximal and contains Y ∪{e}.
Then it follows by Theorem 1 that X ′, and hence X, contains at least two elastic elements.
Interchanging the roles of X and Y , an identical argument gives us that Y also contains
at least two elastic elements. Thus, M contains at least four elastic elements.
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