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1. Introduction

In our quest for faithfully describing evolutionary histories, we are cur-
rently witnessing a shift from the representation of ancestral histories by
phylogenetic (evolutionary) trees towards phylogenetic networks. The latter
not only represent speciation events but also non-tree like events such as hy-
bridisation and horizontal gene transfer that have played an important role
throughout the evolution of certain groups of organisms as for example in
plants and fish [10, 17, 18, 22].

In this paper, we focus on a problem that is related to the reconstruction
of phylogenetic networks. Called Minimum Hybridisation and formally
stated at the end of this section, this problem was first introduced by Baroni
et al. [2]. While Minimum Hybridisation was historically motivated by
attempting to quantify hybridisation events, it is now more broadly regarded
as a tool to quantify all non-tree like events to which we collectively refer to
as reticulation events. Pictorially speaking, Minimum Hybridisation aims
at the reconstruction of a phylogenetic network that simultaneously embeds
a given set of phylogenetic trees while minimising the number of reticulation
events that are represented by vertices in the network whose in-degree is at
least two. More formally, the problem is based on the following underlying
question. Given a collection P of rooted phylogenetic trees on the same
set of taxa that have correctly been reconstructed for different parts of the
species’ genomes, what is the smallest number of reticulation events that
is needed to explain P? Over the last ten years, we have seen significant
progress in characterising and computing this minimum number for when
|P| = 2 (e.g. see [1, 3, 4, 8, 16, 24]). However, except for some heuristic
approaches [7, 25], less is known for when |P| ≥ 3. This is due to the fact
that the notion of agreement forests, which underlies almost all results that
are related to Minimum Hybridisation, appears to be ungeneralisable to
more than two trees.

Previously, together with Humphries, we introduced cherry-picking se-
quences and characterised a restricted version of Minimum Hybridisation
for P being binary and of arbitrary size [12]. Instead of minimising the num-
ber of reticulation events needed to explain P over the space of all rooted
phylogenetic networks, this restricted version only considers binary temporal
tree-child networks. Such networks are the binary intersection of the classes
of temporal networks and tree-child networks introduced by Moret et al. [19]
and Cardona et al. [6], respectively. Disadvantageously, this restriction is so
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strong that not even if |P| = 2 are we guaranteed to have a solution, i.e.
there may be no such network explaining P [11, Figure 2].

Here, we advance our work on cherry-picking sequences and establish two
new characterisations to quantify the amount of reticulation events that are
needed to explain a set of (not necessarily binary) phylogenetic trees. The
first characterisation solves the problem over the space of tree-child net-
works. Unlike temporal networks, we show that every collection P of rooted
phylogenetic trees has a solution, i.e. the trees in P can simultaneously be
embedded into a tree-child network. Subsequently, we extend this character-
isation to the space of all rooted phylogenetic networks and, hence, provide
the first characterisation for Minimum Hybridisation in its most general
form. Both characterisations are based on computing a cherry-picking se-
quence for P , while the latter characterisation makes also use of an operation
that attaches auxiliary leaves to the trees in P .

In addition to the two new characterisations, we return back to agreement
forests and investigate why they seem to be of limited use to solve Minimum
Hybridisation for an arbitrary size set P of rooted phylogenetic trees.
Roughly speaking, given P , one can compute a particular type of agreement
forest F of smallest size and, if |P| = 2, then each but one component in F
contributes exactly one to the minimum number of reticulation events that
is needed to explain P . On the other hand, if |P| > 2, the contribution of
each component in F to this minimum number is much less clear. Motivated
by this drawback of agreement forests, we consider a set P of rooted binary
phylogenetic trees as well as the agreement forest F induced (formally defined
in Section 5) by a phylogenetic network that explains P and minimises the
number of reticulations events and ask whether or not, it is computationally
hard to calculate the minimum number of reticulation events that is needed
to explain P . We call the associated decision problem Scoring Optimum
Forest. This problem was first mentioned in [13], where the authors conjec-
ture that Scoring Optimum Forest is NP-complete. Using the machinery
of cherry-picking sequences, we show that Scoring Optimum Forest is
NP-complete for when one considers the smaller space of tree-child networks.

