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Abstract

Reticulate evolution—the umbrella term for processes ligbridization, horizontal gene transfer,
and recombination—plays an important role in the historylifef of many species. Although the
occurrence of such events is widely accepted, approacluadaolate the extent to which reticulation has
influenced evolution are relatively rare. In this paper, Weve that the NP-hard problem of calculating
the minimum number of reticulation events for two (arbiyparooted phylogenetic trees parameterized

by this minimum number is fixed-parameter tractable.

Index Terms

Rooted phylogenetic tree, reticulate evolution, hybatian network.

I. INTRODUCTION

Using mathematical models to reconstruct a tree of life framleotide or protein sequences
is subject of many phylogenetic studies that aim at anatyitie complex evolutionary processes
that have occurred during the development of the currerdrslity of species. Under the usual
assumption that each species arises from its ancestor ymesspeciation event, tree-based
methods have contributed significantly to approaching tagk. However, due to non-tree-
like events, not all groups of taxa are suited to this type mdspntation. Such processes,
collectively referred to as reticulation events, includgbttidization, horizontal gene transfer,
and recombination. Since reticulate evolution results emames that are mosaics of distinct
ancestral genomes, there has been an increased interesdelimg evolutionary relationships
using phylogenetic networks rather than phylogeneticstree

In this paper, we focus our attention on hybridization arsdinipact on evolution. This has
been an active and controversially discussed field of rebefar many years and even several
definitions of the term hybridization have been suggest¢dH8r the purposes of this article,
we refer to the origin of a new species through a mating betwe® individuals of different
species as a hybridization event. Hybridization is widatgepted to play an important role in
the evolutionary history of certain groups of plants and.flsbr a review of hybrid species, we
refer the reader to [11].

To provide insight into the extent to which hybridizatiorshafluenced the evolution of a set of

present-day species, this paper addresses the followmmafoental problem: Given a collection
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Fig. 1. Two rooted phylogenetic tréE and 7’ and two binary refinementS; and S of 7’. The hybridization number for
S1 and7 is 0, while this number foS; and7 is 1.

of rooted phylogenetic trees that are correctly recontdufor different genetic loci, what is
the smallest number of hybridization events needed to $amebusly explain the evolutionary
scenarios of the gene trees under consideration?

Bordewich and Semple [4] showed that the above problem ih&tE-even when the initial
collection consists of two rooted binary phylogenetic std¢owever, the same authors showed [5]
that in the case of two binary trees the problem is fixed-patantractable. In particular, they
showed that the minimum number of hybridization events carcdmputed in time)(f(k) +
p(n)), wherek is the actual minimum numbey, is some computable function, is the number
of species, ang is a fixed polynomial. Due to the NP-hardness of the problaroh s result is
of importance, since for many practical instances, the mimh number of hybridization events
is small and, therefore, the problem may be tractable, everaflarge number of taxa. This
can be seen by considering the separation of the varidblesd n. For more details about
fixed-parameter tractability, we refer the interested eead [6].

Despite the above fixed-parameter tractable algorithmyiamy biological data sets in practice
(e.g. [7], [12]), the reconstructed phylogenetic treesraefully resolved; that is, they contain
polytomies For example, this may be due to either the tree reconstructiethod or the use
of consensus trees for a certain analysis. Polytomies+naligely calledmultifurcations—refer
to vertices that have more than two direct descendants. ptqraly is hard if it refers to an
event during which an ancestral species gave rise to monettf@ offspring species at the same
time, whereas &oft polytomy represents ambiguous evolutionary relatiorslap a result of

insufficient information [10].
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Since simultaneous speciation events only occur rarelyypieally assume that all polytomies
in a phylogenetic tree are soft. The reconstruction of attrbifurcating (binary) tree may
consequently force refinements that are not necessarilynaptn terms of the hybridization
number. An example for that is depicted in Fig. 1, where twaaby refinementsS; and S, of
the tree7’ are shown. While the hybridization number 8§ and 7 is 0, this number fokS,
and7 is 1.

In this paper, we show that the decision problem of askingtidrethe minimum number of
hybridization events to explain two (arbitrary) rooted [gyenetic trees is at mogt is fixed-
parameter tractable. We now describe the above-mentior@uepm formally beginning with
several definitions.

A rooted phylogenetic(-tree 7 is a rooted tree with no degreevertices except possibly the
root which has degree at least two, and with leaf SefThe setX is called thelabel setof 7
and is denoted by:(7). In addition,7 is binary if, apart from the root which has degree two,
all interior vertices have degree three.

LetY be a subset oK. We callY an(edge) clusteof 7 if there is an edge, or equivalently
a vertexv, whose set of descendants i is preciselyY. We denote this cluster b§r(v), or
simply C(v) if there is no ambiguity. The set of clustersBfis denoted byC(7"). Furthermore,
the most recent common ancestof Y is the vertexv in 7 with Y C Cr(v) such that there
exists no vertex’ with Y C Cr(v') andCr(v') C Cr(v). We denotev by mrcar(Y).

Let 7 and7’ be two rooted phylogeneti& -trees. We say thdl”’ refines7, or equivalently
7" is arefinemenof 7, if C(7) C C(7"). In addition,7” is abinary refinemenif 7" is binary.
Note that7 is a refinement of itself. Graphically speaking, it is sthafgrward to see that if”’
refines7, then7 can be obtained fror™’ by contracting interior edges.

Hybridization networks are a generalization of evolutigrnaees that allow for a simultaneous
visualization of several conflicting or alternating hisésr of life. Such a network embeds a
collection of gene trees representing a set of present-plegiess, where each vertex whose in-
degree is greater than 1 represents a hybrid species. Maticaily speaking, dybridization
network’H (on X) is a rooted acyclic digraph with rogtin which

(i) X is the set of vertices of out-degree zero,
(i) the out-degree op is at least 2, and

(i) for each vertex with out-degree 1, its in-degree iseddt 2.
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To quantify the number of reticulation events, thgbridization numberof a hybridization

network H with root p is

h(H) = (d"(v) = 1),

v#p

wherev is a vertex ofH andd (v) denotes the in-degree of

Let 7 be a rooted phylogeneti& -tree, and letH be a hybridization network. We say that
displays7 if there is a rooted subtree G{ that is a refinement of . In other words,7 can
be obtained front{ by first deleting a subset of the edges7¥f deleting and contracting any
resulting degre@-and degree&- vertices, respectively, apart from the root, and then eating
edges. For a collectioR of rooted phylogenetic tree®{ displaysP if each tree irP is displayed
by H. Furthermore, extending the definition of the hybridizatrmimber of a network t@®, we
set

h(P) = min{h(H) : H is a hybridization network that display3}.

If P contains precisely two rooted phylogenekietrees7 and7’, then we denote the hybridiza-

tion numberh(P) by h(7,7’) and remark that the beforehand given definition is equivalten
h(T,7') = min{h(S,S’) : S and S’ are binary refinements &f and7’, respectively.

Throughout the paper, both definitions are used intercrasige

We can now formally state the decision problenyB®1DIZATION NUMBER for whenP =
{T,T"}:
HYBRIDIZATION NUMBER
Instance: Two rooted phylogeneti-trees7 and7’, and an integek.
Question: Is h(7,7") < k?
Since computingi(7,7") is NP-hard wheriZ and7" are binary [4], calculating this value for
when7 and7’ are arbitrary rooted phylogeneti¢-trees is also NP-hard.

The main result of this paper is the following theorem.

Theorem 1.1:The decision problem HBRIDIZATION NUMBER is fixed-parameter tractable
with h(7,7") being the parameter.

The overall approach in proving Theorem 1.1 is similar td theed to show that MBRIDIZA -
TION NUMBER is fixed-parameter tractable when the initial two trees anary. Basically, we

use three reductions to kernalize the problem instance iegalated way before calculating
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exactly the minimum number of hybridization events usingeaxhaustive search. The reason
that this is sufficient to prove Theorem 1.1 is that the sizéheflabel set of the treeS and S’
obtained from7 and7’ by repeatedly applying the three reductions is lineah (@, 7).

The paper is organized as follows. The next section contsdmse additional preliminaries
that are used throughout the paper. In Sections Ill and IV,ch&racterize MBRIDIZATION
NUMBER in terms of a particular type of agreement forest. This ottar&ation is essential to
getting the main result of the paper. Section V describestiree reductions that are used to
kernalize the problem instance and also includes threedynias that are needed for the proof
of Theorem 1.1. This proof is given in Section VI. The papedswith some brief remarks in
Section VII.

We end the introduction by remarking that despite the shitigs between the approaches
used to prove Theorem 1.1 and the analogous result for bineeg, we see no obvious way
that this latter result can be used to directly establishofdéra 1.1. Part of the reason for this is

that a number of additional and non-trivial complicationse in the non-binary case.

[I. PRELIMINARIES

In this section, we give some preliminary definitions that ased throughout the paper. Unless
stated otherwise, the notation and terminology follows].[13

For a rooted phylogeneti& -tree 7, a subselt” of X is called avertex clusteof 7 if there
is a refinement off in which Y is an edge cluster. For example, considering Fig. 1, the taxa
set{1,2} is an edge cluster i, but a vertex cluster (and not an edge clusterJ inNote that
edge clusters are special types of vertex clusters.

Let 7 be a rooted phylogeneti& -tree. Several types of rooted subtrees/oplay a central
role in this paper. Let” be a subset oX. The minimal rooted subtree &f that connects the
leaves inY is denoted by7 (Y'). Furthermore, theestriction of 7 to Y, denoted7 |Y, is the
subtree obtained frord (Y') by contracting all non-root vertices of degree two. Funihere, a
subtree of7 is pendantif it can be obtained from a refinement @f by deleting a single edge.

Lastly, a subtree ison-trivial if it contains at least two leaves.

[Il. AGREEMENT FORESTS

Various types of agreement forests have recently been osadalyze reticulate evolution for

a set of gene trees and its impact on evolution [1], [3], [2B][ [15]. All of these approaches
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are restricted to the case when the trees under consideratso binary. Here, we extend the
definition of agreement forests to arbitrary rooted phyiaiie trees. For the reader familiar with
agreement forests, we note that the following definitionsi@de with those previously given
for rooted binary phylogenetic trees.

