
IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XXX, NO. XXX, XXX 1

Hybridization in Non-Binary Trees

Simone Linz and Charles Semple

Manuscript received XXX; revised XXX.

S. Linz is with the Department of Computer Science, Heinrich-Heine-University, Düsseldorf, Germany. E-mail: linz@cs.uni-

duesseldorf.de.

C. Semple is with the Biomathematics Research Centre, Department of Mathematics and Statistics, University of Canterbury,

Christchurch, New Zealand. E-mail: c.semple@math.canterbury.ac.nz.

July 18, 2008 DRAFT



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XXX, NO. XXX, XXX 2

Abstract

Reticulate evolution—the umbrella term for processes likehybridization, horizontal gene transfer,

and recombination—plays an important role in the history oflife of many species. Although the

occurrence of such events is widely accepted, approaches tocalculate the extent to which reticulation has

influenced evolution are relatively rare. In this paper, we show that the NP-hard problem of calculating

the minimum number of reticulation events for two (arbitrary) rooted phylogenetic trees parameterized

by this minimum number is fixed-parameter tractable.

Index Terms

Rooted phylogenetic tree, reticulate evolution, hybridization network.

I. INTRODUCTION

Using mathematical models to reconstruct a tree of life fromnucleotide or protein sequences

is subject of many phylogenetic studies that aim at analyzing the complex evolutionary processes

that have occurred during the development of the current diversity of species. Under the usual

assumption that each species arises from its ancestor by a simple speciation event, tree-based

methods have contributed significantly to approaching thistask. However, due to non-tree-

like events, not all groups of taxa are suited to this type of presentation. Such processes,

collectively referred to as reticulation events, include hybridization, horizontal gene transfer,

and recombination. Since reticulate evolution results in genomes that are mosaics of distinct

ancestral genomes, there has been an increased interest in modeling evolutionary relationships

using phylogenetic networks rather than phylogenetic trees.

In this paper, we focus our attention on hybridization and its impact on evolution. This has

been an active and controversially discussed field of research for many years and even several

definitions of the term hybridization have been suggested [8]. For the purposes of this article,

we refer to the origin of a new species through a mating between two individuals of different

species as a hybridization event. Hybridization is widely accepted to play an important role in

the evolutionary history of certain groups of plants and fish. For a review of hybrid species, we

refer the reader to [11].

To provide insight into the extent to which hybridization has influenced the evolution of a set of

present-day species, this paper addresses the following fundamental problem: Given a collection
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Fig. 1. Two rooted phylogenetic treeT andT
′ and two binary refinementsS1 andS2 of T ′. The hybridization number for

S1 andT is 0, while this number forS2 andT is 1.

of rooted phylogenetic trees that are correctly reconstructed for different genetic loci, what is

the smallest number of hybridization events needed to simultaneously explain the evolutionary

scenarios of the gene trees under consideration?

Bordewich and Semple [4] showed that the above problem is NP-hard even when the initial

collection consists of two rooted binary phylogenetic trees. However, the same authors showed [5]

that in the case of two binary trees the problem is fixed-parameter tractable. In particular, they

showed that the minimum number of hybridization events can be computed in timeO(f(k) +

p(n)), wherek is the actual minimum number,f is some computable function,n is the number

of species, andp is a fixed polynomial. Due to the NP-hardness of the problem, such a result is

of importance, since for many practical instances, the minimum number of hybridization events

is small and, therefore, the problem may be tractable, even for a large number of taxa. This

can be seen by considering the separation of the variablesk and n. For more details about

fixed-parameter tractability, we refer the interested reader to [6].

Despite the above fixed-parameter tractable algorithm, formany biological data sets in practice

(e.g. [7], [12]), the reconstructed phylogenetic trees arenot fully resolved; that is, they contain

polytomies. For example, this may be due to either the tree reconstruction method or the use

of consensus trees for a certain analysis. Polytomies—alternatively calledmultifurcations—refer

to vertices that have more than two direct descendants. A polytomy is hard if it refers to an

event during which an ancestral species gave rise to more than two offspring species at the same

time, whereas asoft polytomy represents ambiguous evolutionary relationships as a result of

insufficient information [10].
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Since simultaneous speciation events only occur rarely, wetypically assume that all polytomies

in a phylogenetic tree are soft. The reconstruction of a strictly bifurcating (binary) tree may

consequently force refinements that are not necessarily optimal in terms of the hybridization

number. An example for that is depicted in Fig. 1, where two binary refinementsS1 andS2 of

the treeT ′ are shown. While the hybridization number forS1 andT is 0, this number forS2

andT is 1.

In this paper, we show that the decision problem of asking whether the minimum number of

hybridization events to explain two (arbitrary) rooted phylogenetic trees is at mostk is fixed-

parameter tractable. We now describe the above-mentioned problem formally beginning with

several definitions.

A rooted phylogeneticX-treeT is a rooted tree with no degree-2 vertices except possibly the

root which has degree at least two, and with leaf setX. The setX is called thelabel setof T

and is denoted byL(T ). In addition,T is binary if, apart from the root which has degree two,

all interior vertices have degree three.

Let Y be a subset ofX. We callY an (edge) clusterof T if there is an edgee, or equivalently

a vertexv, whose set of descendants inX is preciselyY . We denote this cluster byCT (v), or

simply C(v) if there is no ambiguity. The set of clusters ofT is denoted byC(T ). Furthermore,

the most recent common ancestorof Y is the vertexv in T with Y ⊆ CT (v) such that there

exists no vertexv′ with Y ⊆ CT (v′) andCT (v′) ⊂ CT (v). We denotev by mrcaT (Y ).

Let T andT ′ be two rooted phylogeneticX-trees. We say thatT ′ refinesT , or equivalently

T ′ is a refinementof T , if C(T ) ⊆ C(T ′). In addition,T ′ is a binary refinementif T ′ is binary.

Note thatT is a refinement of itself. Graphically speaking, it is straightforward to see that ifT ′

refinesT , thenT can be obtained fromT ′ by contracting interior edges.

Hybridization networks are a generalization of evolutionary trees that allow for a simultaneous

visualization of several conflicting or alternating histories of life. Such a network embeds a

collection of gene trees representing a set of present-day species, where each vertex whose in-

degree is greater than 1 represents a hybrid species. Mathematically speaking, ahybridization

networkH (on X) is a rooted acyclic digraph with rootρ in which

(i) X is the set of vertices of out-degree zero,

(ii) the out-degree ofρ is at least 2, and

(iii) for each vertex with out-degree 1, its in-degree is at least 2.
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To quantify the number of reticulation events, thehybridization numberof a hybridization

networkH with root ρ is

h(H) =
∑

v 6=ρ

(d−(v) − 1),

wherev is a vertex ofH andd−(v) denotes the in-degree ofv.

Let T be a rooted phylogeneticX-tree, and letH be a hybridization network. We say thatH

displaysT if there is a rooted subtree ofH that is a refinement ofT . In other words,T can

be obtained fromH by first deleting a subset of the edges ofH, deleting and contracting any

resulting degree-0 and degree-2 vertices, respectively, apart from the root, and then contracting

edges. For a collectionP of rooted phylogenetic trees,H displaysP if each tree inP is displayed

by H. Furthermore, extending the definition of the hybridization number of a network toP, we

set

h(P) = min{h(H) : H is a hybridization network that displaysP}.

If P contains precisely two rooted phylogeneticX-treesT andT ′, then we denote the hybridiza-

tion numberh(P) by h(T , T ′) and remark that the beforehand given definition is equivalent to

h(T , T ′) = min{h(S,S ′) : S andS ′ are binary refinements ofT andT ′, respectively}.

Throughout the paper, both definitions are used interchangeably.

We can now formally state the decision problem HYBRIDIZATION NUMBER for whenP =

{T , T ′}:

HYBRIDIZATION NUMBER

Instance: Two rooted phylogeneticX-treesT andT ′, and an integerk.

Question: Is h(T , T ′) ≤ k?

Since computingh(T , T ′) is NP-hard whenT andT ′ are binary [4], calculating this value for

whenT andT ′ are arbitrary rooted phylogeneticX-trees is also NP-hard.

The main result of this paper is the following theorem.

Theorem 1.1:The decision problem HYBRIDIZATION NUMBER is fixed-parameter tractable

with h(T , T ′) being the parameter.

The overall approach in proving Theorem 1.1 is similar to that used to show that HYBRIDIZA -

TION NUMBER is fixed-parameter tractable when the initial two trees are binary. Basically, we

use three reductions to kernalize the problem instance in a regulated way before calculating
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exactly the minimum number of hybridization events using anexhaustive search. The reason

that this is sufficient to prove Theorem 1.1 is that the size ofthe label set of the treesS andS ′

obtained fromT andT ′ by repeatedly applying the three reductions is linear inh(T , T ′).

The paper is organized as follows. The next section containssome additional preliminaries

that are used throughout the paper. In Sections III and IV, wecharacterize HYBRIDIZATION

NUMBER in terms of a particular type of agreement forest. This characterization is essential to

getting the main result of the paper. Section V describes thethree reductions that are used to

kernalize the problem instance and also includes three key lemmas that are needed for the proof

of Theorem 1.1. This proof is given in Section VI. The paper ends with some brief remarks in

Section VII.

We end the introduction by remarking that despite the similarities between the approaches

used to prove Theorem 1.1 and the analogous result for binarytrees, we see no obvious way

that this latter result can be used to directly establish Theorem 1.1. Part of the reason for this is

that a number of additional and non-trivial complications arise in the non-binary case.

II. PRELIMINARIES

In this section, we give some preliminary definitions that are used throughout the paper. Unless

stated otherwise, the notation and terminology follows [13].

For a rooted phylogeneticX-treeT , a subsetY of X is called avertex clusterof T if there

is a refinement ofT in which Y is an edge cluster. For example, considering Fig. 1, the taxa

set{1, 2} is an edge cluster inT , but a vertex cluster (and not an edge cluster) inT ′. Note that

edge clusters are special types of vertex clusters.

Let T be a rooted phylogeneticX-tree. Several types of rooted subtrees ofT play a central

role in this paper. LetY be a subset ofX. The minimal rooted subtree ofT that connects the

leaves inY is denoted byT (Y ). Furthermore, therestriction ofT to Y , denotedT |Y , is the

subtree obtained fromT (Y ) by contracting all non-root vertices of degree two. Furthermore, a

subtree ofT is pendantif it can be obtained from a refinement ofT by deleting a single edge.