The paper is organised as follows. The remainder of the introduction
contains some definitions and preliminaries on phylogenetic networks. In
Section 2, we state the two new characterisations in terms of cherry-picking
sequences. The first optimises Minimum Hybridisation within the space
of tree-child networks and the second optimises Minimum Hybridisation
within the space of all phylogenetic networks. The second characterisation is
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an extension of the first by additionally allowing the attachment of auxiliary
leaves. We then establish proofs for both characterisations in Section 3 as well
as a formal description of the analogous algorithm. In Section 4, we establish
an upper bound on the number of auxiliary leaves that, given a collection
of phylogenetic trees, are needed to characterise Minimum Hybridisation
over the space of all rooted phylogenetic networks. Lastly, in Section 5,
we formally state the problem Scoring Optimum Forest and show that
it is NP-complete. We finish the paper with some concluding remarks in
Section 6.

Throughout the paper, X denotes a non-empty finite set. A phylogenetic
network N on X is a rooted acyclic digraph with no parallel edges that
satisfies the following properties:

(i) the (unique) root has out-degree two,

(ii) the set X is the set of vertices of out-degree zero, each of which has
in-degree one, and

(iii) all other vertices either have in-degree one and out-degree two, or in-
degree at least two and out-degree one.

For technical reasons, if |X| = 1, we additionally allow N to consist of the
single vertex in X. The set X is the leaf set of N and the vertices in X
are called leaves. We sometimes denote the leaf set of N by L(N ). For two
vertices u and v in N , we say that u is a parent of v and v is a child of u
if (u, v) is an edge in N . Furthermore, the vertices of in-degree at most one
and out-degree two are tree vertices, while the vertices of in-degree at least
two and out-degree one are reticulations. An edge directed into a reticulation
is called a reticulation edge while each non-reticulation edge is called a tree
edge. We say that N is binary if each reticulation has in-degree exactly
two. Lastly, a directed path P in N ending at a leaf is a tree path if every
intermediate vertex in P is a tree vertex.

A phylogenetic network N on X is tree-child if each non-leaf vertex in
N is the parent of at least one tree vertex or leaf. An example of two tree-
child networks N and N ′ is given at the bottom of Figure 1. Note that the
phylogenetic network obtained from N by deleting the leaf labelled 4 and
suppressing the resulting degree-two vertex v results in a network that is not
tree-child.
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A rooted phylogenetic X-tree T is a rooted tree with no degree-two vertices
except possibly the root which has degree at least two, and with leaf set X.
If |X| = 1, then T consists of the single vertex in X. As for phylogenetic
networks, the set X is called the leaf set of T and is denoted by L(T ). In
addition, T is binary if |X| = 1 or, apart from the root which has degree two,
all interior vertices have degree three. Since we are only interested in rooted
phylogenetic trees and rooted binary phylogenetic trees in this paper, we
will refer to such trees simply as phylogenetic trees and binary phylogenetic
trees, respectively. For a phylogenetic X-tree T , we consider two types of
subtrees. Let X ′ be a subset of X. The minimal subtree of T that connects
all the leaves in X ′ is denoted by T (X ′). Moreover, the restriction of T
to X ′, denoted by T |X ′, is the phylogenetic X ′-tree obtained from T (X ′)
by suppressing all degree-two vertices apart from the root. Lastly, for two
phylogenetic X-trees T and T ′, we say that T ′ is a refinement of T if T can
be obtained from T ′ by contracting a possibly empty set of internal edges in
T ′. In addition, T ′ is a binary refinement of T if T ′ is binary.

Let T be a phylogenetic X ′-tree. A phylogenetic network N on X with
X ′ ⊆ X displays T if, up to suppressing vertices with in-degree one and out-
degree one, there exists a binary refinement of T that can be obtained from
N by deleting edges, leaves not in X ′, and any resulting vertices of out-degree
zero, in which case we call the resulting acyclic digraph an embedding of T
in N . If P is a collection of phylogenetic X-trees, then N displays P if each
tree in P is displayed by N . For example, the two phylogenetic networks at
the bottom of Figure 1 both display each of the four trees shown in the top
part of the same figure.