Let 7 and7’ be two rooted phylogeneti& -trees. For the purposes of the upcoming defini-
tions, we regard the root of both and 7’ as a vertex labeled at the end of a pendant edge
adjoined to the original root. Furthermore, we also regaras part of the label set af and
7', thus we view their label sets as U {p}.

A forestof 7 is a partition{L,, L1, Lo, ..., L;;} of its label setX U{p}, whereL, containsp,
no part is empty, and the trees{d (L;) : i € {p,1,2,...,k}} are edge-disjoint rooted subtrees
of 7. An agreement fores¥ for 7 and 7" is a forest{L,, L1, L, ..., Ly} of 7 and 7’ such
that, for alli € {p,1,2,...,k}, the treesT|£; and 7'|L; have a common binary refinement.
To illustrate these concepts, two examples of agreemeast®f; and F, are shown in Fig. 2
for the two rooted phylogenetic treds and7’ also shown in that figure. Consideritfg, it is
easily checked that, for each label &t the restrictions off and7”, respectively, to; have
a common binary refinement.

The subtree prune and regraft distance between two rootedybphylogeneticX -trees can
be characterized in terms of agreement forests. Howewecdhresponding characterization for
the minimum number of hybridization events for the same péitrees requires an additional
condition. This condition excludes the possibility thaesies inherit genetic material from their
own descendants. L&t = {L,, £y, L, ..., Ly} be an agreement forest for two arbitrary rooted
phylogeneticX -trees7 and7’. Let G be the directed graph that has vertex eand an arc
(L;, L;) from L; to L; precisely ifi # j and either

() the path from the root off (£;) to the root of7 (£;) contains an edge df (£;), or

(1) the path from the root of7’(£;) to the root of7’(L;) contains an edge of'(L;).

We say thatF is anacyclic-agreement foresor 7 and 7’ if G contains no directed cycles,
that is, G is acyclic. For the example depicted in Fig.2, is an acyclic-agreement forest for
7T and7’ sinceGy, is acyclic, whereasF; is not an acyclic-agreement forest férand7”. If

F contains the smallest number of parts over all acyclicagent forests fo? and7”’, we say
that F is amaximum-acyclic-agreement fordst 7 and7”, in which case, we denote this value

of k£ by m,(7,7"). In the case that botd and 7' are binary, these definitions again extend
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Fig. 2. Two agreement forest&; and F: for the two rooted tree§” and 7" and their associated digraptigs, and Gz, .

those typically given for two rooted binary phylogenetieds. Baronket al. [1] established the
following characterization for binary trees.

Theorem 3.1:Let 7 and7’ be two rooted binary phylogeneti¥-trees. Then

WT, T') = mo(T, T").

IV. CHARACTERIZING h(7,7') IN TERMS OFAGREEMENT FORESTS

In this section, we prove the following analogue of Theorer f8r arbitrary rooted phylo-
genetic trees. This analogue is crucial in proving the masult of the paper.

Theorem 4.1:Let 7 and7’ be two rooted phylogeneti& -trees. Then

WMT, T =ma(T,T").
Essentially, all of the work in establishing this theorend@ne in proving the next two lemmas.
Lemma 4.2:Let 7 and 7’ be two rooted phylogeneti& -trees, and letF be an acyclic-
agreement forest fof and 7’. Then there exist binary refinemenfsand S’ of 7 and 77,

respectively, such thaf is an acyclic-agreement forest férand S'.
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Proof: Suppose thatF = {L,, £y, L, ..., Ly} is an acyclic-agreement forest f@r and
7', and letB; be a common binary refinement @f|£; and 7’|, for all i. The proof of the
lemma is by induction ork. Clearly, the result holds it = 0. Now suppose that the result
holds for all acyclic-agreement forests #fand 7' of size at most:. SinceF is acyclic,G
contains a vertex£,, say, with out-degree zero. Singg, has out-degree zerd, (L,,) is a
pendant subtree af and7’(L,,) is a pendant subtree @af'.

Let 7,, and7,, be the rooted phylogenetic tre€3$((X U{p})—L,,) andT’|( X U{p})—L..),
respectively, and lef,, = F — {L£,,}. SinceF is an acyclic-agreement forest @f and 7", it
is easily checked that, &5(L,,) is a pendant subtree @ and7’(L,,) is a pendant subtree of
7', the collectionF,, is an acyclic-agreement forest @f, andZ, . Therefore, by the induction
assumption, there are binary refinemeStsandsS,, of 7,, and 7, , respectively, such that,,
is an acyclic-agreement forest f6y,, andS,,.

We now construct a binary refinementbffrom S,,,. Let u be the vertex of” with the property
thatC(u) is the minimal cluster off” that properly containg,,,. By constructionC(u) — L, is
a cluster of7,,. Furthermore, as,, is a binary refinement of,,, the setC(u) — L,, is a cluster
of S,,. Let u,, be the vertex ofS,, such thatC(u,,) = C(u) — L,,. Let S be the rooted binary
phylogenetic tree obtained fros},, by subdividing the edge coming intg,, with a new vertex
v and adjoining the root 0B,, to this new vertex via a new edge. Observing thétv) = C(u),
it is easily checked thaf is a binary refinement of . Furthermore, by construction and because
of the induction assumption, it follows th#t is a forest ofS and, for alli, we haveS|L; = B;.

By the same construction and argument, there is a binaryeraéntS’ of 7' such thatF is
a forest ofS’ and, for alli, we haveS’|L; = B;. It now follows thatF is an agreement forest
for S andS’. Moreover, asF,, is an acyclic-agreement forest f6f, and S, , it is easily seen
that 7 is an acyclic-agreement forest f6rand S’. This completes the proof of the lemma

Lemma 4.3:Let 7 and 7’ be two rooted phylogeneti& -trees, and letS and S’ be binary
refinements off and7’, respectively. IfF is an acyclic-agreement forest fSrandS’, thenF
is an acyclic-agreement forest f@r and 7”.

Proof: Let F = {L,, L, Lo, ..., L} be an acyclic-agreement forest8fandS’. SinceS
andS’ are both binary, it is easily seen, for allthatS|£; andS’|L; are binary. Therefore, a$
andS’ are binary refinements &f and7”, respectivelyS|L; is a common binary refinement of
T|L; andT’|L; for all i. To see that the trees {7 (L;) : i € {p,1,2,...,k}} are edge-disjoint
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rooted subtrees of , suppose that this is not the case. Then, for somg s, the subtrees
7 (L,) and7 (L) are not edge-disjoint. That i§,(£,) and7 (L;) have an edge = {u,v} in
common. Letu be the end vertex of closest top. SinceS is a binary refinement of , there
are verticesu’ and v’ of S with Cs(u') = Cz(u) and Cs(v') = Cr(v). Now it is easily seen
that S(L,) containsu’ andv’, andS(L,) containsu’ andv’. In other wordsS(£,) andS(Ly)
are not edge-disjoint i5, contradicting thatF is an agreement forest & and S’. Thus the
trees in{7(L;) :i € {p,1,2,...,k}} are edge-disjoint rooted subtreesdfand, similarly, the
trees in{7"(L;) : 1 € {p,1,2,...,k}} are edge-disjoint rooted subtreesdf. Hence,F is an
agreement forest of and7”.

Now relative toS andS’, the graphG = is acyclic. With respect t¢F, consider the analogous
graph,G’z say, for7 and7’. Noting that both graphs have the same vertex set, it is ¢hesdr
if (L., L) is an arc inG’, then(L,, L) is an arc inGx. Thus the arc set of’z is a subset of
the arc set of. SinceG is acyclic, it follows thatG’; is acyclic. This completes the proof
of the lemma. ]

Proof of Theorem 4.11et S and &’ be binary refinements of and 7' that satisfy the
hypothesis of Lemma 4.2. Then, by that lemma,(7,7") > m,(S,S’). But, by Theorem 3.1,
mq(S,8") = h(S,S’). It now follows that, ash(S,S’) > h(7,7'), we havem,(7,7") >
hT,T").

To establish the converse, now Istand S’ be binary refinements of and 7’ such that
h(S,S8") = h(7,7"). Then, by Theorem 3.1, there is an acyclic-agreement fofest S and
S’ such that

|Fl—1="n(S,8)=nT,T".

By Lemma 4.3,F is an acyclic-agreement forest f@r and7”’, so
mo(T,T") < |F|—-1=n(T,T.

It now follows thath(7,7") = m.(7,7"). This completes the proof of the theoremn.

V. REDUCING THE SIZE OF THE PROBLEM INSTANCE

In this section, we introduce three reductions which keéreaHYBRIDIZATION NUMBER.
The subtreeandlong-chain reductiongxtend the subtree and chain reductions described in [5].

Additionally, we introduce theshort-chain reductionwhich—in combination with the other
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two reductions—guarantees that all problem instances eakemalized. We begin with some
preliminaries.

Let 7 be arooted phylogenetik-tree, and let: be an element oK. Viewing 7 as a directed
graph with edges directed away from its root, the uniqueexert say, of 7 such that(u, ) is
an arc of7 is called theparentof = and is denoted by (x).

For alln > 2, ann-chainof 7 is an ordered tupl€ay, as, ..., a,) of distinct elements ofX
that satisfies the following properties:

(i) forall i € {1,2,...,n—1}, eitherps(a;) = pr(a;+1) or pr(a;) is a child ofpr(a;11), and
(i) there is an orderingpy, ps, ..., pn Say, of the parents oy, as,...,a, such that, for all
ie€{1,2,...,m— 1}, the vertexp; is a child ofp;,; and, apart fronp, andp,,, each of
the verticesps, ps, . . ., pm—1 has exactly one child not ifay, as, . . ., a,}.
If p is a parent of an element iA = {ay, as, ..., a,}, thenp is calledinternal if it has at most
one child not inA; otherwisep is said to beexternal An element ofA is internal if its parent
is internal, otherwise it i®xternal Note thatps, ..., p,_: are always internal, but that and
pm Can be internal or external. Thusdf is external, then it is a child gf; or p,,. Furthermore,
if 7 is binary, then all elements of are internal. Throughout the paper, we will assume that
if (a1,as,...,a,) IS ann-chain of both7 and 7’, where7 and 7' are rooted phylogenetic
X-trees, therl and7’ have no common non-trivial pendant subtree whose labebsesiubset
of {ay,as,...,a,}. As we will soon see, this assumption does not restrict tseli® in this
paper; it is simply for convenience and to avoid repetitiorthe statements. As an illustration,
(ay,as,...,a,) is ann-chain of the two rooted phylogenetic treésand 7' shown in Fig. 3,
where triangles represent subtrees outside of the chain.