Lastly, a subtree isnon-trivial if it contains at least two leaves.

III. A GREEMENT FORESTS

Various types of agreement forests have recently been used to analyze reticulate evolution for

a set of gene trees and its impact on evolution [1], [3], [5], [14], [15]. All of these approaches
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are restricted to the case when the trees under consideration are binary. Here, we extend the

definition of agreement forests to arbitrary rooted phylogenetic trees. For the reader familiar with

agreement forests, we note that the following definitions coincide with those previously given

for rooted binary phylogenetic trees.

Let T andT ′ be two rooted phylogeneticX-trees. For the purposes of the upcoming defini-

tions, we regard the root of bothT andT ′ as a vertex labeledρ at the end of a pendant edge

adjoined to the original root. Furthermore, we also regardρ as part of the label set ofT and

T ′, thus we view their label sets asX ∪ {ρ}.

A forestof T is a partition{Lρ,L1,L2, . . . ,Lk} of its label setX∪{ρ}, whereLρ containsρ,

no part is empty, and the trees in{T (Li) : i ∈ {ρ, 1, 2, . . . , k}} are edge-disjoint rooted subtrees

of T . An agreement forestF for T andT ′ is a forest{Lρ,L1,L2, . . . ,Lk} of T andT ′ such

that, for all i ∈ {ρ, 1, 2, . . . , k}, the treesT |Li and T ′|Li have a common binary refinement.

To illustrate these concepts, two examples of agreement forestsF1 andF2 are shown in Fig. 2

for the two rooted phylogenetic treesT andT ′ also shown in that figure. ConsideringF1, it is

easily checked that, for each label setLi, the restrictions ofT andT ′, respectively, toLi have

a common binary refinement.

The subtree prune and regraft distance between two rooted binary phylogeneticX-trees can

be characterized in terms of agreement forests. However, the corresponding characterization for

the minimum number of hybridization events for the same pairof trees requires an additional

condition. This condition excludes the possibility that species inherit genetic material from their

own descendants. LetF = {Lρ,L1,L2, . . . ,Lk} be an agreement forest for two arbitrary rooted

phylogeneticX-treesT andT ′. Let GF be the directed graph that has vertex setF and an arc

(Li,Lj) from Li to Lj precisely if i 6= j and either

(I) the path from the root ofT (Li) to the root ofT (Lj) contains an edge ofT (Li), or

(II) the path from the root ofT ′(Li) to the root ofT ′(Lj) contains an edge ofT ′(Li).

We say thatF is an acyclic-agreement forestfor T andT ′ if GF contains no directed cycles,

that is,GF is acyclic. For the example depicted in Fig. 2,F2 is an acyclic-agreement forest for

T andT ′ sinceGF2
is acyclic, whereasF1 is not an acyclic-agreement forest forT andT ′. If

F contains the smallest number of parts over all acyclic-agreement forests forT andT ′, we say

thatF is amaximum-acyclic-agreement forestfor T andT ′, in which case, we denote this value

of k by ma(T , T ′). In the case that bothT and T ′ are binary, these definitions again extend
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Fig. 2. Two agreement forestsF1 andF2 for the two rooted treesT andT ′ and their associated digraphsGF1
andGF2

.

those typically given for two rooted binary phylogenetic trees. Baroniet al. [1] established the

following characterization for binary trees.

Theorem 3.1:Let T andT ′ be two rooted binary phylogeneticX-trees. Then

h(T , T ′) = ma(T , T ′).

IV. CHARACTERIZING h(T , T ′) IN TERMS OFAGREEMENT FORESTS

In this section, we prove the following analogue of Theorem 3.1 for arbitrary rooted phylo-

genetic trees. This analogue is crucial in proving the main result of the paper.

Theorem 4.1:Let T andT ′ be two rooted phylogeneticX-trees. Then

h(T , T ′) = ma(T , T ′).

Essentially, all of the work in establishing this theorem isdone in proving the next two lemmas.

Lemma 4.2:Let T and T ′ be two rooted phylogeneticX-trees, and letF be an acyclic-

agreement forest forT and T ′. Then there exist binary refinementsS and S ′ of T and T ′,

respectively, such thatF is an acyclic-agreement forest forS andS ′.
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Proof: Suppose thatF = {Lρ,L1,L2, . . . ,Lk} is an acyclic-agreement forest forT and

T ′, and letBi be a common binary refinement ofT |Li and T ′|Li for all i. The proof of the

lemma is by induction onk. Clearly, the result holds ifk = 0. Now suppose that the result

holds for all acyclic-agreement forests ofT andT ′ of size at mostk. SinceF is acyclic,GF

contains a vertex,Lm say, with out-degree zero. SinceLm has out-degree zero,T (Lm) is a

pendant subtree ofT andT ′(Lm) is a pendant subtree ofT ′.

Let Tm andT ′
m be the rooted phylogenetic treesT |((X∪{ρ})−Lm) andT ′|((X∪{ρ})−Lm),

respectively, and letFm = F − {Lm}. SinceF is an acyclic-agreement forest ofT andT ′, it

is easily checked that, asT (Lm) is a pendant subtree ofT andT ′(Lm) is a pendant subtree of

T ′, the collectionFm is an acyclic-agreement forest ofTm andT ′
m. Therefore, by the induction

assumption, there are binary refinementsSm andS ′
m of Tm andT ′

m, respectively, such thatFm

is an acyclic-agreement forest forSm andS ′
m.

We now construct a binary refinement ofT fromSm. Let u be the vertex ofT with the property

thatC(u) is the minimal cluster ofT that properly containsLm. By construction,C(u)−Lm is

a cluster ofTm. Furthermore, asSm is a binary refinement ofTm, the setC(u)−Lm is a cluster

of Sm. Let um be the vertex ofSm such thatC(um) = C(u) − Lm. Let S be the rooted binary

phylogenetic tree obtained fromSm by subdividing the edge coming intoum with a new vertex

v and adjoining the root ofBm to this new vertexv via a new edge. Observing thatC(v) = C(u),

it is easily checked thatS is a binary refinement ofT . Furthermore, by construction and because

of the induction assumption, it follows thatF is a forest ofS and, for alli, we haveS|Li = Bi.

By the same construction and argument, there is a binary refinementS ′ of T ′ such thatF is

a forest ofS ′ and, for all i, we haveS ′|Li = Bi. It now follows thatF is an agreement forest

for S andS ′. Moreover, asFm is an acyclic-agreement forest forSm andS ′
m, it is easily seen

thatF is an acyclic-agreement forest forS andS ′. This completes the proof of the lemma.

Lemma 4.3:Let T andT ′ be two rooted phylogeneticX-trees, and letS andS ′ be binary

refinements ofT andT ′, respectively. IfF is an acyclic-agreement forest forS andS ′, thenF

is an acyclic-agreement forest forT andT ′.

Proof: Let F = {Lρ,L1,L2, . . . ,Lk} be an acyclic-agreement forest ofS andS ′. SinceS

andS ′ are both binary, it is easily seen, for alli, thatS|Li andS ′|Li are binary. Therefore, asS

andS ′ are binary refinements ofT andT ′, respectively,S|Li is a common binary refinement of

T |Li andT ′|Li for all i. To see that the trees in{T (Li) : i ∈ {ρ, 1, 2, . . . , k}} are edge-disjoint
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rooted subtrees ofT , suppose that this is not the case. Then, for somer 6= s, the subtrees

T (Lr) andT (Ls) are not edge-disjoint. That is,T (Lr) andT (Ls) have an edgee = {u, v} in

common. Letu be the end vertex ofe closest toρ. SinceS is a binary refinement ofT , there

are verticesu′ and v′ of S with CS(u′) = CT (u) and CS(v′) = CT (v). Now it is easily seen

that S(Lr) containsu′ andv′, andS(Ls) containsu′ andv′. In other words,S(Lr) andS(Ls)

are not edge-disjoint inS, contradicting thatF is an agreement forest ofS andS ′. Thus the

trees in{T (Li) : i ∈ {ρ, 1, 2, . . . , k}} are edge-disjoint rooted subtrees ofT and, similarly, the

trees in{T ′(Li) : i ∈ {ρ, 1, 2, . . . , k}} are edge-disjoint rooted subtrees ofT ′. Hence,F is an

agreement forest ofT andT ′.

Now relative toS andS ′, the graphGF is acyclic. With respect toF , consider the analogous

graph,G′
F say, forT andT ′. Noting that both graphs have the same vertex set, it is clearthat

if (Lr,Ls) is an arc inG′
F , then(Lr,Ls) is an arc inGF . Thus the arc set ofG′

F is a subset of

the arc set ofGF . SinceGF is acyclic, it follows thatG′
F is acyclic. This completes the proof

of the lemma.

Proof of Theorem 4.1:Let S and S ′ be binary refinements ofT and T ′ that satisfy the

hypothesis of Lemma 4.2. Then, by that lemma,ma(T , T ′) ≥ ma(S,S ′). But, by Theorem 3.1,

ma(S,S ′) = h(S,S ′). It now follows that, ash(S,S ′) ≥ h(T , T ′), we havema(T , T ′) ≥

h(T , T ′).

To establish the converse, now letS and S ′ be binary refinements ofT and T ′ such that

h(S,S ′) = h(T , T ′). Then, by Theorem 3.1, there is an acyclic-agreement forestF of S and

S ′ such that

|F| − 1 = h(S,S ′) = h(T , T ′).

By Lemma 4.3,F is an acyclic-agreement forest forT andT ′, so

ma(T , T ′) ≤ |F| − 1 = h(T , T ′).

It now follows thath(T , T ′) = ma(T , T ′). This completes the proof of the theorem.

V. REDUCING THE SIZE OF THE PROBLEM INSTANCE

In this section, we introduce three reductions which kernalize HYBRIDIZATION NUMBER.

The subtreeand long-chain reductionsextend the subtree and chain reductions described in [5].

Additionally, we introduce theshort-chain reductionwhich—in combination with the other

July 18, 2008 DRAFT



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XXX, NO. XXX, XXX 11

two reductions—guarantees that all problem instances can be kernalized. We begin with some

preliminaries.

Let T be a rooted phylogeneticX-tree, and letx be an element ofX. Viewing T as a directed

graph with edges directed away from its root, the unique vertex, u say, ofT such that(u, x) is

an arc ofT is called theparentof x and is denoted bypT (x).