Let N be a phylogenetic network with vertex set V and root ρ. The
hybridisation number of N , denoted h(N ), is the value

h(N ) =
∑

v∈V−{ρ}

(
d−(v)− 1

)
,

where d−(v) denotes the in-degree of v. For example, the phylogenetic net-
works N and N ′ that are shown in Figure 1 have hybridisation number 3 and
4, respectively. Observe that each tree vertex and each leaf contributes zero
to this sum, but each reticulation v contributes d−(v)− 1. Furthermore, for
a set P of phylogenetic X-trees, we denote by htc(P) and h(P), respectively,
the values

min{h(N ) : N is a tree-child network on X that displays P}
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Figure 1: Top: A set P of four phylogenetic X-trees with X = {1, 2, . . . , 6}. Bottom: Two
tree-child networks displaying P with h(N ) = 3 and h(N ′) = 4.

and

min{h(N ) : N is a phylogenetic network on X that displays P}.

Remark. While the above definition of a phylogenetic network is restricted
to networks whose tree vertices have out-degree exactly two, we note that
the results in this paper also hold for networks with tree vertices whose out-
degree is at least two. More particularly, if a set P of phylogenetic X-trees is
displayed by a phylogenetic network N whose tree vertices have out-degree
at least two, then, by “refining” such vertices, we can obtain a phylogenetic
network N ′ whose tree vertices have out-degree exactly two, displays P , and
h(N ′) = h(N ). Thus no generality is lost with this restriction.

We next formally state the two decision problems that this paper is cen-
tred around.

Minimum Tree-Child Hybridisation
Instance. A set P of phylogenetic X-trees and a positive integer k.
Question. Does there exist a tree-child network N on X that displays P
such that h(N ) ≤ k?

Minimum Hybridisation
Instance. A set P of phylogenetic X-trees and a positive integer k.
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Question. Does there exist a phylogenetic network N on X that displays
P such that h(N ) ≤ k?

We will see at the end of this section that, for any given set P of phy-
logenetic X-trees, Minimum Tree-Child Hybridisation has a solution,
i.e. there exists a tree-child network that displays P .

It was shown in [3] that Minimum Hybridisation is NP-hard, even
for when P consists of two rooted binary phylogenetic X-trees. To see that
Minimum Tree-Child Hybridisation is also computationally hard, we
again consider this restricted version of the problem and recall the following
observation that was first mentioned in [12] and can be derived by slightly
modifying the proof of [2, Theorem 2].

Observation 1.1. Let P = {T , T ′} be a collection of two binary phyloge-
netic X-trees. If there exists a phylogenetic network N that displays P with
h(N ) = k, then there also exists a tree-child network N ′ that displays P with
h(N ′) ≤ k.

The next theorem, whose straightforward proof is omitted, follows from Ob-
servation 1.1 and the fact that, given a tree-child network N and a binary
phylogenetic tree T , it can be checked in polynomial time whether or not N
displays T [14, 21].

Theorem 1.2. The decision problem Minimum-Tree-Child Hybridisa-
tion is NP-complete.

We end this section by showing that every collection of phylogenetic X-
trees can be displayed by a tree-child network on X. For n = 2, let U2 be
the unique binary phylogenetic tree on two leaves, x1 and x2 say. Now, for a
positive integer n > 2, obtain Un from Un−1 as follows. Viewing the root ρ of
Un−1 as a vertex of in-degree zero and out-degree one adjoined to the original
root, add an edge that joins a new vertex v and a new leaf xn and, for each
tree edge e in Un−1, subdivide e with a vertex ue, and add the edge (ue, v).
The resulting phylogenetic network without viewing the root as a vertex of
in-degree zero and out-degree one is Un.