Let 7 and 7’ be two rooted phylogeneti& -trees. LetP be a disjoint collection of subsets
{ai,as,...,a,} of X each being the set of elements of a ch@in a,, ..., a,) common to both
7 and 7’ such that either

(i) (a1,aq,...,a,) has exactly three elements that are internal in ibtand 7", or
(ii) for one of the trees(a,,as,...,a,) has exactly two internal elements while, in the other
tree, (ay, as, .. ., a,) has exactly one parent.

Depending on whether the chain satisfies (i) or (ii), we assidriple of weights or a single

weight fromZ* x Z* x Z* andZ™, respectively. We call such a pair of trees with associated
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weighted setP a pair of weighted rooted phylogeneti-trees
We now describe the three reductions. Zeand7”’ be a pair of weighted rooted phylogenetic
X-trees with an associated st and letA be a subset of. We say thatd does nofcross P
if, for each membelS of P, the intersectiort N A is empty.
Subtree Reduction: For |A| > 2, if A is the label set of a maximal pendant subtre€irand
7" with the properties tha? |A and 7’| A have a common binary refinement adddoes not
cross P, then replace these subtrees with either a single new lbafdda or a pendant edge
ending in a new leaf labeled depending on whether the subtree can be obtained without or
with refinement, respectively. In all cases, the new labé¢héssame in both resulting trees.
Long-Chain Reduction: Forn > 4, let (ay, as, . .., a,) be a maximak-chain of 7 and7”’ that
does not cros$’ with the following properties:
(i) The chain has at least three internal parents in Botand7”’, and at least three elements
that are internal in botll” and 7.
(i) If ay is external in one of the trees, then is internal in the same tree and is internal
in the other tree.
(i) If a, is external in one of the trees, then_; is internal in the same tree while, in the
other treey,, is internal and there are not exactly three internal parehtshich one has
a, as its only child in{a;, as, ..., a,}.
Depending upon whethéx, {a;}, {a,}, or {a1, a,} is the subset of elements §#1, as, ..., a,}
that are external in eithef or 77, respectively replace this chain th and 7’ with the chain
(a,b,c), (e1,a,b,c), (a,b,c,es), OF (e1,a,b,c,es) as follows:
(i) In 7,
pr(e1) # pr(a) = pr(b) # pr(c) # pr(ea),

wheree; is external ifa; is external in7, otherwisee; is internal; and where, is external
if a,, is external in7, otherwisee, is internal.
(i) In 77,
pr(e1) # pr(a) # pr(b) = pr(c) # pr(e2),

wheree; is external ifa; is external in7’, otherwisee; is internal; and where, is external

if a,, is external in7”’, otherwisee, is internal.
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Fig. 3. Two rooted phylogeneti& -trees7 and7’ reduced under the long-chain reduction, wh§rand S’ are the resulting
trees. Dotted lines indicate regions of the chéin, as,...,ay). In 7, a; is external whilea,, is internal and, in7’, a; is

internal whilea,, is external.

Relative to(ay, as, ..., a,), if m denotes the number of internal parentsZinand m’ denotes
the number of internal parents ', then respectively add the new sgt, b, c}, {e1,a,b,c},
{a,b,c,es}, or {e1,a,b,c,ex} to P and, calling this sef, assign it a tuple of weights in which
the first coordinatev, is n — |S|, the second coordinate, is m minus the number of internal
parents of the resulting chain i, and the third coordinates; is m’ minus the number of
internal parents of the resulting chain #. Intuitively, the reduction results in replacing

anda, with e; ande,, respectively, ifa; or a, is external in eithefl or 7', and replacing the
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elements of the chain that are internal in both trees wijth, andc. Fig. 3 depicts an example
of the long-chain reduction, whergé and 7’ are the trees before, ar®l and S’ are the trees
after applying the long-chain reduction. In this exampleis external in7", while a,, is external
in 7', and so the chaifa, as, . .., a,) is replaced with the chaife, a, b, ¢, e3).
Short-Chain Reduction: For n > 3, let (ay,as,...,a,) be a maximal-chain of 7 and 7’
that does not cros® with the property that in one of the trees, say this chain has exactly
one parent, while in the other tré€ this chain has at least three internal parents. (Due to the
assumption that no element of anchain is part of a common non-trivial pendant subtree of
7 and7’, note thatps(ay), ..., pr(a,) are pairwise distinct vertices i’ and so onlya; or
a, may be external ir7’.) Depending upon whethé, {a,}, {a,}, or {a;,a,} is the subset of
external elements of this chain Y, respectively replace this chain #h and 7" with the chain
(a,b), (e1,a,b), (a,b,es), Or (e1,a,b,es) as follows:
(i) In 7,

pr(e1) = pr(a) = pr(b) = pr(e2).
(i) In 77,

pri(e1) # pr(a) # pr(b) # pr(e2),

wheree; is external ifa; is external in7’ ande is external ifa,, is external in7”.
Furthermore, add the new sgt, b}, {e1,a,b}, {a,b,ex}, or {e1,a,b,ex} to P and, calling this
set S, assign it weightw = n — |S|. Intuitively, the reduction results in replacing and a,
with e; ande,, respectively, if either; or a,, is external in7” and, relative taZ”’, replacing the
internal elements witly andb. Fig. 4 depicts an example of the short-chain reduction,re/ie
and7" are the trees before, afland S’ are the trees after applying the short-chain reduction.
Herea, is external in7’, buta, is internal in7”’, and so the chaifiay, as, ..., a,) is replaced
with the chain(ey, a, b).

An agreement foresf for a pair of weighted rooted phylogenetiX-trees7 and 77 is
legitimateif F is acyclic and satisfies the following property, where, aeldeg on the set irP,
the elementg; ande; may or may not exist:

(P): If {e1,a,b,c,es} € P, then exactly one of the following holds:
() {e1,a,b,c,ex} is a subset of a label set iA,

(i) {a}, {b}, and{c} are label sets i, ande; ande, are in separate label sets i
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Fig. 4. Two rooted phylogeneti& -trees7 and 7’ reduced under the short-chain reduction, whgrand S’ are the resulting

trees. Dotted lines indicate regions of the ch@in, as, ..., a,). Note thata, is external in7’ while a,, is internal in7”.

(i) {a,b} and{c} are label sets itF, e; ande, are in separate label setsiand, relative
to (e1,a,b,c,es), if €1 OF ey is internal in7, then{e;} or {e;} is a label set inF,
respectively,

(iv) {a} and{b,c} are label sets itF, e; ande, are in separate label sets’and, relative
to (e1,a,b,c,ey), if e; Or ey is internal in7”’, then{e;} or {e;} is a label set inF,
respectively,

while if {e1,a,b,e2} € P, then exactly one of the following holds:

() {e1,a,b,e2} is a subset of a label set iA,
(1) {a} and{b} are label sets i, ande; ande, are in separate label sets fh

Furthermore, referring to property (P), for an arbitraryesgnent forest of and7”, we define
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the weightof F, denoted byw(F), to be

w(F)=|Fl-1 + > wi (5)

S={e1,a,b,c,ea}€P;S satisfies (ii) inF

+ > wy(S)

S={e1,a,b,c,ea}€P;S satisfies (iii) inF

+ > ws(9)

S={e1,a,b,c,ea}€P;S satisfies (iv) inF

+ Z w(S).

S={e1,a,b,e2}€P;S satisfies (Il) inF
We denote the minimum weight of a legitimate-agreementstofer 7 and 7' by f(7,77).
Observe thaif (7,7") > h(7,7’) as the weightings are non-negative, aftd", 7') = h(7,7")
wheneverP is empty.

Lemmas 5.3, 5.4, and 5.5 are key lemmas in proving theziDIZATION NUMBER is fixed-
parameter tractable. Each lemma describes how particalamon configurations i and 7’
behave in a legitimate-agreement forest forand 7’ of minimum weight. For convenience in
the proofs of these lemmas, we will frequently refer to theperty of a forestF that the trees
in {7(L;):i€{p1,2,...,k}} are edge-disjoint rooted subtreesBfasno two label sets in
F edge-overlap irnZ.

Much of the proofs in the rest of this section involve takingjigen legitimate-agreement
forest F, modifying it slightly, and showing that the resulting ptoin 7’ is also a legitimate-
agreement forest. Two of the repetitive tasks is to show ffais an agreement forest and
acyclic. To avoid some of the repetition and to provide sonteition, let£; € F and L, € F’
with £, C L,. First observe that i} is the label set of a pendant subtree®fL;, then L]
is the label set of a pendant subtreeZ8fL;. Analogously, ifZ] is the label set of a pendant
subtree of7’|L;, then L is the label set of a pendant subtreef’;. Second, as/ |£, and
T'|L; have a common binary refinemert| £, and 7’| L], have a common binary refinement.
Third, if L., L, € FNF', then(L,, L,) is an arc inG x if and only if it is an arc inG . Since
F is acyclic, it follows that ifG contains a directed cycle, then this cycle must use a vertex
in 7' — F. Furthermore, ifC; # L,, then, asC, and £; are edge-disjoint ity and7’, we have
(L, L) is an arc inGx if and only if (£,, £;) is an arc inG£. Also, if (L, L) is an arc in
G, then(L;, L) is an arc inGx. Specializing these observations to whehis a refinement

of F, that is, for eachC, € F', we havel, C L, for someL; € F, it is straightforward to prove
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the following lemma.