For all n ≥ 2, ann-chain of T is an ordered tuple(a1, a2, . . . , an) of distinct elements ofX

that satisfies the following properties:

(i) for all i ∈ {1, 2, . . . , n− 1}, eitherpT (ai) = pT (ai+1) or pT (ai) is a child ofpT (ai+1), and

(ii) there is an ordering,p1, p2, . . . , pm say, of the parents ofa1, a2, . . . , an such that, for all

i ∈ {1, 2, . . . , m − 1}, the vertexpi is a child ofpi+1 and, apart fromp1 and pm, each of

the verticesp2, p3, . . . , pm−1 has exactly one child not in{a1, a2, . . . , an}.

If p is a parent of an element inA = {a1, a2, . . . , an}, thenp is calledinternal if it has at most

one child not inA; otherwisep is said to beexternal. An element ofA is internal if its parent

is internal, otherwise it isexternal. Note thatp2, . . . , pm−1 are always internal, but thatp1 and

pm can be internal or external. Thus ifai is external, then it is a child ofp1 or pm. Furthermore,

if T is binary, then all elements ofA are internal. Throughout the paper, we will assume that

if (a1, a2, . . . , an) is an n-chain of bothT and T ′, whereT and T ′ are rooted phylogenetic

X-trees, thenT andT ′ have no common non-trivial pendant subtree whose label set is a subset

of {a1, a2, . . . , an}. As we will soon see, this assumption does not restrict the results in this

paper; it is simply for convenience and to avoid repetition in the statements. As an illustration,

(a1, a2, . . . , an) is an n-chain of the two rooted phylogenetic treesT andT ′ shown in Fig. 3,

where triangles represent subtrees outside of the chain.

Let T andT ′ be two rooted phylogeneticX-trees. LetP be a disjoint collection of subsets

{a1, a2, . . . , an} of X each being the set of elements of a chain(a1, a2, . . . , an) common to both

T andT ′ such that either

(i) (a1, a2, . . . , an) has exactly three elements that are internal in bothT andT ′, or

(ii) for one of the trees,(a1, a2, . . . , an) has exactly two internal elements while, in the other

tree,(a1, a2, . . . , an) has exactly one parent.

Depending on whether the chain satisfies (i) or (ii), we assign a triple of weights or a single

weight fromZ
+ × Z

+ × Z
+ andZ

+, respectively. We call such a pair of trees with associated
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weighted setP a pair of weighted rooted phylogeneticX-trees.

We now describe the three reductions. LetT andT ′ be a pair of weighted rooted phylogenetic

X-trees with an associated setP , and letA be a subset ofX. We say thatA does notcrossP

if, for each memberS of P , the intersectionS ∩ A is empty.

Subtree Reduction: For |A| ≥ 2, if A is the label set of a maximal pendant subtree inT and

T ′ with the properties thatT |A and T ′|A have a common binary refinement andA does not

crossP , then replace these subtrees with either a single new leaf labeleda or a pendant edge

ending in a new leaf labeleda depending on whether the subtree can be obtained without or

with refinement, respectively. In all cases, the new label isthe same in both resulting trees.

Long-Chain Reduction: For n ≥ 4, let (a1, a2, . . . , an) be a maximaln-chain ofT andT ′ that

does not crossP with the following properties:

(i) The chain has at least three internal parents in bothT andT ′, and at least three elements

that are internal in bothT andT ′.

(ii) If a1 is external in one of the trees, thena2 is internal in the same tree anda1 is internal

in the other tree.

(iii) If an is external in one of the trees, thenan−1 is internal in the same tree while, in the

other tree,an is internal and there are not exactly three internal parentsof which one has

an as its only child in{a1, a2, . . . , an}.

Depending upon whether∅, {a1}, {an}, or {a1, an} is the subset of elements of{a1, a2, . . . , an}

that are external in eitherT or T ′, respectively replace this chain inT andT ′ with the chain

(a, b, c), (e1, a, b, c), (a, b, c, e2), or (e1, a, b, c, e2) as follows:

(i) In T ,

pT (e1) 6= pT (a) = pT (b) 6= pT (c) 6= pT (e2),

wheree1 is external ifa1 is external inT , otherwisee1 is internal; and wheree2 is external

if an is external inT , otherwisee2 is internal.

(ii) In T ′,

pT (e1) 6= pT (a) 6= pT (b) = pT (c) 6= pT (e2),

wheree1 is external ifa1 is external inT ′, otherwisee1 is internal; and wheree2 is external

if an is external inT ′, otherwisee2 is internal.
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Fig. 3. Two rooted phylogeneticX-treesT andT ′ reduced under the long-chain reduction, whereS andS ′ are the resulting

trees. Dotted lines indicate regions of the chain(a1, a2, . . . , an). In T , a1 is external whilean is internal and, inT ′, a1 is

internal whilean is external.

Relative to(a1, a2, . . . , an), if m denotes the number of internal parents inT and m′ denotes

the number of internal parents inT ′, then respectively add the new set{a, b, c}, {e1, a, b, c},

{a, b, c, e2}, or {e1, a, b, c, e2} to P and, calling this setS, assign it a tuple of weights in which

the first coordinatew1 is n − |S|, the second coordinatew2 is m minus the number of internal

parents of the resulting chain inT , and the third coordinatew3 is m′ minus the number of

internal parents of the resulting chain inT ′. Intuitively, the reduction results in replacinga1

andan with e1 ande2, respectively, ifa1 or an is external in eitherT or T ′, and replacing the
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elements of the chain that are internal in both trees witha, b, andc. Fig. 3 depicts an example

of the long-chain reduction, whereT and T ′ are the trees before, andS andS ′ are the trees

after applying the long-chain reduction. In this example,a1 is external inT , while an is external

in T ′, and so the chain(a1, a2, . . . , an) is replaced with the chain(e1, a, b, c, e2).

Short-Chain Reduction: For n ≥ 3, let (a1, a2, . . . , an) be a maximaln-chain of T and T ′

that does not crossP with the property that in one of the trees, sayT , this chain has exactly

one parent, while in the other treeT ′ this chain has at least three internal parents. (Due to the

assumption that no element of ann-chain is part of a common non-trivial pendant subtree of

T andT ′, note thatpT ′(a1), . . . , pT ′(an) are pairwise distinct vertices inT ′ and so onlya1 or

an may be external inT ′.) Depending upon whether∅, {a1}, {an}, or {a1, an} is the subset of

external elements of this chain inT ′, respectively replace this chain inT andT ′ with the chain

(a, b), (e1, a, b), (a, b, e2), or (e1, a, b, e2) as follows:

(i) In T ,

pT (e1) = pT (a) = pT (b) = pT (e2).

(ii) In T ′,

pT ′(e1) 6= pT ′(a) 6= pT ′(b) 6= pT ′(e2),

wheree1 is external ifa1 is external inT ′ ande2 is external ifan is external inT ′.

Furthermore, add the new set{a, b}, {e1, a, b}, {a, b, e2}, or {e1, a, b, e2} to P and, calling this

set S, assign it weightw = n − |S|. Intuitively, the reduction results in replacinga1 and an

with e1 ande2, respectively, if eithera1 or an is external inT ′ and, relative toT ′, replacing the

internal elements witha andb. Fig. 4 depicts an example of the short-chain reduction, where T

andT ′ are the trees before, andS andS ′ are the trees after applying the short-chain reduction.

Herea1 is external inT ′, but an is internal inT ′, and so the chain(a1, a2, . . . , an) is replaced

with the chain(e1, a, b).

An agreement forestF for a pair of weighted rooted phylogeneticX-treesT and T ′ is

legitimateif F is acyclic and satisfies the following property, where, depending on the set inP ,

the elementse1 ande2 may or may not exist:

(P): If {e1, a, b, c, e2} ∈ P , then exactly one of the following holds:

(i) {e1, a, b, c, e2} is a subset of a label set inF ,

(ii) {a}, {b}, and{c} are label sets inF , ande1 ande2 are in separate label sets inF ,
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Fig. 4. Two rooted phylogeneticX-treesT andT ′ reduced under the short-chain reduction, whereS andS ′ are the resulting

trees. Dotted lines indicate regions of the chain(a1, a2, . . . , an). Note thata1 is external inT ′ while an is internal inT ′.

(iii) {a, b} and{c} are label sets inF , e1 ande2 are in separate label sets inF and, relative

to (e1, a, b, c, e2), if e1 or e2 is internal inT , then{e1} or {e2} is a label set inF ,

respectively,

(iv) {a} and{b, c} are label sets inF , e1 ande2 are in separate label sets inF and, relative

to (e1, a, b, c, e2), if e1 or e2 is internal inT ′, then{e1} or {e2} is a label set inF ,

respectively,

while if {e1, a, b, e2} ∈ P , then exactly one of the following holds:

(I) {e1, a, b, e2} is a subset of a label set inF ,

(II) {a} and{b} are label sets inF , ande1 ande2 are in separate label sets inF .

Furthermore, referring to property (P), for an arbitrary agreement forest ofT andT ′, we define
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the weightof F , denoted byw(F), to be

w(F) = |F| − 1 +
∑

S={e1,a,b,c,e2}∈P ;S satisfies (ii) inF

w1(S)

+
∑

S={e1,a,b,c,e2}∈P ;S satisfies (iii) inF

w2(S)

+
∑

S={e1,a,b,c,e2}∈P ;S satisfies (iv) inF

w3(S)

+
∑

S={e1,a,b,e2}∈P ;S satisfies (II) inF

w(S).

We denote the minimum weight of a legitimate-agreement forest for T and T ′ by f(T , T ′).

Observe thatf(T , T ′) ≥ h(T , T ′) as the weightings are non-negative, andf(T , T ′) = h(T , T ′)

wheneverP is empty.

Lemmas 5.3, 5.4, and 5.5 are key lemmas in proving that HYBRIDIZATION NUMBER is fixed-

parameter tractable. Each lemma describes how particular common configurations inT andT ′

behave in a legitimate-agreement forest forT andT ′ of minimum weight. For convenience in

the proofs of these lemmas, we will frequently refer to the property of a forestF that the trees

in {T (Li) : i ∈ {ρ, 1, 2, . . . , k}} are edge-disjoint rooted subtrees ofT as no two label sets in

F edge-overlap inT .