Theorem 1.3. Let Un be the universal network on X = {x1, x2, . . . , xn}
with n ≥ 2. Then Un is tree-child and displays all binary phylogenetic X-
trees.
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Proof. By construction of Un from Un−1 it is straightforward to check that,
as U2 is tree-child, Un is tree-child. To see that Un displays all binary phy-
logenetic X-trees, we use induction on n. Clearly, U2 displays the unique
binary phylogenetic tree on two leaves. For n ≥ 3, assume that the universal
network Un−1 on X ′ = {x1, x2, . . . , xn−1} displays all binary phylogenetic X ′-
trees. Observe that Un−1 can be obtained from Un by deleting xn, the parent
of xn and all their incident edges, and suppressing all resulting vertices with
in-degree one and out-degree one. Now, let Tn be a binary phylogenetic X-
tree, and let Tn−1 be Tn|X ′. Furthermore, let C be the subset of X ′ that
consists of the descendant leaves of the parent of xn in Tn. As Un−1 displays
Tn−1, there exist an embedding E of Tn−1 in Un−1 and an edge (u, v) in E such
that the set of descendants of v in E is precisely C. If (u, v) is a tree edge in
Un−1, then it is easily checked that Un displays Tn by construction. On the
other hand, if (u, v) is a reticulation edge in Un−1, then v has out-degree one
in E . Let (v, w) be the unique edge in E that is directed out of v. Note that,
as Un−1 is tree-child, w is a tree vertex in Un−1. Then, as (v, w) is a tree edge
in Un−1 that is subdivided by a new vertex in the construction of Un from
Un−1, it again follows that Un displays Tn. This completes the proof of the
theorem. �

The next corollary is an immediate consequence of Theorem 1.3 and the
fact that every phylogenetic tree has a binary refinement on the same leaf
set.

Corollary 1.4. Let P be a set of phylogenetic X-trees. There exists a tree-
child network on X that displays P.

While every collection of phylogenetic X-trees can be displayed by a tree-
child network on X, a simple counting argument shows that the analogous
result is not true for binary tree-child networks. Specifically, a binary tree-
child network on X has at most |X| − 1 reticulations [6, Proposition 1] and
so displays at most 2|X|−1 distinct binary phylogenetic X-trees. But for large
enough X, there are many more distinct binary phylogenetic X-trees than
2|X|−1. For related results, we refer the interested reader to [21].

2. Cherry-picking characterisations

In this section, we state the two cherry-picking characterisations whose
proofs are given in the next section. Let T be a phylogenetic X-tree with
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root ρ, where |X| ≥ 2. If x is a leaf of T , we denote by T \x the operation of
deleting x and its incident edge and, if the parent of x in T has out-degree
two, suppressing the resulting degree-two vertex. Note that if the parent of
x is ρ and ρ has out-degree two, then T \x denotes the operation of deleting
x and its incident edge, and then deleting ρ and its incident edge. Observe
that T \x is a phylogenetic tree on X −{x}. A 2-element subset {x, y} of X
is a cherry of T if x and y have the same parent. Clearly, every phylogenetic
tree with at least two leaves contains a cherry. In this paper, we typically
distinguish the leaves in a cherry, in which case we write {x, y} as the ordered
pair (x, y) depending on the roles of x and y.

Let T be a phylogenetic X-tree and let (x, y) be an ordered pair of leaves
in X. If (x, y) is a cherry of T , then let T ′ = T \x; otherwise, let T ′ = T .
We say that T ′ has been obtained from T by cherry picking (x, y). Now, let
P be a set of phylogenetic X-trees, and let

σ = (x1, y1), (x2, y2), . . . , (xs, ys), (xs+1,−)

be a sequence of ordered pairs in X × (X ∪ {−}) such that the following
property is satisfied.

(P) For all i ∈ {1, 2, . . . , s}, we have xi 6∈ {yi+1, yi+2, . . . , ys}.

Setting P0 = P and, for all i ∈ {1, 2, . . . , s}, setting Pi to be the set of
phylogenetic trees obtained from Pi−1 by cherry picking (xi, yi) in each tree
in Pi−1, we call σ a cherry-picking sequence of P if each tree in Ps consists
of the single vertex xs+1. Furthermore, for all i ∈ {1, 2, . . . , s}, we say that
Pi is obtained from P by picking x1, x2, . . . , xi. Additionally, if Pi 6= Pi+1,
then we refer to (xi, yi) as being essential. Moreover, if σ is a cherry-picking
sequence for P , then the weight of σ, denoted w(σ), is the value s+ 1− |X|.
Observe that, if σ is a cherry-picking sequence of P , then

s+ 1− |X| ≥ 0

as each element in X must appear as the first element in an ordered pair in
σ.