Lemma 5.1:Let 7 and7’ be a pair of weighted rooted phylogenefictrees, and letF be
an acyclic-agreement forest far and7’. Let 7' be an agreement forest @f and7" that is a
refinement ofF. ThenF’ is acyclic.

The above observations will be freely used in the rest of faistion. The next lemma is
repeatedly used in the key lemmas to show that our modifiegleagent forest satisfies (P).

Lemma 5.2:Let 7 and7" be a pair of weighted rooted phylogenelictrees, and lefF be a
legitimate-agreement forest far and 7’ of minimum weight. LetS be an element of such
that S contains elements of the form ande,, and letA be the label set of either a pendant
subtree of7 and 7’ that could be used for a subtree reduction or a chaiff cdnd 7' that
could be used for a long-chain or short-chain reduction.nTthere are no distinct label sets
L1,L5 € F such thate; € L1, es € Lo, andL; N A and £, N A both non-empty.

Proof: Suppose that there exist such label sétsand £,. Clearly, S does not satisfy
either (i) or (I) in the definition of (P). Assumg satisfies (ii). Most of the work in the proof is
involved in eliminating this particular case. Since thexesesuch label set€,; and £,, and £,
and £, are edge-disjoint ir¥ and7”’, it is easily checked that; is external in one of the trees,
while e, is external in the other tree. The upcoming argument is iaddpnt of whether or not
a andb have the same parent brand ¢ have the same parent, thus, without loss of generality,
we may assume is external in7, while e, is external in7’. Thuse; is internal in7” ande, is
internal in7". FurthermoreZ (£.) contains the parents af b, andc in 7, and7’(L,) contains
the parents of,, b, andc in 7. As F is acyclic, it follows that either the roots &f’(£;) and
T'(Ls) coincide in7’, in particular, both roots argr (e ), or the root of7’(L,) is an ancestor
of the root of 77(L,).

If A is the label set of a pendant subtree, thenfas) A and £, N A are both non-empty,
the paths inZ7 from any element inC; N A to p and from any element irf; N A to p meet at
pr(e1), while the paths i/’ from any element inC; N A to p and from any element i, N A
to p meet atp7(ez). This set-up is depicted in Fig. 5. L&Y, denote the subset of elements of
L, for which pr(e;) is an ancestor. Sincg £, and7’|L, have a common binary refinement
and £, N A is non-empty, each of the elementsgh is a descendant qf7(es) in 7'. Let £}
denote the subset of elements&f for which pz(e;) is not an ancestor if”’. Let 7' be the
partition obtained fron¥F by replacingl,, Lo, {a}, {b}, and{c} with (£, — L)) U{e;,a, b, c},
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mrcar (L£1)

T/

Fig. 5. Set-up in the proof of Lemma 5.2 for whéhsatisfies (ii) in the definition of (P) and is the label set of a pendant
subtree of7 and7’. The roots of7 (£,) and 7' (L) are indicated by mrea(£1) and mrca (L), respectively.

(L1 — L)) —{e}, £, andL]. SinceF is an agreement forest @f and7’ and sinceF satisfies
(P), it is easily checked that’ is an agreement forest & and 7' that satisfies (P). To see
that 7’ is acyclic, note that, up t0L, — L) U {ey, a,b,c}, F' is a refinement ofF. Moreover,
for £L.,L, € FNF, (L., (Ly — L) U{e1,a,b,c}) is an arc inGx if and only if (L., Ls) is
an arc inGg, and if (Lo — £5) U {ey,a,b,c}, Ls) is an arc inGx, then (L., L) is an arc in
G unless the root off '(L,) is not a strict ancestor g (ez). In this exceptional instance,
(L1, L) is an arc inG# and, wheneve(L,, (L, — L)) U{ey,a,b,c}) is an arc inGz, (L., Ly)

is an arc inG . Using the observations prior to Lemma 5.1, a routine chéckvs that if there
is a directed cycle 7=, then there is a directed cycle @ir. It follows that 7’ is a legitimate
agreement forest of and 7’. But w(F’) < w(F), contradicting the minimality ofF, and so
A is not the label set of a pendant subtree.

Now assume thatl is the set of elements of a chaia,as,...,a,) that could be used
for a long-chain reduction. Sincé; N A and £, N A are both non-emptyyr(a,) = pr(e1),
pr(a1) = pr(e2), a1 € L4, anda, € Ly. Thusa; is external in7’” anda,, is external in7.
Also, £ N A = {a1} and L, N A = {a,}. Furthermore, a¥ |£L, and7'|L, have a common
binary refinement, except far,, no element in’, is a descendant qf;(e;) in 7 and, except

for e, no element inC, is a descendant qgf7(e;) in 77. Let £} denote the subset of elements
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of £, for which p7(e;) is not an ancestor. Let’ be the partition obtained fro by replacing
Ly, Lo, {a}, {b}, and {c} with (Ls — {a,}) U {e1,a,b,c}, (L1 — L)) — {e1}, {a,}, and L].
The set-up is similar to that of the last paragraph where serasdA was a pendant subtree.
Indeed, a similar argument now leads to the desired cowtradi

Next assume thatl is the set of elements of a chafn,a,, ..., a,) that could be used for
a short-chain reduction. Sinc&, N A and £, N A are both non-emptyyr(a,) = pr(e1) and
pr(a1) = pr(e2) regardless in which tree the chain has a single parent. Ifcti@n has a
single parent inZ, then£, N A = {a,} and7'(L,) contains a parent of one of the elements
in {as,...,a,}. Now |Ly; N A| = 1 otherwise7|L, and7’|L, do not have a common binary
refinement, and so each of the at least two internal eleméritseecchain in7”’ that is not the

element inL, N A is a singleton inF. It is now easily checked that the partition
f/:{ﬁi—AZLi ef—{ﬁg}}U{EQUA}

is a legitimate-agreement forest f and7”. But w(F’) < w(F), contradicting the minimality
of F. Therefore assume that the chain has a single pareft.iet £, denote the subset of
elements of, for which pr(e;) is an ancestor. A§ |£, and 7'|L, have a common binary
refinement and’; N A is non-empty, each of the elementsdh is a descendant @iz (ez) in 7”.
Let £} denote the subset of elements®f for which pz(e;) is not an ancestor. LeE’ be the
partition obtained fromF by replacingl,, L., {a}, {0}, and{c} with (Ly — L£}) U {e1,a,b,c},
(Ly — L)) —A{e1}, £,, and L£]. This set-up is again similar to that when we assurdedas
a pendant subtree and, as above, a similar argument leatle thesired contradiction. It now
follows that S does not satisfy (ii).

If S satisfies (i), then eithel’; or £, edge-overlap with{a,b} in 7’; a contradiction.
ThereforeS does not satisfy (iii) and, similarlyy does not satisfy (iv). Lastly, assunSesatisfies
(IN. Then, using the fact that;, a, b, ande, have the same parent i, a routine check shows
that the partition”” obtained fromF by replacingl, £», {a}, and{b} with £, U{a,b,es} and
Lo —{e} or L1 —{e1} and L, U {a, b, e;} depending on whethef’(L,) or 7'(L,) includes
the parents ot and b in 77, respectively, is a legitimate-agreement forestZoland 7'/, But
w(F') < w(F), contradicting the minimality ofF. Thus there are no such distinct label séfs
and L,. [ ]

Lemma 5.3:Let 7 and 7’ be a pair of weighted rooted phylogenefictrees. LetA be the
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label set of a maximal pendant subtreeZirand7” with the properties thal |A and7’| A have a
common binary refinement andl does not cros$’. Then, for every legitimate-agreement forest
F for 7 and 7’ of minimum weight, A is a subset of a label set if.

Proof: Let F = {L,,L,L,,..., L} be a legitimate-agreement forest ®f and 7' of
minimum weight. Suppose that two subsefs,and £; say, have the property thad;, N A and
L;N A are both non-empty. If there are no such subggtand £; so thatZ, N (X U{p}) — A)
andLZ; N ((X U {p}) — A) are both non-empty, then it is easily checked that the partit

(L LinA=0,L; € FYU{La},

whereL s = ;. cr.r.naz0 £ir 1S legitimate-agreement forest dfand7” but with smaller weight
than F; a contradiction. Therefore, we may assume that we can eh8psind £; such that
L;N((XU{p})—A)andL;N((XU{p})—A) are both non-empty. Because of this assumption,
the pendant subtree with label sétcannot be obtained frord or 7’ by deleting a single edge.
Let e denote the edge df that is directed into the root df (A) and lete’ denote the edge of
7' that is directed into the root of ’(A). Since no label sets itF edge-overlap i7" or 77,
at most one of7 (£;) and 7 (L;) includese and at most one of’(£;) and 7'(L;) includes
e’. Also, sinceG is acyclic, if 7(£;) includese, then7’(L;) does not include’. Similar
conclusions hold for the other combinations includingr ¢’. Let 7’ be the partition ofX U{p}
obtained fromF by replacingZ; and £; with £, U £;. It follows from the above conclusions
and the observations prior to Lemma 5.1 thtis an acyclic-agreement forest f@r and 7.
Furthermore, asF satisfies (P), it follows by Lemma 5.2 tha satisfies (P), and sg” is a
legitimate-agreement forest @f and7’. But, asw(F’) < w(F), we obtain a contradiction to
the minimality of 7. This contradiction completes the proof of the lemma. [ |
Lemma 5.4:Let 7 and7”’ be a pair of weighted rooted phylogenekictrees. Let(ay, as, . . ., a,)
be a maximal chain of botAl and 7’ that does not cros# with properties (i)-(iii) in the
definition of the long-chain reduction. Then, for every tegate-agreement forest for 7 and
7' of minimum weight, one of the following holds:
(i) {a1,aq9,...,a,} is a subset of a label set if,
(i) no label set inF contains at least two elements of the chain and; i§ an internal element
of both7 and7”, then{q;} is a singleton inF, or

(iii) for either7 or7’, say7, two elements of the chain are in the same label set predfdblyy
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have the same parent and, moreover, if that parent is interra, then the corresponding

set contains no other elements ®fU {p}.