Much of the proofs in the rest of this section involve taking agiven legitimate-agreement

forestF , modifying it slightly, and showing that the resulting partition F ′ is also a legitimate-

agreement forest. Two of the repetitive tasks is to show thatF ′ is an agreement forest and

acyclic. To avoid some of the repetition and to provide some intuition, letLi ∈ F andL′
i ∈ F ′

with L′
i ⊆ Li. First observe that ifL′

i is the label set of a pendant subtree ofT |Li, thenL′
i

is the label set of a pendant subtree ofT ′|Li. Analogously, ifL′
i is the label set of a pendant

subtree ofT ′|Li, thenL′
i is the label set of a pendant subtree ofT |Li. Second, asT |Li and

T ′|Li have a common binary refinement,T |L′
i and T ′|L′

i have a common binary refinement.

Third, if Lr,Ls ∈ F ∩F ′, then(Lr,Ls) is an arc inGF if and only if it is an arc inGF ′ . Since

F is acyclic, it follows that ifGF ′ contains a directed cycle, then this cycle must use a vertex

in F ′ −F . Furthermore, ifLi 6= Lr, then, asLr andLi are edge-disjoint inT andT ′, we have

(Lr,L
′
i) is an arc inGF ′ if and only if (Lr,Li) is an arc inGF . Also, if (L′

i,Ls) is an arc in

GF ′, then(Li,Ls) is an arc inGF . Specializing these observations to whenF ′ is a refinement

of F , that is, for eachL′
i ∈ F ′, we haveL′

i ⊆ Li for someLi ∈ F , it is straightforward to prove
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the following lemma.

Lemma 5.1:Let T andT ′ be a pair of weighted rooted phylogeneticX-trees, and letF be

an acyclic-agreement forest forT andT ′. Let F ′ be an agreement forest ofT andT ′ that is a

refinement ofF . ThenF ′ is acyclic.

The above observations will be freely used in the rest of thissection. The next lemma is

repeatedly used in the key lemmas to show that our modified agreement forest satisfies (P).

Lemma 5.2:Let T andT ′ be a pair of weighted rooted phylogeneticX-trees, and letF be a

legitimate-agreement forest forT andT ′ of minimum weight. LetS be an element ofP such

that S contains elements of the forme1 and e2, and letA be the label set of either a pendant

subtree ofT and T ′ that could be used for a subtree reduction or a chain ofT and T ′ that

could be used for a long-chain or short-chain reduction. Then there are no distinct label sets

L1,L2 ∈ F such thate1 ∈ L1, e2 ∈ L2, andL1 ∩ A andL2 ∩ A both non-empty.

Proof: Suppose that there exist such label setsL1 and L2. Clearly, S does not satisfy

either (i) or (I) in the definition of (P). AssumeS satisfies (ii). Most of the work in the proof is

involved in eliminating this particular case. Since there exist such label setsL1 andL2, andL1

andL2 are edge-disjoint inT andT ′, it is easily checked thate1 is external in one of the trees,

while e2 is external in the other tree. The upcoming argument is independent of whether or not

a andb have the same parent orb andc have the same parent, thus, without loss of generality,

we may assumee1 is external inT , while e2 is external inT ′. Thuse1 is internal inT ′ ande2 is

internal inT . Furthermore,T (L2) contains the parents ofa, b, andc in T , andT ′(L1) contains

the parents ofa, b, andc in T ′. As F is acyclic, it follows that either the roots ofT ′(L1) and

T ′(L2) coincide inT ′, in particular, both roots arepT ′(e2), or the root ofT ′(L2) is an ancestor

of the root ofT ′(L1).

If A is the label set of a pendant subtree, then, asL1 ∩ A andL2 ∩ A are both non-empty,

the paths inT from any element inL1 ∩ A to ρ and from any element inL2 ∩ A to ρ meet at

pT (e1), while the paths inT ′ from any element inL1 ∩A to ρ and from any element inL2 ∩A

to ρ meet atpT ′(e2). This set-up is depicted in Fig. 5. LetL′
2 denote the subset of elements of

L2 for which pT (e1) is an ancestor. SinceT |L2 andT ′|L2 have a common binary refinement

andL2 ∩ A is non-empty, each of the elements inL′
2 is a descendant ofpT ′(e2) in T ′. Let L′

1

denote the subset of elements ofL1 for which pT ′(e1) is not an ancestor inT ′. Let F ′ be the

partition obtained fromF by replacingL1, L2, {a}, {b}, and{c} with (L2 −L′
2)∪ {e1, a, b, c},
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Fig. 5. Set-up in the proof of Lemma 5.2 for whenS satisfies (ii) in the definition of (P) andA is the label set of a pendant

subtree ofT andT ′. The roots ofT (L1) andT ′(L1) are indicated by mrcaT (L1) and mrcaT ′(L1), respectively.

(L1−L′
1)−{e1}, L′

2, andL′
1. SinceF is an agreement forest ofT andT ′ and sinceF satisfies

(P), it is easily checked thatF ′ is an agreement forest ofT and T ′ that satisfies (P). To see

thatF ′ is acyclic, note that, up to(L2 −L′
2) ∪ {e1, a, b, c}, F ′ is a refinement ofF . Moreover,

for Lr,Ls ∈ F ∩ F ′, (Lr, (L2 − L′
2) ∪ {e1, a, b, c}) is an arc inGF ′ if and only if (Lr,L2) is

an arc inGF , and if ((L2 − L′
2) ∪ {e1, a, b, c},Ls) is an arc inGF ′, then(L2,Ls) is an arc in

GF unless the root ofT ′(L2) is not a strict ancestor ofpT ′(e2). In this exceptional instance,

(L1,Ls) is an arc inGF and, whenever(Lr, (L2 −L′
2)∪ {e1, a, b, c}) is an arc inGF ′, (Lr,L1)

is an arc inGF . Using the observations prior to Lemma 5.1, a routine check shows that if there

is a directed cycle inGF ′ , then there is a directed cycle inGF . It follows thatF ′ is a legitimate

agreement forest ofT andT ′. But w(F ′) < w(F), contradicting the minimality ofF , and so

A is not the label set of a pendant subtree.

Now assume thatA is the set of elements of a chain(a1, a2, . . . , an) that could be used

for a long-chain reduction. SinceL1 ∩ A andL2 ∩ A are both non-empty,pT (an) = pT (e1),

pT ′(a1) = pT ′(e2), a1 ∈ L1, andan ∈ L2. Thusa1 is external inT ′ and an is external inT .

Also, L1 ∩ A = {a1} andL2 ∩ A = {an}. Furthermore, asT |L2 and T ′|L2 have a common

binary refinement, except foran, no element inL2 is a descendant ofpT (e1) in T and, except

for e2, no element inL2 is a descendant ofpT ′(e2) in T ′. Let L′
1 denote the subset of elements
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of L1 for which pT ′(e1) is not an ancestor. LetF ′ be the partition obtained fromF by replacing

L1, L2, {a}, {b}, and {c} with (L2 − {an}) ∪ {e1, a, b, c}, (L1 − L′
1) − {e1}, {an}, andL′

1.

The set-up is similar to that of the last paragraph where we assumedA was a pendant subtree.

Indeed, a similar argument now leads to the desired contradiction.

Next assume thatA is the set of elements of a chain(a1, a2, . . . , an) that could be used for

a short-chain reduction. SinceL1 ∩ A andL2 ∩ A are both non-empty,pT (an) = pT (e1) and

pT ′(a1) = pT ′(e2) regardless in which tree the chain has a single parent. If thechain has a

single parent inT , thenL1 ∩ A = {a1} and T ′(L2) contains a parent of one of the elements

in {a2, . . . , an}. Now |L2 ∩ A| = 1 otherwiseT |L2 andT ′|L2 do not have a common binary

refinement, and so each of the at least two internal elements of the chain inT ′ that is not the

element inL2 ∩ A is a singleton inF . It is now easily checked that the partition

F ′ = {Li − A : Li ∈ F − {L2}} ∪ {L2 ∪ A}

is a legitimate-agreement forest ofT andT ′. But w(F ′) < w(F), contradicting the minimality

of F . Therefore assume that the chain has a single parent inT ′. Let L′
2 denote the subset of

elements ofL2 for which pT (e1) is an ancestor. AsT |L2 and T ′|L2 have a common binary

refinement andL2∩A is non-empty, each of the elements inL′
2 is a descendant ofpT ′(e2) in T ′.

Let L′
1 denote the subset of elements ofL1 for which pT ′(e1) is not an ancestor. LetF ′ be the

partition obtained fromF by replacingL1, L2, {a}, {b}, and{c} with (L2 −L′
2)∪ {e1, a, b, c},

(L1 − L′
1) − {e1}, L′

2, andL′
1. This set-up is again similar to that when we assumedA was

a pendant subtree and, as above, a similar argument leads to the desired contradiction. It now

follows thatS does not satisfy (ii).

If S satisfies (iii), then eitherL1 or L2 edge-overlap with{a, b} in T ′; a contradiction.

ThereforeS does not satisfy (iii) and, similarly,S does not satisfy (iv). Lastly, assumeS satisfies

(II). Then, using the fact thate1, a, b, ande2 have the same parent inT , a routine check shows

that the partitionF ′ obtained fromF by replacingL1, L2, {a}, and{b} with L1∪{a, b, e2} and

L2 − {e2} or L1 − {e1} andL2 ∪ {a, b, e1} depending on whetherT ′(L1) or T ′(L2) includes

the parents ofa and b in T ′, respectively, is a legitimate-agreement forest ofT and T ′, But

w(F ′) < w(F), contradicting the minimality ofF . Thus there are no such distinct label setsL1

andL2.

Lemma 5.3:Let T andT ′ be a pair of weighted rooted phylogeneticX-trees. LetA be the
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label set of a maximal pendant subtree inT andT ′ with the properties thatT |A andT ′|A have a

common binary refinement andA does not crossP . Then, for every legitimate-agreement forest

F for T andT ′ of minimum weight,A is a subset of a label set inF .

Proof: Let F = {Lρ,L1,L2, . . . ,Lk} be a legitimate-agreement forest ofT and T ′ of

minimum weight. Suppose that two subsets,Li andLj say, have the property thatLi ∩ A and

Lj ∩A are both non-empty. If there are no such subsetsLi andLj so thatLi ∩ ((X ∪{ρ})−A)

andLj ∩ ((X ∪ {ρ}) − A) are both non-empty, then it is easily checked that the partition

{Li : Li ∩ A = ∅,Li ∈ F} ∪ {LA},

whereLA =
⋃

Li∈F :Li∩A 6=∅ Li, is legitimate-agreement forest ofT andT ′ but with smaller weight

thanF ; a contradiction. Therefore, we may assume that we can choose Li andLj such that

Li∩ ((X ∪{ρ})−A) andLj ∩ ((X ∪{ρ})−A) are both non-empty. Because of this assumption,

the pendant subtree with label setA cannot be obtained fromT or T ′ by deleting a single edge.