Now, let σ be a cherry-picking sequence for P . We call σ a minimum
cherry-picking sequence of P if w(σ) is of smallest value over all cherry-
picking sequences of P . This smallest value is denoted by s(P). It will follow
from the results in the next section (Lemma 3.4) that every collection P of
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phylogenetic trees has a cherry-picking sequence and so s(P) is well defined.
Referring to Figure 1,

σ = (3, 2), (3, 4), (5, 6), (5, 4), (1, 2), (4, 2), (4, 6), (2, 6), (6,−)

is a cherry-picking sequence with weight w(σ) = 9− 6 = 3 for the four trees
shown at the top of this figure.

Remark. As noted in the introduction, cherry-picking sequences were intro-
duced in [12]. In the set-up of this paper, the difference is as follows. Instead
of a cherry-picking sequence consisting of a set of ordered pairs, a cherry-
picking sequence in [12] consists of an ordering of the elements in X. More-
over, this ordering has the additional property that, for each i ∈ {1, 2, . . . , s},
xi is part of a cherry of every tree in Pi−1. Subsequently, xi is deleted from
each tree in Pi−1, and the iterative process continues. The weighting of such
a sequence is based, across all i, on the number of different cherries of which
xi is part of. It is not difficult to see how this could be interpreted as a
special type of cherry-picking sequence as defined in this paper.

The first of our new characterisations is the next theorem. For a given
set P of phylogenetic X-trees, it writes htc(P) in terms of cherry-picking
sequences for P .

Theorem 2.1. Let P be a set of phylogenetic X-trees. Then

htc(P) = s(P).

To state the second characterisation, we require an additional concept.
Let T be a phylogenetic X-tree. Consider the operation of adjoining a new
leaf z to T in one of the following three ways.

(i) Subdivide an edge of T with a new vertex, u say, and add the edge
(u, z).

(ii) View the root ρ of T as a degree-one vertex adjacent to the original
root and add the edge (ρ, z).

(iii) Add the edge (v, z), where v is an interior vertex of T .
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We refer to this operation as attaching a new leaf z to T . More generally,
if Z is a finite set of elements such that X ∩ Z is empty, then attaching
Z to T is the operation of attaching, in turn, each element in Z to T to
eventually obtain a phylogenetic tree on X ∪ Z. We refer to Z as a set of
auxiliary leaves. Lastly, attaching Z to a set P of phylogenetic X-trees is the
operation of attaching Z to each tree in P .

Let P be a set of phylogenetic X-trees. A sequence

σ = (x1, y1), (x2, y2), . . . , (xs, ys), (xs+1,−)

of ordered pairs in (X ∪Z)× (X ∪Z ∪{−}) that satisfies (P) is a leaf-added
cherry-picking sequence for P if it is a cherry-picking sequence of a set of
phylogenetic trees obtained from P by attaching Z. As for cherry-picking
sequences, the weight of σ, denoted w(σ), is the value s+1− (|X|+ |Z|). We
denote the minimum weight amongst all leaf-added cherry-picking sequences
of P by s+(P). Of course, s+(P) ≤ s(P), but this inequality can also be
strict. To illustrate, consider the two sets P and P ′ of phylogenetic trees
shown in Figure 2. Now

σ = (4, 5), (4, 1), (4, 3), (5, 6), (5, 3), (5, 8),

(2, 3), (3, 1), (6, 7), (7, 8), (1, 8), (8,−)

is a cherry-picking sequence for P of weight w(σ) = 12 − 8 = 4. In fact, it
follows from [13, 15] that htc(P) = 4 (see Section 6 for details). On the other
hand,

σ′ = (5, z), (5, 8), (4, z), (4, 1), (z, 3), (z, 6),

(2, 3), (3, 1), (6, 7), (7, 8), (1, 8), (8,−)

is a cherry-picking sequence for P ′ of weight w(σ′) = 12 − 9 = 3. Since
P ′ can be obtained by attaching z to P , it follows that σ′ is a leaf-added
cherry-picking sequence for P and s+(P) ≤ 3.

For a given set P of phylogenetic X-trees, the next theorem characterises
h(P) in terms of leaf-added cherry-picking sequences.

Theorem 2.2. Let P be a set of phylogenetic X-trees. Then

h(P) = s+(P).