Proof: Let F = {L,, L., L,,..., Ly} be a legitimate-agreement forest fér and 7' of
minimum weight. LetA = {ay,ao,...,a,}. The proof is partitioned into two cases depending
on which of the following properties, up to interchanging tloles of7 and7”, is satisfied by
F:

(A) For all £, € F with £; " A non-empty andr(a;) an ancestor of all elements i — A

in 7, the vertexpr(a;) is an ancestor of all elements iy — A in 7".

(B) There is a label sei;; say, inF with both £; " A and £; — A non-empty and such that, in

T, the vertexpr(a;) is an ancestor of all elements ity — A, but, in7’, the vertexps(a;)

is not an ancestor of all elements i) — A.

Case (A). Let J index the label sets af that contain elements of the chain. More precisely,

J={je{p.1,2,... .k} : L;n{ar,as,...,a,} # 0}

Relative to the chaiffay, as, . . ., a,), we will call an edge off or 7’ a non-pendant chain edge
if the edge is not incident with an element i but it is incident with an internal parent i
or 77, respectively. The analysis of (A) is partitioned into twabsases:
(I) There exists (not necessarily distinct) label sétand L, in F such that7 (£;) and7'(L;)
contain a non-pendant edge of the chéin, as,...,a,) in 7 and7’, respectively.
(I F contains no such label sets§ and ;.
Subcase (l). Without loss of generality, we may assume thgatand £, are chosen so that
the roots of7(L;) and7'(L;) are as close t® as possible in7 and 7”. If neither £; nor
L; contains an element ofl, then, asA contains no common non-trivial pendant subtree, it
is easily seen thaf satisfies (ii) in the statement of the lemma. Thus, we maymssthat
either £; or L;, say L;, contains an element od. If £;, does not contain an element df,
then one of the following holds: (a) for some, a; € (£; N A), we havepr(a;) # pr(a;)
but pr/(a;) = pr(a;); B) a1 € L;, a,, € L;, anda, is an external element of the chain Tr;
or (C) a, € L;, a1 & L;, anda, is an external element of the chain M. Since £, does not
contain an element oA, it follows that if a label set inF contains an element il and an
element in(X U {p}) — A, then that label set contains either or a,, in which cases; or a,

are external in7’, respectively, but no other elements frofn Furthermore, no label set i#

July 18, 2008 DRAFT



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XXX, NO. XXX, XXX 22

contains two elements of that have different parents ifi’. It is now easily checked that, &
is a legitimate-agreement forest of minimum weightsatisfies (iii) if (a) holds and satisfies
either (ii) or (iii) if (b) or (c) holds. In all cases, if (iiiholds, then7” is the distinguished tree.

Now assume that; and £;; contain an element ofl. The rest of the analysis for (I) is
partitioned into two parts. Lef, denote the subset of elementsdn— A that are descendants
of pr(ay), and letX] denote the subset of elementsdin— A that are descendants pf(a,)
in 7'. Analogously, let, denote the subset of elements i — A that are descendants of
pr(aq), and letX; denote the subset of elementsdn — A that are descendants pf(a;) in
7.

For the first part, suppose thdf = X and L}, = X;. Let 7' be the forest obtained froi#t
by removing each label sét; with j € J and inserting the new label s€f, = Uje, L;. Since
we are in case (A)F’ is an agreement forest faf and7’. To see that?’ is acyclic, consider
the directed graph&'s and Gx. The vertex set of7x is obtained fromG~ by deleting the
verticesC; for all j € J, and adding the new verteg,. Also, if £,, L, € F' — {L,}, then
(L., L) is an arc inGx if and only if (L., L,) is an arc inGx. Regarding the arcs i 5
incident with Z,,, there are two instances to consider. First assumeZhatA is non-empty and
contains an element that is not a descendant;9f,) in 7. Then£; — A contains an element
that is not a descendant pf-(a;) in 7’. SinceGx is acyclic, there is no arc fromd; to £; in
G r; otherwise G+ contains a directe@-cycle. Therefore, either the roots 8f(L;) and7'(L;)
coincide in7" or the root of 7'(L;) is a descendant of the root @f'(L;). Since the root of
T(L,) is the same as the root @f(L;) in 7, it follows that if (., £,) is an arc inGz, then
(L., L;) and(L,, L;) are arcs inG . Moreover, if(L,, £,) is an arc inG , then either(L,, L;)
or (L., Ly) is an arc inGg. Thus, asG# is acyclic, G is also acyclic.

Second assume that eithéy — A is empty or if £; — A is non-empty, then it only contains
elements that are descendanty#efa,). Because of the first instance, we may assume that the
analogous property holds fat; and7’. Then the root of7 (L,) is pr(a,) in 7 and the root
of 7'(L,) is pr(a,) in T'. Suppose thal» contains the directed cycl€. Then, asGr is
acyclic, C must containl,. Let £; and £,,, denote the vertices i’ that immediately precede
and succeed’,, respectively, in this directed cycle. Except 6, all other vertices inC' are
also vertices inG . Thus eithen Z;, £,,,) or (L, L,,,) is an arc inGx. But (£, £;) and(L;, L)

are also arcs i, implying that G+ contains a directed cycle; a contradiction. Thig is
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acyclic. HenceF’ is an acyclic-agreement forest f@rand7”. Furthermore, ag satisfies (P), it
follows by Lemma 5.2 tha#’ satisfies (P). Thus ifJ| > 2, thenw(F’) < w(F), contradicting
the minimality of 7. Therefore,A is a subset of a label set i and soF satisfies (i) in the
statement of the lemma.

For the second part, suppose that eithees X| or £, # X;. Without loss of generality, we
may assume thaf, # X| anda; € £; N A. Since we are in case (A), this implies that(a;)
is not an ancestor of all elements i) — A. Let £! denote the subset of elementsin— A
that are not descendants pf (a,). Because we are in case (AY, # L£; — A, and so there is
an element inl; — A that is not a descendant pf-(a;) in 7'. Furthermore, we may assume
that £ is non-empty. To see this, observe thaCifand £; are distinct, thenX] is empty, and
so L is non-empty. Also, ifC; and £;; are the same, then, without loss of generality, we may
assume that’; is non-empty.

First assume that either; is internal in bothZ7 and 77, or a; = ay. If (£; — A) N X] is
non-empty, then, ag|£, and7’|L; have a common binary refinemeut, C X|. Furthermore,
if a; # a; or a; = a; anda, is internal in7”, then the same reasoning implies t&gtN L is
empty. But thenX| = £; a contradiction. Therefore, assume that= a; anda, is external in
T'.If a, & L;, then, asF is a legitimate-agreement forest of minimum weight satisfies (ii)
in the statement of the lemma. So assume that £;. If a, is internal in7, then, asT |L;
and7’|L; have a common binary refinement, another check showsXhat £ is empty and
so X; = L]. So now assume that, is external in7, and therefore internal if”’. Again as
T|L; andT’|L; have a common binary refinement, it is straightforward tockhéat, for any
two elements inC! N X the path in7 from each of these elements taneets the path from,
to p in exactly one place. With this in hand, &t be the partition ofX U {y} obtained fromF
by removing each label set; with j € J and inserting the new label sdt$_, £; — (£} N X7)
and L7 N X7. Clearly, 7' is an agreement forest faf and7”, and it is easily checked that, as
F is acyclic, 7' is acyclic. Furthermore, by Lemma 5.2 satisfies (P). Thug is a legitimate-
agreement forest fof’ and 7’. But, in F, each of the elements of the chain that are internal
in both 7 and 7" are singletons. Since there are at least three such elemgfts) < w(F);

a contradiction.
Now say that(£;, — A) N X is empty. As7 |£; and7’|L; have a common binary refinement,

for any two elements i, the path in7”’ from each of these elements ganeets the path from
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a, to p in exactly one place. Ifi; is external in7, not in £;, and the label set containing
contains elements ilX U{p}) — A4, then, as we are in case (A)s(a1) andpz(a;) are ancestors
of each of the elements in this label set. The same reasoisogshows that ifa,, is external
in 7 and not inL;, then its label set contains no elements kU {p}) — A. Furthermore, if
a; and a;, are internal elements of both and 77, then, as7|£, and 7’|£; have a common
binary refinement, the label set containiagis a subset oA if py(a;) # pr(a;). Also, as no
label sets inF edge-overlap inZ, the elements:;; and a;, are in separate label sets i if
pr(a;) # pr(ax). Thus there are two such subsetsAfn F. Now let 7’ be the partition of
X U {p} obtained fromF by removing each label sef; with ;7 € J and inserting the new
label sets J,; £; — £; and £;. It is clear that7" is an agreement forest f&f and 7", and,
by Lemma 5.2, thatF’ satisfies (P). Moreover, it is easily checked that,/ass acyclic, 7' is
acyclic. Butw(F’) < w(F); a contradiction.

It now follows that we may assume thétn A = {a, }, wherea, is external in eithe? or 7.
By consideringZ, it is easily seen that if; anda,, are internal elements i anda,, ¢ {a;, a;},
then the label set iF containinga; is a subset ofd, anda,; anda; can only be in the same
label set inF if they have the same parent ih. Now consider?”. If p7(a;) is an ancestor
of an element inC;, thenF satisfies (ii) in the statement of the lemma. Therefore, rasstihat
p7(ay) is not an ancestor of any elementdn, that is X is empty. Now.;, contains an element
of A and7’(L;) contains a non-pendant edge (@f, as, .. .,a,). If a; € L; and L;; contains
an element inX U {p}) — A that is not a descendant pf-(a,) in 77, then againF satisfies
(ii) in the lemma. Noting that the label set containimgcan only contain another element 4f
if a; is internal in7, it is now easily checked that, & is a legitimate-agreement forest fér
and 7’ of minimum weight, thenF satisfies (iii) in the statement of the lemma withas the
distinguished tree unless, is internal in7. But then a similar argument to that in the previous
paragraph shows that the partitidii of X U {p} obtained fromF by removing each label set
L; with j € J and inserting the new label seuj;jg L; — L; and L] is a legitimate-agreement
forest of smaller weight thast; a contradiction. This completes the analysis of the seqant
and therefore (I).