Let e denote the edge ofT that is directed into the root ofT (A) and lete′ denote the edge of

T ′ that is directed into the root ofT ′(A). Since no label sets inF edge-overlap inT or T ′,

at most one ofT (Li) and T (Lj) includese and at most one ofT ′(Li) and T ′(Lj) includes

e′. Also, sinceGF is acyclic, if T (Li) includese, then T ′(Lj) does not includee′. Similar

conclusions hold for the other combinations includinge or e′. Let F ′ be the partition ofX ∪{ρ}

obtained fromF by replacingLi andLj with Li ∪ Lj. It follows from the above conclusions

and the observations prior to Lemma 5.1 thatF ′ is an acyclic-agreement forest forT andT ′.

Furthermore, asF satisfies (P), it follows by Lemma 5.2 thatF ′ satisfies (P), and soF ′ is a

legitimate-agreement forest ofT andT ′. But, asw(F ′) < w(F), we obtain a contradiction to

the minimality ofF . This contradiction completes the proof of the lemma.

Lemma 5.4:Let T andT ′ be a pair of weighted rooted phylogeneticX-trees. Let(a1, a2, . . . , an)

be a maximal chain of bothT and T ′ that does not crossP with properties (i)-(iii) in the

definition of the long-chain reduction. Then, for every legitimate-agreement forestF for T and

T ′ of minimum weight, one of the following holds:

(i) {a1, a2, . . . , an} is a subset of a label set inF ,

(ii) no label set inF contains at least two elements of the chain and, ifai is an internal element

of both T andT ′, then{ai} is a singleton inF , or

(iii) for either T or T ′, sayT , two elements of the chain are in the same label set preciselyif they
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have the same parent and, moreover, if that parent is internal in T , then the corresponding

set contains no other elements ofX ∪ {ρ}.

Proof: Let F = {Lρ,L1,L2, . . . ,Lk} be a legitimate-agreement forest forT and T ′ of

minimum weight. LetA = {a1, a2, . . . , an}. The proof is partitioned into two cases depending

on which of the following properties, up to interchanging the roles ofT andT ′, is satisfied by

F :

(A) For all Li ∈ F with Li ∩ A non-empty andpT (a1) an ancestor of all elements inLi − A

in T , the vertexpT ′(a1) is an ancestor of all elements inLi − A in T ′.

(B) There is a label set,Li say, inF with bothLi ∩A andLi −A non-empty and such that, in

T , the vertexpT (a1) is an ancestor of all elements inLi −A, but, inT ′, the vertexpT ′(a1)

is not an ancestor of all elements inLi − A.

Case (A). Let J index the label sets ofF that contain elements of the chain. More precisely,

J = {j ∈ {ρ, 1, 2, . . . , k} : Lj ∩ {a1, a2, . . . , an} 6= ∅}.

Relative to the chain(a1, a2, . . . , an), we will call an edge ofT or T ′ a non-pendant chain edge

if the edge is not incident with an element inA, but it is incident with an internal parent inT

or T ′, respectively. The analysis of (A) is partitioned into two subcases:

(I) There exists (not necessarily distinct) label setsLi andLi′ in F such thatT (Li) andT ′(Li′)

contain a non-pendant edge of the chain(a1, a2, . . . , an) in T andT ′, respectively.

(II) F contains no such label setsLi andLi′ .

Subcase (I). Without loss of generality, we may assume thatLi and Li′ are chosen so that

the roots ofT (Li) and T ′(Li′) are as close toρ as possible inT and T ′. If neither Li nor

Li′ contains an element ofA, then, asA contains no common non-trivial pendant subtree, it

is easily seen thatF satisfies (ii) in the statement of the lemma. Thus, we may assume that

either Li or Li′, sayLi, contains an element ofA. If Li′ does not contain an element ofA,

then one of the following holds: (a) for someaj, aj′ ∈ (Li ∩ A), we havepT (aj) 6= pT (aj′)

but pT ′(aj) = pT ′(aj′); (b) a1 ∈ Li, an 6∈ Li, anda1 is an external element of the chain inT ′;

or (c) an ∈ Li, a1 6∈ Li, andan is an external element of the chain inT ′. SinceLi′ does not

contain an element ofA, it follows that if a label set inF contains an element inA and an

element in(X ∪ {ρ}) − A, then that label set contains eithera1 or an, in which casea1 or an

are external inT ′, respectively, but no other elements fromA. Furthermore, no label set inF
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contains two elements ofA that have different parents inT ′. It is now easily checked that, asF

is a legitimate-agreement forest of minimum weight,F satisfies (iii) if (a) holds andF satisfies

either (ii) or (iii) if (b) or (c) holds. In all cases, if (iii)holds, thenT ′ is the distinguished tree.

Now assume thatLi and Li′ contain an element ofA. The rest of the analysis for (I) is

partitioned into two parts. LetL′
i denote the subset of elements inLi − A that are descendants

of pT (a1), and letX ′
1 denote the subset of elements inLi − A that are descendants ofpT ′(a1)

in T ′. Analogously, letL′
i′ denote the subset of elements inLi′ − A that are descendants of

pT ′(a1), and letX1 denote the subset of elements inLi′ − A that are descendants ofpT (a1) in

T .

For the first part, suppose thatL′
i = X ′

1 andL′
i′ = X1. Let F ′ be the forest obtained fromF

by removing each label setLj with j ∈ J and inserting the new label setLa =
⋃

j∈J Lj. Since

we are in case (A),F ′ is an agreement forest forT andT ′. To see thatF ′ is acyclic, consider

the directed graphsGF and GF ′. The vertex set ofGF ′ is obtained fromGF by deleting the

verticesLj for all j ∈ J , and adding the new vertexLa. Also, if Lr,Ls ∈ F ′ − {La}, then

(Lr,Ls) is an arc inGF ′ if and only if (Lr,Ls) is an arc inGF . Regarding the arcs inGF ′

incident withLa, there are two instances to consider. First assume thatLi−A is non-empty and

contains an element that is not a descendant ofpT (a1) in T . ThenLi − A contains an element

that is not a descendant ofpT ′(a1) in T ′. SinceGF is acyclic, there is no arc fromLi′ to Li in

GF ; otherwise,GF contains a directed2-cycle. Therefore, either the roots ofT ′(Li) andT ′(Li′)

coincide inT ′ or the root ofT ′(Li′) is a descendant of the root ofT ′(Li). Since the root of

T (La) is the same as the root ofT (Li) in T , it follows that if (Lr,La) is an arc inGF ′, then

(Lr,Li) and(Lr,Li′) are arcs inGF . Moreover, if(La,Lr) is an arc inGF ′, then either(La,Li)

or (La,Li′) is an arc inGF . Thus, asGF is acyclic,GF ′ is also acyclic.

Second assume that eitherLi − A is empty or ifLi − A is non-empty, then it only contains

elements that are descendants ofpT (a1). Because of the first instance, we may assume that the

analogous property holds forLi′ andT ′. Then the root ofT (La) is pT (an) in T and the root

of T ′(La) is pT ′(an) in T ′. Suppose thatGF ′ contains the directed cycleC. Then, asGF is

acyclic, C must containLa. Let Ll andLm denote the vertices inC that immediately precede

and succeedLa, respectively, in this directed cycle. Except forLa, all other vertices inC are

also vertices inGF . Thus either(Li,Lm) or (Li′,Lm) is an arc inGF . But (Ll,Li) and(Ll,Li′)

are also arcs inGF , implying thatGF contains a directed cycle; a contradiction. ThusGF ′ is
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acyclic. HenceF ′ is an acyclic-agreement forest forT andT ′. Furthermore, asF satisfies (P), it

follows by Lemma 5.2 thatF ′ satisfies (P). Thus if|J | ≥ 2, thenw(F ′) < w(F), contradicting

the minimality ofF . Therefore,A is a subset of a label set inF and soF satisfies (i) in the

statement of the lemma.

For the second part, suppose that eitherL′
i 6= X ′

1 or L′
i′ 6= X1. Without loss of generality, we

may assume thatL′
i 6= X ′

1 andai ∈ Li ∩ A. Since we are in case (A), this implies thatpT (a1)

is not an ancestor of all elements inLi − A. Let L′′
i denote the subset of elements inLi − A

that are not descendants ofpT (a1). Because we are in case (A),X ′
1 6= Li − A, and so there is

an element inLi − A that is not a descendant ofpT ′(a1) in T ′. Furthermore, we may assume

thatL′
i is non-empty. To see this, observe that ifLi andLi′ are distinct, thenX ′

1 is empty, and

so L′
i is non-empty. Also, ifLi andLi′ are the same, then, without loss of generality, we may

assume thatL′
i is non-empty.

First assume that eitherai is internal in bothT and T ′, or ai = a1. If (Li − A) ∩ X ′
1 is

non-empty, then, asT |Li andT ′|Li have a common binary refinement,L′
i ⊆ X ′

1. Furthermore,

if ai 6= a1 or ai = a1 anda1 is internal inT ′, then the same reasoning implies thatX ′
1 ∩ L′′

i is

empty. But thenX ′
1 = L′

i; a contradiction. Therefore, assume thatai = a1 anda1 is external in

T ′. If an 6∈ Li, then, asF is a legitimate-agreement forest of minimum weight,F satisfies (ii)

in the statement of the lemma. So assume thatan ∈ Li. If an is internal inT , then, asT |Li

andT ′|Li have a common binary refinement, another check shows thatX ′
1 ∩ L′′

i is empty and

so X ′
1 = L′

i. So now assume thatan is external inT , and therefore internal inT ′. Again as

T |Li andT ′|Li have a common binary refinement, it is straightforward to check that, for any

two elements inL′′
i ∩X ′

1 the path inT from each of these elements toρ meets the path froman

to ρ in exactly one place. With this in hand, letF ′ be the partition ofX ∪{ρ} obtained fromF

by removing each label setLj with j ∈ J and inserting the new label sets
⋃

j∈J Lj − (L′′
i ∩X ′

1)

andL′′
i ∩ X ′

1. Clearly,F ′ is an agreement forest forT andT ′, and it is easily checked that, as

F is acyclic,F ′ is acyclic. Furthermore, by Lemma 5.2,F ′ satisfies (P). ThusF is a legitimate-

agreement forest forT and T ′. But, in F , each of the elements of the chain that are internal

in both T andT ′ are singletons. Since there are at least three such elements, w(F ′) < w(F);

a contradiction.