It is worth noting that, for a set P of phylogenetic X-trees, it follows
from Theorems 2.1 and 2.2 that htc(P) and h(P) can be determined without
constructing a phylogenetic network.
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Figure 2: Two sets P and P ′ of phylogenetic trees, where P ′ is obtained by attaching z
to P. (In parts, adapted from [13, Figure 1].)

3. Proofs of Theorems 2.1 and 2.2

In this section, we prove Theorems 2.1 and 2.2. Most of the work is in
proving Theorem 2.1. We begin by showing that htc(P) ≤ s(P).

Lemma 3.1. Let P be a set of phylogenetic X-trees. Let σ be a cherry-
picking sequence for P. Then there exists a tree-child network N on X that
displays P with h(N ) ≤ w(σ) satisfying the following properties:

(i) If u is a tree vertex in N and not a parent of a reticulation, then there
are leaves `1 and `2 at the end of tree paths starting at the children v1

and v2 of u, respectively, such that (`1, `2) is an element in σ.

(ii) If u is a tree vertex in N and a parent of a reticulation v, then there are
leaves `u and `v at the end of tree paths starting at u and v, respectively,
such that (`v, `u) is an element in σ.

Proof. Let
σ = (x1, y1), (x2, y2), . . . , (xs, ys), (xs+1,−)

be a cherry-picking sequence for P . The proof is by induction on s. If
s = 0, then |X| = 1 and each tree in P consists of the single vertex in
X. It immediately follows that choosing N to be the phylogenetic network
consisting of the single vertex in X establishes the lemma for s = 0.
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Now suppose that s ≥ 1, and that the lemma holds for all cherry-picking
sequences for sets of phylogenetic trees on the same leaf set whose length is
at most s. Let

σ′ = (x2, y2), (x3, y3), . . . , (xs, ys), (xs+1,−),

and let P ′ be the set of phylogenetic trees obtained from P by picking x1.
First assume that each tree in P ′ has the same leaf set, namely X ′ =

X − {x1}. Then σ′ is a cherry-picking sequence for P ′. By induction, there
is a tree-child network N ′ on X ′ that displays P ′ with h(N ′) ≤ w(σ′) and
satisfies (i) and (ii). Since each tree in P ′ has the same leaf set, {x1, y1} is
a cherry in each tree in P . Therefore, as N ′ displays a binary refinement of
each tree in P ′, the tree-child network obtained from N ′ by subdividing the
edge directed into y1 with a new vertex u and adding the edge (u, x1) displays
P . Furthermore, as h(N ′) ≤ w(σ′) and N ′ satisfies (i) and (ii) relative to σ′,
we have h(N ) = h(N ′) ≤ w(σ′) = w(σ) and it is easily seen that N satisfies
(i) and (ii) relative to σ.

Now assume that not every tree in P ′ has the same leaf set. Let P ′1 denote
the subset of trees in P ′ whose leaf set is X − {x1}. Since P ′ − P ′1 is non-
empty, there exists some i with i ∈ {2, 3, . . . , s+ 1} such that xi = x1. Note
that (x1,−) is not in σ; otherwise there is an ordered pair in σ whose second
coordinate is x1 and so σ is not a cherry-picking sequence for P . Let (x1, yi)
be the first ordered pair in σ′ whose first coordinate is x1. Let T1 be a tree in
P ′1. Consider the process of picking, in order, (x2, y2), (x3, y3), . . . , (xi−1, yi−1)
from T1. Let X1 denote the subset of leaves in X−{x1} that are deleted from
T1 in this process. Observe that, as yi is the second coordinate in (xi, yi), we
have yi 6∈ X1.