Subcase (I1). We may assume that for one of the trees, $aywhenever a label sef, in F
contains an element iA, then, unless this element is externd),C A and all elements i,

have the same parentih. If F satisfies (ii) in the statement of the lemma, then we are deme;
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assume that this is not the case. Then there is a labef segy, inF that contains at least two
elements inA. In 77, these elements have different parents. SiAces a legitimate-agreement
forest for7 and 7’ of minimum weight, it is now easily checked that satisfies (iii) in the
statement of the lemma. This completes the analysis of idl, &herefore, (A).

Case (B). First note that, sinc€ |£; and 7’| L; have a common binary refinement (a,) is
not an ancestor of any elementdh— A in 7’ unlessC; N A = {a;} anda, is external in7 or
L;NA={a,} anda, is external in7’. The analysis of this case is separated into two subcases:
() £; N A contains an element that is internal in b@thand 7”.

(I £; N A contains no element that is internal in bathand 7.

Subcase (I). Let a; be an element of’; N A that is internal in botiZ” and 7’. Let a; be an
element ofA that is internal in botty” and7”. If pr(a;) # pr(a;), then using the facts that no
label sets inF edge-overlap irf¥ or 77, that7 |£; and7’|L; have a common binary refinement,
and thatF is acyclic, it is easily checked thaj is in a label set ofF containing only elements
of A and all of the elements in this set have the same parefit iBecause of the requirement
on internal parents in (iii) in the definition of the long-@haeduction, there are at least two
such label sets. Also, jir(a;) = pr(a;) for somej # i anda; ¢ L;, then, becausé is acyclic
and no label sets itF edge-overlap ir7, a; is in a label set ofF containing only elements of
A and all of the elements in this set have the same parent. dfartire, sinceZ |£; and 7’| L;
have a common binary refinement, any two distinct elements; in A intersect the path from
a, to p in 77 in exactly one place.

We next consideu; if a; is external in eithe or 77, anda,, if a,, is external in eithel or
T'. If ay is external in7, then, as7 |£; and7’|£; have a common binary refinemeant, ¢ L;.
Furthermoreg, is in a label set ofF that contains no other elements 4fand, moreover, both
pr(a;) andpr (a;) are ancestors of all elements in this label setlfis external in7”’, then
it easily checked that;, behaves in the same way as elementsdithat are internal in both
7 and7’. Now considera,. If a, is external in7, then, as7 |£; and7'|L; have a common
binary refinementqa, ¢ L;. Also, asF is acyclic,a, is in a label set ofF that contains no
other elements ofA and, moreoverp(a,) is an ancestor of all elements in this label set, but
pr(ap) is an ancestor of none. Furthermore, exceptdgrthe vertexpr (a;) is an ancestor of
all elements in this set. Now assume thatis external in7". If a,, &€ L;, then, as no label sets

in F edge-overlap irZ”’, the element,, is the only element ofd in its label set and, if this
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label set contains elements (X U {p}) — A, thenpz(a;) is not an ancestor of any of these
elements and all elements iy are descendants of- (a,,).

With the above conclusions in hand and noting that it is godedor a,, to be external ir7”’
anda, € L;, let J index the label sets of that contain elements of the chain. LEt be the
forest obtained fromF by removing each label set; with ;7 € J and inserting the new label

sets

ch — (L — A) = (L, — {an}),

L,=L;,—A andL], = L, — Aif a, is external in7, whereL,, is the label set inF containing

a,, and

Ugi— -4

JjEJ
andfL, = L; — Aif a, is external in7’. Note thatF’ is a partition of X U {p}. By considering
the possibilities fora; and a,,, and noting thaty7(a;) is not an ancestor of any element in
L; — A, itis clear thatF’ is an agreement forest faf and7’. Using arguments similar to that
used in (A), a straightforward check shows that,7as acyclic, 7’ is acyclic. SinceF satisfies
(P), it follows by Lemma 5.2 that’ satisfies (P). Therefore:’ is a legitimate-agreement forest
for 7 and7’. But, as there are at least two label setsFircontaining just elements of, we
havew(F’) < w(F); contradicting the minimality ofF. Thus subcase (I) does not arise.
Subcase (I1). First observe thai’; N A is a non-empty subset ofa,,a,} and each of the
elements inl, N A is external in eithefl or 7'. Let a;, a; € A such that neithet; nor a; is
a; if a; is external in eithe or 7' and neithew; nor ay, is a, if a,, is external in eithe” or
T'. Assume first that;; € £;. SinceF is acyclic and no label sets i edge-overlap iri/ or
7', it is easily checked that; and a; are in separate label sets # and none of these label
sets contain elements (X U {p}) — A. Arguing similarly, if a,, is external in7", and therefore
internal in7’, then{a,} is a label set inF. It now follows that if a, is not external in7’,
then F satisfies (ii) in the statement of the lemma. Therefore, mssthata,, is external in7”.
If a, & L;, then, as no label sets A edge-overlap ir7’, the elements; anda,, are not in
the same label set it for all j. Thus F again satisfies (ii) in the statement of the lemma, so
assume that,, € £;. Since7 |£; and 7'|L; have a common binary refinement (a,,) is an
ancestor of all elements ig;. Let 7' be the partition ofX U {p} that is obtained fromF by

replacing£; and all other label sets containing elementsdofvith the three set&}, £/, and

Rl
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A, where L} contains precisely the elements i) — A that are descendants pf(a;) in 7’
and L, = £, — (AU L}). Clearly, 7' is an agreement forest faf and7’. Furthermore, using
arguments similar to that used in (A), it is easily checkeat,tlasF is acyclic, 7' is acyclic.
By Lemma 5.2 F' satisfies (P) ag- satisfies (P), and s&’ is a legitimate-agreement forest for
7 and7’. But F has the property thata,;} € F for all a; € A —{a;,a,}. Since|A| > 5, this
implies thatw(F) < w(F’); a contradiction.

We may now assume that, € £, anda; ¢ L;. First note that ifpr/(a;) is an ancestor
of an element inZ;, then, as the label sets (A are edge-disjoint 7', F satisfies (ii) in
the statement of the lemma. Thus we may also assumepth@t,) is not an ancestor of any
element inZ,. Since no label sets itF edge-overlap ir7, it follows that if pr(a;) # pr(ax)
or pr(ay) # pr(a;), thena; anday, anda; anda; are in separate label sets i, respectively.
Furthermore, unlesgr(a;) = pr(a,) anda, is external in7’, the label set containing; does
not contain an element ¢fX U {p}) — A. Also, if a, is internal in7, then its label set does not
contain an element ofX U {p}) — A. It is now easily checked that if,, is external in7, then,
asa, is internal in7’ and F is a legitimate-agreement forest of minimum weight,satisfies
(ii) in the statement of the lemma with as the distinguished tree. Therefore, assume dhat
is external in7”.

If a; is external in7 and its label set contains an element(id U {p}) — A that is not
an ancestor opz(a;), then F satisfies (ii) in the lemma. Thus if the label set containing
contains an element i U {p}) — A, we may assume that it is a descendanppia ).

Now, apart from£; and the label set containing, if a; is external in7, the only other
possible label set, say, inF that has a non-empty intersection withand (X U {p}) — A
has the property that ifi, € £, N A, thenpr(a,) = pr(a,). If no label set inF contains at
least two elements oft each having a different parent i’ and there exists no such label set
Ly, then F satisfies (ii) in the statement of the lemma. Therefore, eapphat one of these
two possibilities occur. LetF’ be the partition ofX U {p} obtained fromF by replacingZ;,
Ly, if such a label set exists, and all other label sets contgirlements ind with the setsC!,
AU Ly UL, and L], whereL, = L; — {a,}, £, is the label set ofF containinga, if a; is
external in7, £} contains precisely the elements 4 — A that are descendants pf(a,),
and L, = L, — L£}. Note that, as no label sets ji edge-overlap irZ” or 7', either£; — {a;}

or £} is empty. Clearly, 7’ is an agreement forest f&f and 7'. Furthermore, using the fact
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that one of the two above possibilities occur, it is easilgaked that, asF is acyclic, 7' is

acyclic. Moreover, as- satisfies (P), it follows by Lemma 5.2 th&t satisfies (P), and s&” is

a legitimate-agreement forest f@r and 7’. But w(F’) < w(F) as7 has at least three internal

parents. This contradiction completes the proof of (B) aadde the lemma. [ |
Lemma 5.5:Let7 and7’ be a pair of weighted rooted phylogenelietrees. Let(ay, as, . .., a,)

be a maximal chain of bot# and7’ that does not cros® with the property that in one of the

trees, sayl, this chain has exactly one parent, while in the other fé¢his chain has at least

three internal parents. Then, for every legitimate-agesgrforest for 7 and7" of minimum

weight, exactly one of the following holds:

() {a1,a9,...,a,} is a subset of a label set if, or

(i) no label set inF contains at least two elements of the chain and; i§ an internal element

of (aj,as,...,a,) in 7', then{q;} is a singleton inF.

Proof: Let F = {L,, Ly, L, ..., Ly} be a legitimate-agreement forest fér and 7' of
minimum weight, and letd = {a;,as,...,a,}. Let J index the label sets of* that contain
elements of4, and letl, = {J,.,; £;. Suppose that neither (i) nor (ii) holds fdr. If no label
set in F contains at least two elements @f then, relative taZ”’, there is a label set itF that
contains an internal element of the chain as well as an eleafiéX U{p}) — A. By considering
the structure ofay, as,...,a,) iIn 77, it is easily seen that, &%, ao, ..., a,) has at least three
internal elements relative t@’, at least one of these internal elements is a singletaf.im
routine check shows that, apart from one exceptional case;an replace such a singleton and
a label set inF that contains an internal element of the chairnZihas well as an element of
(X U{p}) — A with the union of these two sets to obtain a legitimate-agese forest of7”
and7’ that has smaller weight thefi; a contradiction. In the exceptional case, there is exactly
one label set; say, inF that contains an internal element of the chairZihand an element
in (XU{p})— A, and this set has the properties thétn A| = 1, andpz(a,) is an ancestor of
all the elements inC; — A, but pr(a;) is not an ancestor of all the elementsdn SinceF is
acyclic, it follows that each of the remaining internal etts of the chain ity are singletons

in F. A straightforward check now shows that
{L—-—A:LeF}U{A}
is a legitimate-agreement forest férand7”’, but with smaller weight thar. This contradiction
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implies that there is a label set i containing at least two elements af. Without loss of
generality, we may assume that this setlisand thata; € £; N A, where: > i for all
ay € L; N A.