Now say that(Li −A)∩X ′
1 is empty. AsT |Li andT ′|Li have a common binary refinement,

for any two elements inL′
i, the path inT ′ from each of these elements toρ meets the path from
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an to ρ in exactly one place. Ifa1 is external inT , not in Li, and the label set containinga1

contains elements in(X∪{ρ})−A, then, as we are in case (A),pT (a1) andpT ′(a1) are ancestors

of each of the elements in this label set. The same reasoning also shows that ifan is external

in T and not inLi, then its label set contains no elements in(X ∪ {ρ}) − A. Furthermore, if

aj and ak are internal elements of bothT and T ′, then, asT |Li and T ′|Li have a common

binary refinement, the label set containingaj is a subset ofA if pT (aj) 6= pT (ai). Also, as no

label sets inF edge-overlap inT , the elementsaj and ak are in separate label sets inF if

pT (aj) 6= pT (ak). Thus there are two such subsets ofA in F . Now let F ′ be the partition of

X ∪ {ρ} obtained fromF by removing each label setLj with j ∈ J and inserting the new

label sets
⋃

j∈J Lj − L′
i andL′

i. It is clear thatF ′ is an agreement forest forT and T ′, and,

by Lemma 5.2, thatF ′ satisfies (P). Moreover, it is easily checked that, asF is acyclic,F ′ is

acyclic. Butw(F ′) < w(F); a contradiction.

It now follows that we may assume thatLi∩A = {an}, wherean is external in eitherT or T ′.

By consideringT , it is easily seen that ifaj andak are internal elements inT andan 6∈ {aj , ak},

then the label set inF containingaj is a subset ofA, andaj andak can only be in the same

label set inF if they have the same parent inT . Now considerT ′. If pT ′(a1) is an ancestor

of an element inLi, thenF satisfies (ii) in the statement of the lemma. Therefore, assume that

pT ′(a1) is not an ancestor of any element inLi, that isX ′
1 is empty. NowLi′ contains an element

of A andT ′(Li′) contains a non-pendant edge of(a1, a2, . . . , an). If a1 ∈ Li′ andLi′ contains

an element in(X ∪ {ρ}) − A that is not a descendant ofpT ′(a1) in T ′, then againF satisfies

(ii) in the lemma. Noting that the label set containinga1 can only contain another element ofA

if a1 is internal inT , it is now easily checked that, asF is a legitimate-agreement forest forT

andT ′ of minimum weight, thenF satisfies (iii) in the statement of the lemma withT as the

distinguished tree unlessan is internal inT . But then a similar argument to that in the previous

paragraph shows that the partitionF ′ of X ∪ {ρ} obtained fromF by removing each label set

Lj with j ∈ J and inserting the new label sets
⋃

j∈J Lj − L′
i andL′

i is a legitimate-agreement

forest of smaller weight thanF ; a contradiction. This completes the analysis of the secondpart,

and therefore (I).

Subcase (II). We may assume that for one of the trees, sayT , whenever a label setLr in F

contains an element inA, then, unless this element is external,Lr ⊆ A and all elements inLr

have the same parent inT . If F satisfies (ii) in the statement of the lemma, then we are done;so
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assume that this is not the case. Then there is a label set,Li say, inF that contains at least two

elements inA. In T ′, these elements have different parents. SinceF is a legitimate-agreement

forest for T and T ′ of minimum weight, it is now easily checked thatF satisfies (iii) in the

statement of the lemma. This completes the analysis of (II) and, therefore, (A).

Case (B). First note that, sinceT |Li andT ′|Li have a common binary refinement,pT ′(a1) is

not an ancestor of any element inLi −A in T ′ unlessLi ∩A = {a1} anda1 is external inT or

Li∩A = {an} andan is external inT ′. The analysis of this case is separated into two subcases:

(I) Li ∩ A contains an element that is internal in bothT andT ′.

(II) Li ∩ A contains no element that is internal in bothT andT ′.

Subcase (I). Let ai be an element ofLi ∩ A that is internal in bothT and T ′. Let aj be an

element ofA that is internal in bothT andT ′. If pT (aj) 6= pT (ai), then using the facts that no

label sets inF edge-overlap inT or T ′, thatT |Li andT ′|Li have a common binary refinement,

and thatF is acyclic, it is easily checked thataj is in a label set ofF containing only elements

of A and all of the elements in this set have the same parent inT . Because of the requirement

on internal parents in (iii) in the definition of the long-chain reduction, there are at least two

such label sets. Also, ifpT (aj) = pT (ai) for somej 6= i andaj /∈ Li, then, becauseF is acyclic

and no label sets inF edge-overlap inT , aj is in a label set ofF containing only elements of

A and all of the elements in this set have the same parent. Furthermore, sinceT |Li andT ′|Li

have a common binary refinement, any two distinct elements inLi − A intersect the path from

an to ρ in T ′ in exactly one place.

We next considera1 if a1 is external in eitherT or T ′, andan if an is external in eitherT or

T ′. If a1 is external inT , then, asT |Li andT ′|Li have a common binary refinement,a1 6∈ Li.

Furthermore,a1 is in a label set ofF that contains no other elements ofA and, moreover, both

pT (a1) and pT ′(a1) are ancestors of all elements in this label set. Ifa1 is external inT ′, then

it easily checked thata1 behaves in the same way as elements inA that are internal in both

T and T ′. Now consideran. If an is external inT , then, asT |Li andT ′|Li have a common

binary refinement,an 6∈ Li. Also, asF is acyclic, an is in a label set ofF that contains no

other elements ofA and, moreover,pT (an) is an ancestor of all elements in this label set, but

pT (a1) is an ancestor of none. Furthermore, except foran, the vertexpT ′(a1) is an ancestor of

all elements in this set. Now assume thatan is external inT ′. If an 6∈ Li, then, as no label sets

in F edge-overlap inT ′, the elementan is the only element ofA in its label set and, if this
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label set contains elements in(X ∪ {ρ}) − A, thenpT ′(a1) is not an ancestor of any of these

elements and all elements inLi are descendants ofpT ′(an).

With the above conclusions in hand and noting that it is possible for an to be external inT ′

andan ∈ Li, let J index the label sets ofF that contain elements of the chain. LetF ′ be the

forest obtained fromF by removing each label setLj with j ∈ J and inserting the new label

sets
⋃

j∈J

Lj − (Li − A) − (Ln − {an}),

L′
i = Li −A, andL′

n = Ln −A if an is external inT , whereLn is the label set inF containing

an, and
⋃

j∈J

Lj − (Li − A)

andL′
i = Li −A if an is external inT ′. Note thatF ′ is a partition ofX ∪ {ρ}. By considering

the possibilities fora1 and an, and noting thatpT ′(a1) is not an ancestor of any element in

Li −A, it is clear thatF ′ is an agreement forest forT andT ′. Using arguments similar to that

used in (A), a straightforward check shows that, asF is acyclic,F ′ is acyclic. SinceF satisfies

(P), it follows by Lemma 5.2 thatF ′ satisfies (P). Therefore,F ′ is a legitimate-agreement forest

for T andT ′. But, as there are at least two label sets inF containing just elements ofA, we

havew(F ′) < w(F); contradicting the minimality ofF . Thus subcase (I) does not arise.

Subcase (II). First observe thatLi ∩ A is a non-empty subset of{a1, an} and each of the

elements inLi ∩ A is external in eitherT or T ′. Let aj , ak ∈ A such that neitheraj nor ak is

a1 if a1 is external in eitherT or T ′ and neitheraj nor ak is an if an is external in eitherT or

T ′. Assume first thata1 ∈ Li. SinceF is acyclic and no label sets inF edge-overlap inT or

T ′, it is easily checked thataj and ak are in separate label sets inF and none of these label

sets contain elements in(X ∪ {ρ})−A. Arguing similarly, if an is external inT , and therefore

internal in T ′, then {an} is a label set inF . It now follows that if an is not external inT ′,

thenF satisfies (ii) in the statement of the lemma. Therefore, assume thatan is external inT ′.

If an 6∈ Li, then, as no label sets inF edge-overlap inT ′, the elementsaj and an are not in

the same label set inF for all j. ThusF again satisfies (ii) in the statement of the lemma, so

assume thatan ∈ Li. SinceT |Li and T ′|Li have a common binary refinement,pT ′(an) is an

ancestor of all elements inLi. Let F ′ be the partition ofX ∪ {ρ} that is obtained fromF by

replacingLi and all other label sets containing elements ofA with the three setsL′
i, L

′′
i , and
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A, whereL′′
i contains precisely the elements inLi − A that are descendants ofpT ′(a1) in T ′

andL′
i = Li − (A ∪ L′′

i ). Clearly,F ′ is an agreement forest forT andT ′. Furthermore, using

arguments similar to that used in (A), it is easily checked that, asF is acyclic,F ′ is acyclic.

By Lemma 5.2,F ′ satisfies (P) asF satisfies (P), and soF ′ is a legitimate-agreement forest for

T andT ′. But F has the property that{aj} ∈ F for all aj ∈ A − {a1, an}. Since|A| ≥ 5, this

implies thatw(F) < w(F ′); a contradiction.

We may now assume thatan ∈ Li and a1 6∈ Li. First note that ifpT ′(a1) is an ancestor

of an element inLi, then, as the label sets inF are edge-disjoint inT ′, F satisfies (ii) in

the statement of the lemma. Thus we may also assume thatpT ′(a1) is not an ancestor of any

element inLi. Since no label sets inF edge-overlap inT , it follows that if pT (aj) 6= pT (ak)

or pT (a1) 6= pT (aj), thenaj andak, anda1 andaj are in separate label sets inF , respectively.

Furthermore, unlesspT (aj) = pT (an) andan is external inT ′, the label set containingaj does

not contain an element of(X ∪{ρ})−A. Also, if a1 is internal inT , then its label set does not

contain an element of(X ∪ {ρ})−A. It is now easily checked that ifan is external inT , then,

asan is internal inT ′ andF is a legitimate-agreement forest of minimum weight,F satisfies

(iii) in the statement of the lemma withT as the distinguished tree. Therefore, assume thatan

is external inT ′.

If a1 is external inT and its label set contains an element in(X ∪ {ρ}) − A that is not

an ancestor ofpT ′(a1), thenF satisfies (ii) in the lemma. Thus if the label set containinga1

contains an element in(X ∪ {ρ}) − A, we may assume that it is a descendant ofpT ′(a1).