We next add x1 to T1 to obtain a phylogenetic X-tree for which σ′ is a
cherry-picking sequence. Let w be the (unique) vertex of T1 that is closest
to the root with the property that yi is a descendant leaf of w, and the child
of w on the path from w to yi has all its descendant leaves in X1 ∪ {yi}. Let
T ′1 be the phylogenetic X-tree obtained from T1 by adding the edge (w, x1).
We now show that σ′ is a cherry-picking sequence for T ′1 . Suppose that σ′ is
not a cherry-picking sequence for T ′1 . Let u be the parent of w in T ′1 . Then
amongst the first i − 2 ordered pairs in σ′ is an ordered pair of the form
(xj, yi) that is essential when, the ordered pairs in σ′ are (in order) picked
from T1, where xj is a descendant leaf of u in T ′1 . But then, each descendant
leaf of w is in X1 ∪ {yi}, contradicting the choice of w.
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Repeating this placement of x1 for each tree in P ′1, we obtain a set P ′′1 of
phylogenetic X-trees from P ′1. Let P ′′ = P ′′1 ∪ (P ′ −P ′1) and observe that σ′

is a cherry-picking sequence for P ′′. Therefore, by induction, there is a tree-
child network N ′ on X that displays P ′′ with h(N ′) ≤ w(σ′) and satisfies (i)
and (ii).

Let p denote the parent of x1 in N ′. If p is a reticulation, let N be the
phylogenetic network obtained from N ′ by subdividing the edge directed into
y1 with a new vertex u and adding the edge (u, p). Since N ′ is tree-child and
displays P ′, it follows that N is tree-child and displays P . Furthermore,

h(N ) = h(N ′) + 1 ≤ w(σ′) + 1 = w(σ).

Additionally, as (x1, y1) ∈ σ, it also follows that, as N ′ satisfies (i) and (ii)
relative to σ′, we have N satisfies (i) and (ii) relative to σ.

Thus we may assume that p is a tree vertex. Let w denote the child of
p that is not x1 in N ′. If w is a reticulation, then, as N ′ satisfies (ii), σ′

contains a cherry in which x1 is the second coordinate. But (x1, y1) is the first
ordered pair in σ and so, as σ satisfies (P), x1 is never the second coordinate
in an ordered pair in σ; a contradiction. Therefore w is either a tree vertex or
a leaf in N ′. So, as N ′ satisfies (i) and no ordered pair has x1 as the second
coordinate, it follows that σ′ contains an ordered pair, (x1, yj) say, where yj
is the leaf at the end of a tree path in N ′ starting at w. Now let N be the
phylogenetic network obtained from N ′ by subdividing the edges directed
into y1 and x1 with new vertices u and v, respectively, and adding the edge
(u, v). Since N ′ is tree-child and h(N ′) ≤ w(σ′), it is easily seen that N
is tree-child and h(N ) = h(N ′) + 1 ≤ w(σ′) + 1 = w(σ). Furthermore, N ′
displays P ′−P ′1 as well as P ′′1 , and therefore P ′1|(X−{x1}). Thus N displays
P . To see that N satisfies (i) and (ii) relative to σ, it suffices to show that N
satisfies (ii) for p and u. Indeed, the two ordered pairs (x1, yj) and (x1, y1) in
σ verify (ii) for p and u, respectively. This completes the proof of the lemma.
�

The next corollary immediately follows from Lemma 3.1.

Corollary 3.2. Let P be a set of phylogenetic X-trees. Then htc(P) ≤ s(P).

For the proof of the converse of Corollary 3.2, we begin with an additional
lemma. Let N be a phylogenetic network, and let x and y be two leaves in N .
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Generalising cherries to phylogenetic networks, we say that {x, y} is a cherry
in N if x and y have a common parent. Moreover, we call {x, y} a reticulated
cherry if the parent of x, say px, and the parent of y, say py, are joined by a
reticulation edge (py, px) in which case we say that x is the reticulation leaf
relative to {x, y}. We next define two operations on N . First, reducing a
cherry {x, y} is the operation of deleting one of the two leaves in {x, y}, and
suppressing the resulting degree-two vertex. Second, reducing a reticulated
cherry {x, y} is the operation of deleting the reticulation edge joining the
parents of x and y and suppressing any resulting degree-two vertices. The
proof of the next lemma is similar to the analogous result for binary tree-child
networks [5, Lemma 4.1] and is omitted.

Lemma 3.3. Let N be a tree-child network on X. Then the following hold.

(i) If |X| ≥ 2, then N contains either a cherry or a reticulated cherry.

(ii) If N ′ is obtained from N by reducing either a cherry or a reticulated
cherry, then N ′ is a tree-child network.