Suppose that there exists &p € F—{L;} such thaiL,NA| > 1, [£,N (X U{p})—A)| >
1, and leta, € (£, N A). If pr(ay) is a descendant gz (a;), then, as|L;| > 2 and no
label sets inF edge-overlap irZ”’, the vertexpr(a;) in 7' is an ancestor of all elements in
LN ((XU{p})—A). BecauseF is acyclic, it follows that the vertexs(a;) in 7 is an ancestor
of all elements inC, N ((X U{p}) — A); otherwiseGr contains a directed-cycle. Now assume
that p7(ay) is an ancestor op7(a;). If £; contains an element that is not a descendant of
pr(a,) in 7', then, as7 £ is acyclic,pr(a,) is an ancestor of all elements i), in 7. Similarly,
if £, contains an element that is not a descendant pf-(a,) in 7', then, asG £ is acyclic,
pr(a,) is an ancestor of all elements iy in 7. Now let 7' be the forest obtained frorft by
removing each label set; with j € J and inserting the new label sg€f,. Using the outcomes
of the above two possibilities, it is easily seen ttfdtis an agreement forest f&f and 7”.
Furthermore, asF satisfies (P), it follows by Lemma 5.2 that’ satisfies (P). Using the facts
that F is acyclic and at least one of the label setsArcontains at least two elements df it
is straightforward to show that” is acyclic. But thenw(F’) < w(F); a contradiction to the

minimality of F. ThusF satisfies either (i) or (ii). [ ]

VI. HYBRIDIZATION NUMBER IS FIXED-PARAMETER TRACTABLE

In this section, we prove Theorem 1.1. We begin by showingehah of the three reductions
described in the last section preserves the minimum weigatiegitimate-agreement forest. For
a chain(ay, as, . .., a,) of T, the partition of{a,, as, . .., a,} defined by putting;; anda; in the
same part precisely jir(a;) = pr(a;) is called theparent partitionof (a;, as, ..., a,) induced
by 7.

Proposition 6.1:Let 7 and7’ be a pair of weighted rooted phylogenefictrees. LetS and
S’ be the pair of weighted rooted phylogeneli¢-trees obtained from¥ and7”, respectively,
by applying the subtree, long-chain, or short-chain redactThenf(7,7") = f(S,S').

Proof: It is an immediate consequence of Lemma 5.3 th& &nd S’ have been obtained
from 7 and7’ by an application of the subtree reduction, then the prdjoosholds. We next
prove the result for whe§ andS’ have been obtained frofh and7” by applying the long-chain
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reduction. The proof of the result for the short-chain reiuncis similar and omitted.
Suppose thata, as, . . ., a,) is the common chain of and7” used in this application of the
long-chain reduction. Now leFr be a legitimate-agreement forest férand 7’ of minimum

weight. Then, by Lemma 5.4 one of the following holds:

(i) {ai,as,...,a,} is a subset of a label set ¢,
(i) no label set inF; contains at least two elements of the chain andy;ifs an internal
element of bothZ” and7”, then{a;} is a singleton inFr, or
(i) for either7 or7’, say7, two elements of the chain are in the same label set predfdblyy
have the same parent and, moreover, if that parent is interra, then the corresponding

set contains no other elements ¥fU {p}.

Let F5 be the forest obtained fromk; by replacinga; and a, with e; and es, respectively,

if a; or a, is external in eitherZ or 7', and then, depending on which of (i), (ii), or (i)

holds, respectively replace the remaining elementsl @fs follows: replace:,, as, . . ., a, with

a, b, and ¢; collectively replace the label sets of the forfmn;} with {a}, {b}, and {c}; or

collectively replace the label sets of the fofm;, a;;1, .. ., a;} with {a, b} and{c} and, if there

is a label set of the forr{ey, as,...,ay} or {a;,aj11,..., e}, replace it with{e;} or {e,},

respectively. Sincérr is a legitimate-agreement forest férand7”, it is easily checked thats

is a legitimate-agreement forest f6rand S’. In the case that (ii) holds, the contribution of the

singletons containing elements that are internal in WotAnd 7’ to w(F7) is exactly the same

as the contribution ofa}, {b}, and{c} to w(Fs). Furthermore, in the case that (iii) holds, the

contribution of the label sets containing just internalnedaits of A in 7 to w(Fr) is equal to

the contribution of{a, b}, {c}, and{e;} and{e.} if eithere; or e, are internal elements of the

reduced chain irS respectively, tav(Fs). Thusw(Fs) = w(Fr), and sof (S,S8") < f(T,7T').
Now suppose thaFy is a legitimate-agreement forest f6rand S’ of minimum weight. As

Fs is legitimate, one of the following holds, wheeg ande, may or may not exist depending

on whethera; or a, is external in eithefl or 77:

(i) {e1,a,b,c e} is contained in a label set; say, inFg,

(i) {a}, {b}, and{c} are label sets iiFs, ande; ande, are in separate label sets iy,

(iii) {a,b} and {c} are label sets iFg, ande; ande, are in separate label sets iy and,

relative to(ey, a, b, c, es), if €1 Or ey is internal in7, then{e; } or {e,} is a label set inFg,
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respectively, or
(iv) {a} and{b,c} are label sets inFs, ande; ande, are in separate label sets s and,
relative to (e, a,b,c,es), if ey Or ey is internal in7”’, then{e;} or {e;} is a label set in
Fs, respectively.
Let 71 be the forest obtained fromts by replacinge; and e, with a; anda,,, respectively, if
ay or a, is external in eithefZ or 7', and then, depending on which of (i) to (iv) holds, make
one of the following replacements fat b, andc:
(i) £ with (£ —{a,b,c})U A,
(i) {a}, {b}, and{c} with the sets{a,}, whereq; is an internal element in both and 7,
(iii) {a,b} and{c} with the parts of the parent partition ¢y, as, ..., a,) induced byZ whose
corresponding parents are internalZin and deleting{a, } or {a,} if e; or e, is internal in
S, or
(iv) {a} and{b, c} with the parts of the parent partition ¢f;, as, ..., a,) induced byZ7’ whose
corresponding parents are internal4n, and deleting{a,} or {a,} if e; or e, is internal
in S'.
A routine check shows that, @5 is a legitimate-agreement forest fSrand S’, the collection
Fr of sets is a legitimate-agreement forest¥oand7". In (ii), the contribution of the singletons
{a}, {b}, and{c} to w(Fs) is the same as the contribution of the séts} to w(Fr), where
a; is an internal element of botli and7". Furthermore, in (iii), and analogously in (iv), the
contribution of{a, b} and{c}, and{e;} and{e.} if e; or ey, respectively, are internal i§ to
w(Fg) is equal to the contribution of the label sets/ which exclusively contain internal
elements ofA in 7 to w(Fr). Thusw(Fr) = w(Fs), and sof(7,7") < f(S,S). Hence
f(T,7") = f(S,S’), completing the proof of the proposition. [ |
Lemma 6.2:Let7 and7”’ be a pair of weighted rooted phylogenelietrees, and letay, as, . . ., a,)
be a maximal chain of and7" that does not cros®. Then, by a sequence of long- and short-
chain reductions applied to this chain, the length of theltes chain is at most7.
Proof: Suppose first that there is an element of the chain that isnialtén both7 and

T'. With i < j, chooses; anda; as follows:

(@) If a; is internal in both7 and7’, chooseu; to bea,. If a; is external in both7 and 7”7,

but a, is internal in both7 and7”’, chooseu; to bea,. Otherwise, for som&k € {7,7"},
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a; anda, are external ifR. In this case, choose to be the element of the chain that is
external inR and has maximum index with,, as, ..., a; all external inR.

(b) If a, is internal in bothZ” and7”, chooses, to bea,. If a,, is external in botly” and7”, but
a,—1 is internal in both7 and7”, chooseu; to bea,_;. Otherwise, for somé& € {7,7"},
a, anda,_; are external inS. In this case, choose; to be the element of the chain that
is external in§ and has minimum index with;, a;.,...,a, all external inS.

Having pickeda; anda;, consider the chaitia;, a;+1, . .., a;). If this chain satisfies (i) and
the condition on internal parents at the end of (iii) in thea#tion of the long-chain reduction,
then we can apply this reduction to get a chain with at mosténehts. Furthermore, if
(a1, as,...,a;,_1) is a chain with at least three internal elements in the tre¢Zin7’} that
is not R, then we can apply the short-chain reduction to get a chaih &t most3 elements.
Lastly, if (a;+1, a;42, ..., a,) is a chain with at least three internal elements in the trdgin7”’}
that is notS, then we can again apply the short-chain reduction to getamachkith at most3
elements. Note that if we cannot apply the first or the secdnithase short-chain reductions,
theni — 1 < 3 andn — j < 3, respectively. It now follows that after these three reund, the
resulting chain has length at maost.

Now assume thafa;, a;+1, . .., a;) does not satisfy (i) or the condition on internal parents at
the end of (iii) in the description of the long-chain redoati Then, up to the possibility of an
additional internal parent which only has as its only child in{a;, a; 41, . .., a;}, this chain has
at most two internal parents in eith@&ror 7'. Except for the children of these two parents, all of
the remaining elements dty, ..., a,} are external in eithe? or 7'. In particular,a,, .. .,a;_,
share the same parent®, anda,,1,...,a, share the same parentéh As (a;, as, ..., a,) has
an internal element in botd and 7', these two shared parents are distinct. Applying at most
four short-chain reductions, it is easily checked that #sulting chain has length at moist.