Now, apart fromLi and the label set containinga1, if a1 is external inT , the only other

possible label set,Lk say, inF that has a non-empty intersection withA and (X ∪ {ρ}) − A

has the property that ifak ∈ Lk ∩ A, then pT (ak) = pT (an). If no label set inF contains at

least two elements ofA each having a different parent inT ′ and there exists no such label set

Lk, thenF satisfies (ii) in the statement of the lemma. Therefore, suppose that one of these

two possibilities occur. LetF ′ be the partition ofX ∪ {ρ} obtained fromF by replacingLi,

Lk if such a label set exists, and all other label sets containing elements inA with the setsL′
i,

A ∪ L1 ∪ L′
k andL′′

k, whereL′
i = Li − {an}, L1 is the label set ofF containinga1 if a1 is

external inT , L′′
k contains precisely the elements inLk − A that are descendants ofpT ′(a1),

andL′
k = Lk − L′′

k. Note that, as no label sets inF edge-overlap inT or T ′, eitherL1 − {a1}

or L′′
k is empty. Clearly,F ′ is an agreement forest forT and T ′. Furthermore, using the fact
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that one of the two above possibilities occur, it is easily checked that, asF is acyclic,F ′ is

acyclic. Moreover, asF satisfies (P), it follows by Lemma 5.2 thatF ′ satisfies (P), and soF ′ is

a legitimate-agreement forest forT andT ′. But w(F ′) < w(F) asT has at least three internal

parents. This contradiction completes the proof of (B) and hence the lemma.

Lemma 5.5:Let T andT ′ be a pair of weighted rooted phylogeneticX-trees. Let(a1, a2, . . . , an)

be a maximal chain of bothT andT ′ that does not crossP with the property that in one of the

trees, sayT , this chain has exactly one parent, while in the other treeT ′ this chain has at least

three internal parents. Then, for every legitimate-agreement forestF for T andT ′ of minimum

weight, exactly one of the following holds:

(i) {a1, a2, . . . , an} is a subset of a label set inF , or

(ii) no label set inF contains at least two elements of the chain and, ifai is an internal element

of (a1, a2, . . . , an) in T ′, then{ai} is a singleton inF .

Proof: Let F = {Lρ,L1,L2, . . . ,Lk} be a legitimate-agreement forest forT and T ′ of

minimum weight, and letA = {a1, a2, . . . , an}. Let J index the label sets ofF that contain

elements ofA, and letLa =
⋃

j∈J Lj . Suppose that neither (i) nor (ii) holds forF . If no label

set inF contains at least two elements ofA, then, relative toT ′, there is a label set inF that

contains an internal element of the chain as well as an element of (X∪{ρ})−A. By considering

the structure of(a1, a2, . . . , an) in T ′, it is easily seen that, as(a1, a2, . . . , an) has at least three

internal elements relative toT ′, at least one of these internal elements is a singleton inF . A

routine check shows that, apart from one exceptional case, we can replace such a singleton and

a label set inF that contains an internal element of the chain inT ′ as well as an element of

(X ∪ {ρ}) − A with the union of these two sets to obtain a legitimate-agreement forest ofT

andT ′ that has smaller weight thenF ; a contradiction. In the exceptional case, there is exactly

one label set,Li say, inF that contains an internal element of the chain inT ′ and an element

in (X ∪{ρ})−A, and this set has the properties that|Li ∩A| = 1, andpT ′(a1) is an ancestor of

all the elements inLi − A, but pT (a1) is not an ancestor of all the elements inLi. SinceF is

acyclic, it follows that each of the remaining internal elements of the chain inT ′ are singletons

in F . A straightforward check now shows that

{L − A : L ∈ F} ∪ {A}

is a legitimate-agreement forest forT andT ′, but with smaller weight thanF . This contradiction
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implies that there is a label set inF containing at least two elements ofA. Without loss of

generality, we may assume that this set isLi and thatai ∈ Li ∩ A, where i > i′ for all

ai′ ∈ Li ∩ A.

Suppose that there exists anLh ∈ F −{Li} such that|Lh∩A| ≥ 1, |Lh∩ ((X ∪{ρ})−A)| ≥

1, and let ah ∈ (Lh ∩ A). If pT ′(ah) is a descendant ofpT ′(ai), then, as|Li| ≥ 2 and no

label sets inF edge-overlap inT ′, the vertexpT ′(ah) in T ′ is an ancestor of all elements in

Lh∩((X∪{ρ})−A). BecauseF is acyclic, it follows that the vertexpT (ah) in T is an ancestor

of all elements inLh∩ ((X ∪{ρ})−A); otherwiseGF contains a directed2-cycle. Now assume

that pT ′(ah) is an ancestor ofpT ′(ai). If Li contains an elementz that is not a descendant of

pT ′(an) in T ′, then, asGF is acyclic,pT (an) is an ancestor of all elements inLh in T . Similarly,

if Lh contains an elementz that is not a descendant ofpT ′(an) in T ′, then, asGF is acyclic,

pT (an) is an ancestor of all elements inLi in T . Now letF ′ be the forest obtained fromF by

removing each label setLj with j ∈ J and inserting the new label setLa. Using the outcomes

of the above two possibilities, it is easily seen thatF ′ is an agreement forest forT and T ′.

Furthermore, asF satisfies (P), it follows by Lemma 5.2 thatF ′ satisfies (P). Using the facts

thatF is acyclic and at least one of the label sets inF contains at least two elements ofA, it

is straightforward to show thatF ′ is acyclic. But thenw(F ′) < w(F); a contradiction to the

minimality of F . ThusF satisfies either (i) or (ii).

VI. HYBRIDIZATION NUMBER IS FIXED-PARAMETER TRACTABLE

In this section, we prove Theorem 1.1. We begin by showing that each of the three reductions

described in the last section preserves the minimum weight of a legitimate-agreement forest. For

a chain(a1, a2, . . . , an) of T , the partition of{a1, a2, . . . , an} defined by puttingai andaj in the

same part precisely ifpT (ai) = pT (aj) is called theparent partitionof (a1, a2, . . . , an) induced

by T .

Proposition 6.1:Let T andT ′ be a pair of weighted rooted phylogeneticX-trees. LetS and

S ′ be the pair of weighted rooted phylogeneticX ′-trees obtained fromT andT ′, respectively,

by applying the subtree, long-chain, or short-chain reduction. Thenf(T , T ′) = f(S,S ′).

Proof: It is an immediate consequence of Lemma 5.3 that ifS andS ′ have been obtained

from T andT ′ by an application of the subtree reduction, then the proposition holds. We next

prove the result for whenS andS ′ have been obtained fromT andT ′ by applying the long-chain
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reduction. The proof of the result for the short-chain reduction is similar and omitted.

Suppose that(a1, a2, . . . , an) is the common chain ofT andT ′ used in this application of the

long-chain reduction. Now letFT be a legitimate-agreement forest forT andT ′ of minimum

weight. Then, by Lemma 5.4 one of the following holds:

(i) {a1, a2, . . . , an} is a subset of a label set ofFT ,

(ii) no label set inFT contains at least two elements of the chain and, ifai is an internal

element of bothT andT ′, then{ai} is a singleton inFT , or

(iii) for either T or T ′, sayT , two elements of the chain are in the same label set preciselyif they

have the same parent and, moreover, if that parent is internal in T , then the corresponding

set contains no other elements ofX ∪ {ρ}.

Let FS be the forest obtained fromFT by replacinga1 and an with e1 and e2, respectively,

if a1 or an is external in eitherT or T ′, and then, depending on which of (i), (ii), or (iii)

holds, respectively replace the remaining elements ofA as follows: replacea1, a2, . . . , an with

a, b, and c; collectively replace the label sets of the form{ai} with {a}, {b}, and {c}; or

collectively replace the label sets of the form{ai, ai+1, . . . , aj} with {a, b} and{c} and, if there

is a label set of the form{e1, a2, . . . , ai′} or {aj′, aj′+1, . . . , e2}, replace it with{e1} or {e2},

respectively. SinceFT is a legitimate-agreement forest forT andT ′, it is easily checked thatFS

is a legitimate-agreement forest forS andS ′. In the case that (ii) holds, the contribution of the

singletons containing elements that are internal in bothT andT ′ to w(FT ) is exactly the same

as the contribution of{a}, {b}, and{c} to w(FS). Furthermore, in the case that (iii) holds, the

contribution of the label sets containing just internal elements ofA in T to w(FT ) is equal to

the contribution of{a, b}, {c}, and{e1} and{e2} if either e1 or e2 are internal elements of the

reduced chain inS respectively, tow(FS). Thusw(FS) = w(FT ), and sof(S,S ′) ≤ f(T , T ′).

Now suppose thatFS is a legitimate-agreement forest forS andS ′ of minimum weight. As

FS is legitimate, one of the following holds, wheree1 ande2 may or may not exist depending

on whethera1 or an is external in eitherT or T ′:

(i) {e1, a, b, c, e2} is contained in a label set,L say, inFS,

(ii) {a}, {b}, and{c} are label sets inFS, ande1 ande2 are in separate label sets inFS,

(iii) {a, b} and {c} are label sets inFS, and e1 and e2 are in separate label sets inFS and,

relative to(e1, a, b, c, e2), if e1 or e2 is internal inT , then{e1} or {e2} is a label set inFS,
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respectively, or

(iv) {a} and {b, c} are label sets inFS, and e1 and e2 are in separate label sets inFS and,

relative to(e1, a, b, c, e2), if e1 or e2 is internal inT ′, then{e1} or {e2} is a label set in

FS, respectively.

Let FT be the forest obtained fromFS by replacinge1 and e2 with a1 andan, respectively, if

a1 or an is external in eitherT or T ′, and then, depending on which of (i) to (iv) holds, make

one of the following replacements fora, b, andc:

(i) L with (L − {a, b, c}) ∪ A,

(ii) {a}, {b}, and{c} with the sets{ai}, whereai is an internal element in bothT andT ′,

(iii) {a, b} and{c} with the parts of the parent partition of(a1, a2, . . . , an) induced byT whose

corresponding parents are internal inT , and deleting{a1} or {an} if e1 or e2 is internal in

S, or

(iv) {a} and{b, c} with the parts of the parent partition of(a1, a2, . . . , an) induced byT ′ whose

corresponding parents are internal inT ′, and deleting{a1} or {an} if e1 or e2 is internal

in S ′.

A routine check shows that, asFS is a legitimate-agreement forest forS andS ′, the collection

FT of sets is a legitimate-agreement forest forT andT ′. In (ii), the contribution of the singletons

{a}, {b}, and{c} to w(FS) is the same as the contribution of the sets{ai} to w(FT ), where

ai is an internal element of bothT andT ′. Furthermore, in (iii), and analogously in (iv), the

contribution of{a, b} and{c}, and{e1} and{e2} if e1 or e2, respectively, are internal inS to

w(FS) is equal to the contribution of the label sets inFT which exclusively contain internal

elements ofA in T to w(FT ). Thus w(FT ) = w(FS), and sof(T , T ′) ≤ f(S,S ′). Hence

f(T , T ′) = f(S,S ′), completing the proof of the proposition.

Lemma 6.2:Let T andT ′ be a pair of weighted rooted phylogeneticX-trees, and let(a1, a2, . . . , an)

be a maximal chain ofT andT ′ that does not crossP . Then, by a sequence of long- and short-

chain reductions applied to this chain, the length of the resulting chain is at most17.

Proof: Suppose first that there is an element of the chain that is internal in bothT and

T ′. With i ≤ j, chooseai andaj as follows:

(a) If a1 is internal in bothT andT ′, chooseai to bea1. If a1 is external in bothT andT ′,

but a2 is internal in bothT andT ′, chooseai to bea2. Otherwise, for someR ∈ {T , T ′},
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a1 anda2 are external inR. In this case, chooseai to be the element of the chain that is

external inR and has maximum index witha1, a2, . . . , ai all external inR.

(b) If an is internal in bothT andT ′, chooseaj to bean. If an is external in bothT andT ′, but

an−1 is internal in bothT andT ′, chooseaj to bean−1. Otherwise, for someS ∈ {T , T ′},

an andan−1 are external inS. In this case, chooseaj to be the element of the chain that

is external inS and has minimum index withaj , aj+1, . . . , an all external inS.

Having pickedai and aj , consider the chain(ai, ai+1, . . . , aj). If this chain satisfies (i) and

the condition on internal parents at the end of (iii) in the description of the long-chain reduction,

then we can apply this reduction to get a chain with at most 5 elements. Furthermore, if

(a1, a2, . . . , ai−1) is a chain with at least three internal elements in the tree in{T , T ′} that

is not R, then we can apply the short-chain reduction to get a chain with at most3 elements.

Lastly, if (aj+1, aj+2, . . . , an) is a chain with at least three internal elements in the tree in{T , T ′}

that is notS, then we can again apply the short-chain reduction to get a chain with at most3

elements. Note that if we cannot apply the first or the second of these short-chain reductions,

then i − 1 ≤ 3 andn − j ≤ 3, respectively. It now follows that after these three reductions, the

resulting chain has length at most11.

Now assume that(ai, ai+1, . . . , aj) does not satisfy (i) or the condition on internal parents at

the end of (iii) in the description of the long-chain reduction. Then, up to the possibility of an

additional internal parent which only hasaj as its only child in{ai, ai+1, . . . , aj}, this chain has

at most two internal parents in eitherT or T ′. Except for the children of these two parents, all of

the remaining elements of{a1, . . . , an} are external in eitherT or T ′. In particular,a1, . . . , ai−1

share the same parent inR, andaj+1, . . . , an share the same parent inS. As (a1, a2, . . . , an) has

an internal element in bothT andT ′, these two shared parents are distinct. Applying at most

four short-chain reductions, it is easily checked that the resulting chain has length at most17.

Now suppose that no element of the chain is internal in bothT and T ′, then each element

of the chain is external in eitherT or T ′. In this case, either we apply a single application of

the short-chain reduction to get a chain of length at most4 or we apply two applications of the

short-chain reduction to get a chain of length at most8. This completes the proof of the lemma.

Proposition 6.1 showed that the weight function is preserved under each of the three reductions.

Part (iii) of the next lemma shows that these reductions can be applied so that the size of the label
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set of the resulting rooted phylogenetic trees is bounded bya linear function in the minimum

hybridization number.

Lemma 6.3:Let T and T ′ be two rooted phylogeneticX-trees, and letP initially be an

empty collection of subsets ofX. Let S andS ′ be two weighted rooted phylogeneticX ′-trees

obtained fromT and T ′, respectively, by repeatedly applying the subtree reduction until no

further reduction is possible, and then, for each maximal chain common to both resulting trees,

repeatedly applying the long-chain and short-chain reductions. Then

(i) S andS ′ have no pendant subtrees with common label setA such thatS|A andS ′|A have

a common binary refinement and|A| ≥ 2,

(ii) the length of any chain common to bothS andS ′ is at most17, and

(iii) |X ′| < 89h(T , T ′).

Proof: For the proof of (i) and (ii), letT1 andT ′
1 be the rooted phylogenetic trees obtained

from T and T ′ after repeatedly applying the subtree reduction until no further reduction is

possible. Furthermore, observe that ifP1, P2 ∈ P , thenS(P1) andS(P2) are edge-disjoint, and

S ′(P1) andS ′(P2) are edge-disjoint. Suppose that (i) does not hold, and letA be such a label

set. Without loss of generality, we may assume thatA is maximal. Then, because of maximality,

if A intersects a set inP , then that set is a subset ofA. Now let A′ be the set obtained from

A by replacing the elements belonging to a set inP with their original counterparts. Using the

above observation, it is easily seen thatA′ is a pendant subtree ofT1 andT ′
1 . But, asS|A and

S ′|A have a common binary refinement,T1|A
′ andT ′

1 |A
′ have a common binary refinement; a

contradiction. Thus (i) holds.

For (ii), suppose that there exists a chain common to bothS and S ′ that has at least18

elements. Without loss of generality, we may assume that this chain is maximal. LetA denote

the label set of this common chain. Analogous to (i), becauseof maximality, if A intersects a

set inP , then that set is a subset ofA. Moreover, if this intersection involves a set that was part

of a sequence of reductions to reduce a common chain inT1 andT ′
1 , then all of the associated

sets inP are subsets ofA. Using Lemma 6.2 to get a contradiction, a similar argument used to

establish (i) can now be used to establish (ii).

Now consider (iii). LetF = {Lρ,L1,L2, . . . ,Lk} be a legitimate-agreement forest forS and

S ′ of minimum weight. LetB andB′ be two binary refinements ofS andS ′, respectively, so that

F is an acyclic-agreement forest forB andB′. By Lemma 4.2, such binary refinements exist.
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If B andB′ have a common pendant subtree with label setA and |A| ≥ 2, then this subtree is

a common binary refinement ofS|A andS ′|A, contradicting (i). ThusB andB′ have no such

pendant subtree. Furthermore, ifB andB′ have a common chain with label setA and |A| ≥ 18,

then this implies thatS andS ′ have such a chain, contradicting (ii). Hence any chain common

to bothB andB′ has at most17 elements. With these restrictions onB andB′, we can now

use the argument for the analogous result for binary trees in[5] to complete the proof of (iii).

The only modification necessary is to replace chains of size2 with chains of size at most17.

Making this change and working through the straightforwardalgebra gives
∑

i |Li| ≤ 89k− 51.

By definition of f and Proposition 6.1,k ≤ f(S,S ′) = f(T , T ′). SinceP is initially empty,

f(T , T ′) = h(T , T ′) and the result follows.

Proof of Theorem 1.1:Let T andT ′ be two rooted phylogeneticX-trees, and letP be an empty

collection of subsets ofX. Let k be an integer. LetS andS ′ be the weighted rooted phylogenetic

X ′-trees obtained fromT andT ′ by repeatedly applying the subtree reduction until no further

reduction is possible, and then, for each maximal chain common to both resulting trees, repeatedly

applying the long-chain and short-chain reductions. AsP is empty,h(T , T ′) = f(T , T ′) and

so, by Proposition 6.1,

h(T , T ′) = f(T , T ′) = f(S,S ′).

It is clear thatS andS ′ can be found in time polynomial in|X|, sayp(|X|). By Lemma 6.3(iii),

|X ′| ≤ 89h(T , T ′) and so, if|X ′| > 89k, we declare thath(T , T ′) > k.

Now suppose that|X ′| ≤ 89k. The time taken to check whether a partition ofX ′ ∪ {ρ} is a

legitimate-agreement forest forS andS ′ takes time polynomial ink. Note that for deciding if two

rooted phylogenetic treesT1 andT ′
1 have a common binary refinement, one simply needs to check

whether or notC(T1)∪C(T ′
1 ) is a hierarchy, that is, for all (edge) clustersC1, C2 ∈ C(T1)∪C(T ′

1 ),

the setC1 ∩ C2 ∈ {∅, C1, C2}. Furthermore, as|X ′| ≤ 89k, the number of forests with at most

k + 1 parts is bounded by a computable function ink, say f(k). If one of these forests is a

legitimate-agreement forest forS andS ′ with weight at mostk, then we declareh(T , T ′) ≤ k;

otherwise, we declareh(T , T ′) > k. Hence we can answer the HYBRIDIZATION NUMBER

decision problem forT andT ′ in time O(f(k) + p(|X|)). Thus HYBRIDIZATION NUMBER is

fixed-parameter tractable.
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Remark. While one could explicitly give a function ink that bounds the number of partitions

to consider in the proof of Theorem 1.1, it is unlikely to be the best theoretically and we expect

in practice much better methods.

VII. CONCLUDING REMARKS

We end the paper with some remarks.

1. In this paper, we reduced a chain using two types of chain reductions. However, we believe

that it is possible to do this with a single type of chain reduction. The drawback of such

a reduction is that the number of possibilities for a legitimate-agreement forest forT and

T ′ increases. Since the goal of the paper is to show that HYBRIDIZATION NUMBER is

fixed-parameter tractable, we decided to use the two types ofreductions, thereby reducing

the complexity and lengths of the proofs.

2. The subtree, long-chain, and short-chain reductions areenough to kernalize HYBRIDIZA -

TION NUMBER and yield an algorithm that is fixed- parameter tractable. These reductions

extend the two reductions used to kernalize HYBRIDIZATION NUMBER when the initial

two trees are both binary [5]. However, there is another typeof reduction for binary

trees that turns out to be particularly useful. This additional reduction, called thecluster

reduction[2], allows for an attractive divide-and-conquer approachthat breaks the problem

into a number of smaller and, therefore, more tractable subproblems. Details on how this

reduction can easily be fitted into the framework of (arbitrary) rooted phylogenetic trees

can be found in [9].
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