Now suppose that no element of the chain is internal in kibtand 7”, then each element
of the chain is external in eithef or 7. In this case, either we apply a single application of
the short-chain reduction to get a chain of length at most we apply two applications of the
short-chain reduction to get a chain of length at ntsthis completes the proof of the lemma.

[

Proposition 6.1 showed that the weight function is preseareer each of the three reductions.

Part (iii) of the next lemma shows that these reductions eaadplied so that the size of the label
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set of the resulting rooted phylogenetic trees is bounded bgear function in the minimum
hybridization number.

Lemma 6.3:Let 7 and 7’ be two rooted phylogeneti& -trees, and letP initially be an
empty collection of subsets of. Let S andS’ be two weighted rooted phylogeneti¢'-trees
obtained from7 and 7', respectively, by repeatedly applying the subtree redactintil no
further reduction is possible, and then, for each maximairckkommon to both resulting trees,
repeatedly applying the long-chain and short-chain redast Then

(i) S andS’ have no pendant subtrees with common label4ssuch thatS|A andS’| A have

a common binary refinement and| > 2,

(i) the length of any chain common to bohandS’ is at mostl7, and
(i) | X'| < 89h(7T,T").

Proof: For the proof of (i) and (ii), leZ; andZ, be the rooted phylogenetic trees obtained
from 7 and 7' after repeatedly applying the subtree reduction until ndh&r reduction is
possible. Furthermore, observe thatif, P, € P, thenS(P;) andS(P,) are edge-disjoint, and
S'(P) and §'(P,) are edge-disjoint. Suppose that (i) does not hold, andilee such a label
set. Without loss of generality, we may assume thas maximal. Then, because of maximality,
if A intersects a set i, then that set is a subset df Now let A’ be the set obtained from
A by replacing the elements belonging to a sefirwith their original counterparts. Using the
above observation, it is easily seen th#tis a pendant subtree @i and7;. But, asS|A and
S’|A have a common binary refinemeffi,| A’ and 7/| A’ have a common binary refinement; a
contradiction. Thus (i) holds.

For (ii), suppose that there exists a chain common to ktand S’ that has at least8
elements. Without loss of generality, we may assume thatdhain is maximal. Letd denote
the label set of this common chain. Analogous to (i), becafsmaximality, if A intersects a
set in P, then that set is a subset df Moreover, if this intersection involves a set that was part
of a sequence of reductions to reduce a common chaif iend 7/, then all of the associated
sets inP are subsets ofl. Using Lemma 6.2 to get a contradiction, a similar argumesetduo
establish (i) can now be used to establish (ii).

Now consider (iii). LetF = {L,, L1, L,, ..., L} be a legitimate-agreement forest fSrand
S’ of minimum weight. LetB3 and5’ be two binary refinements & andS’, respectively, so that

F is an acyclic-agreement forest f@% and B’. By Lemma 4.2, such binary refinements exist.
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If B andB’ have a common pendant subtree with label 4eind|A| > 2, then this subtree is
a common binary refinement &f|A and S’| A, contradicting (i). Thus3 and 5’ have no such
pendant subtree. Furthermore Afand 3’ have a common chain with label sétand|A| > 18,
then this implies thatS and S’ have such a chain, contradicting (ii). Hence any chain commo
to both B and B’ has at mosti7 elements. With these restrictions ¢hand 5’, we can now
use the argument for the analogous result for binary treg¢S]ito complete the proof of (iii).
The only modification necessary is to replace chains of 8iréth chains of size at most7.
Making this change and working through the straightforwalgebra givesy . |£;| < 89k — 51.
By definition of f and Proposition 6.1k < f(S,S’) = f(7,7'). Since P is initially empty,
f(T,7") = h(T,7T") and the result follows. u

Proof of Theorem 1.1:et 7 and7" be two rooted phylogenetik¥ -trees, and leP be an empty
collection of subsets ok . Let k£ be an integer. Lef andS’ be the weighted rooted phylogenetic
X'-trees obtained from¥ and 7’ by repeatedly applying the subtree reduction until no frth
reduction is possible, and then, for each maximal chain comim both resulting trees, repeatedly
applying the long-chain and short-chain reductions./Ass empty,h(7,7') = f(7,7') and
so, by Proposition 6.1,

MT, T = f(T,T) = f(S,8).

It is clear thatS andS’ can be found in time polynomial iX |, sayp(|X|). By Lemma 6.3(iii),
| X'| <89h(7,7") and so, if| X'| > 89k, we declare that(7,7") > k.

Now suppose thatX’| < 89k. The time taken to check whether a partitionXfuU {p} is a
legitimate-agreement forest férandS’ takes time polynomial irk. Note that for deciding if two
rooted phylogenetic tre€§ andZ, have a common binary refinement, one simply needs to check
whether or not(7,)UC(7/) is a hierarchy, that is, for all (edge) clustérs, C, € C(7;)UC(7)),
the setC; N Cy € {0, Cy, Cy}. Furthermore, asX’

k + 1 parts is bounded by a computable functionkinsay f (k). If one of these forests is a

< &9k, the number of forests with at most

legitimate-agreement forest for and S’ with weight at most:, then we declaré(7,7") < k;
otherwise, we declaré(7,7’) > k. Hence we can answer theYBRIDIZATION NUMBER
decision problem foZ” and 7" in time O(f(k) + p(|X|)). Thus H'BRIDIZATION NUMBER is

fixed-parameter tractablm
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Remark. While one could explicitly give a function ik that bounds the number of partitions
to consider in the proof of Theorem 1.1, it is unlikely to be thest theoretically and we expect

in practice much better methods.

VII. CONCLUDING REMARKS

We end the paper with some remarks.

1. In this paper, we reduced a chain using two types of chauaateons. However, we believe
that it is possible to do this with a single type of chain ract The drawback of such
a reduction is that the number of possibilities for a legaieragreement forest far and
7' increases. Since the goal of the paper is to show the#RtDIZATION NUMBER is
fixed-parameter tractable, we decided to use the two typesdoictions, thereby reducing
the complexity and lengths of the proofs.

2. The subtree, long-chain, and short-chain reductiongaoeigh to kernalize ¥BRIDIZA -
TION NUMBER and yield an algorithm that is fixed- parameter tractableesehreductions
extend the two reductions used to kernalizeBiRIDIZATION NUMBER when the initial
two trees are both binary [5]. However, there is another tgpeeduction for binary
trees that turns out to be particularly useful. This addaioreduction, called theluster
reduction[2], allows for an attractive divide-and-conquer approtudt breaks the problem
into a number of smaller and, therefore, more tractable middpms. Details on how this
reduction can easily be fitted into the framework of (arbyyaooted phylogenetic trees

can be found in [9].

ACKNOWLEDGMENT

The authors thank Magnus Bordewich and Dominic Welsh fofulsBscussions, and one of
the anonymous referees for their helpful comments. Thedmdtsecond author were supported
by the New Zealand Marsden Fund. Part of this work was cawigdwhile the authors were

visiting the Isaac Newton Institute for Mathematical Sciesy, Cambridge, UK.

REFERENCES

[1] M. Baroni, S. Grinewald, V. Moulton, and C. Semple, “Baling the number of hybridisation events for a consistent
evolutionary history,”J. Math. Biology vol. 51, pp. 171-182, 2005.

July 18, 2008 DRAFT



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XXX, NO. XXX, XXX 36

(2]
(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]
[12]

[13]
[14]

[15]

M. Baroni, C. Semple, M. Steel, “Hybrids in real time§ystematic Biologyol. 55, pp. 46-56, 2006.

M. Bordewich and C. Semple, “On the computational comipyeof the rooted subtree prune and regraft distanéaals

of Combinatoricsvol. 8, pp. 409-423, 2004.

M. Bordewich and C. Semple, “Computing the minimum numbé hybridization events for a consistent evolutionary
history,” Discrete Applied Math.vol. 155, pp. 914-928, 2007.

M. Bordewich and C. Semple, “Computing the hybridizatimumber of two phylogenetic trees is fixed-parameter théefa
IEEE/ACM Transactions on Computational Biology and Bioinfatics vol. 4, pp. 458-466, 2007.

R. Downey and M. FellowsParameterized Complexitgpringer, 1998.

J. Fehrer, B. Gemeinholzer, J. Chrtek Jr, S. Brautigdntongruent plastid and nuclear DNA phylogenies revealiemt
intergeneric hybridization irPilosella hawkweeds Hieracium Cichorieae, Asteraceae)Molecular Phylogenetics and
Evolution vol. 42, pp. 347-361, 2007.

R.G. Harrison, “Hybrids and hybrid zones: historicatgmectives,” InHybrid zones and the evolutionary proce&xford
University Press, 1993.

S. Linz, Reticulation in EvolutionPhD thesis, Heinrich-Heine-Universitat, Dusseld@d08.

W.P. Maddison, “Reconstructing character evolutionpmlytomous cladogramsgCladistics vol. 5, pp. 365-377, 1989.

J. Mallet, “Hybridization as an invasion of the genoim@&ends in Ecology and Evolutiowol. 20, pp. 229-237, 2005.

O. Paun, C. Lehnebach, J.T. Johansson, P. Lockhartprimdl, “Phylogenetic relationships and biogeography of
Ranunculusand allied genera (Ranunculaceae) in the Mediterranedaanread in the European Alpine SystenTaxon
vol. 59, pp. 911-930, 2005.

C. Semple and M. SteeRhylogeneticsOxford University Press, 2003.

Y. Song and J. Hein, “Parsimonious reconstruction ajuseice evolution and haplotype blocks: finding the minimum
number of recombination event$Proc. Algorithms in Bioinformatics (WABI20Q3)ol. 2812, pp. 287-302, 2003.

Y. Song and J. Hein, “Constructing minimal ancestratombination graphs,J. Comp. Biologyvol. 12, pp. 147-116,
2005.

July 18, 2008 DRAFT