Lemma 3.4. Let P be a set of phylogenetic X-trees. Then htc(P) ≥ s(P).

Proof. Let N be a tree-child network on X that displays P . By Corol-
lary 1.4, such a network exists. We establish the lemma by explicitly con-
structing a cherry-picking sequence σ for P such that w(σ) ≤ h(N ).

Let ρ denote the root of N , and let v1, v2, . . . , vr denote the reticula-
tions of N . Let `ρ, `1, `2, . . . , `r denote the leaves at the end of tree paths
Pρ, P1, P2, . . . , Pr in N starting at ρ, v1, v2, . . . , vr, respectively. Observe that
these paths are pairwise vertex disjoint. We now construct a sequence of
ordered pairs as follows:

Step 1. Set N = N0 and σ0 to be the empty sequence. Set i = 1.

Step 2. If Ni−1 consists of a single vertex xi, then set σi to be the concate-
nation of σi−1 and (xi,−), and return σi.

Step 3. If {xi, yi} is a cherry in Ni−1, then

(a) If one of xi and yi, say xi, equates to `j for some j ∈ {1, 2, . . . , r}
and vj is not a reticulation in Ni−1, then set σi to be the con-
catenation of σi−1 and (xi, yi).
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(b) Otherwise, set σi to be the concatenation of σi−1 and (xi, yi),
where xi 6∈ {`ρ, `1, `2, . . . , `r}.

(c) Set Ni to be the tree-child network obtained from Ni−1 by
deleting xi, thereby reducing the cherry {xi, yi}.

(d) Increase i by one and go to Step 2.

Step 4. Else, there is a reticulated cherry {xi, yi} in Ni−1, where xi say is
the reticulation leaf.

(a) Set σi to be the concatenation of σi−1 and (xi, yi).

(b) Set Ni to be the tree-child network obtained from Ni−1 by
reducing the reticulated cherry {xi, yi}.

(c) Increase i by one and go to Step 2.

First note that it is easily checked that the construction is well defined,
that is, it returns a sequence of ordered pairs. Moreover, in each iteration i
of the above construction, it follows from Lemma 3.3 that Ni is tree-child.
We next show that, if {xi, yi} is a cherry in Ni−1, and xi and yi equate to
`j and `j′ , respectively, where `j and `j′ are elements in {`1, `2, . . . , `r}, then
exactly one of vj and vj′ is a reticulation in Ni−1. To see this, if vj and
vj′ are both reticulations in Ni−1, then Pj and Pj′ are not vertex disjoint
in N ; a contradiction. On the other hand, suppose neither vj and vj′ are
reticulations in Ni−1. Without loss of generality, we may assume {xi, yi}
is the first such cherry for which this holds. Since N is tree-child, and
therefore has no tree vertex that is the parent of two reticulations, there is
an iteration i′ < i, in which the cherry (xi′ , yi′) is concatenated with σi′−1,
where yi′ ∈ {xi, yi}, and Ni′ has {xi, yi} as a cherry but Ni′−1 does not. If
xi′ = `ρ or xi′ ∈ {`1, `2, . . . , `r}, we contradict the construction by the choice
of {xi, yi}. Also, if xi′ 6∈ {`ρ, `1, `2, . . . , `r}, then we again contradict the
construction. Hence, we may assume for the remainder of the proof that
exactly one of vj and vj′ is a reticulation in Ni−1.

Let
σ = (x1, y1), (x2, y2), . . . , (xi−1, yi−1), (xi,−)

be the sequence returned by the construction. We prove by induction on
i that σ is a cherry-picking sequence for P whose weight is at most h(N ).
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If i = 1, then N consists of the single vertex in X and the construction
correctly returns such a sequence.

Now suppose that i ≥ 2, and consider the first iteration of the construc-
tion. Either {x1, y1} is a cherry or a reticulated cherry of N0. If {x1, y1} is
a cherry, then {x1, y1} is a cherry of each tree in P . In this instance, let P ′
denote the set of phylogenetic X ′-trees obtained from P by picking x1, where
X ′ = X −{x1}. Observe that N1 is a tree-child network on X ′ that displays
P ′.

Now assume that {x1, y1} is a reticulated cherry with x1 as the reticulation
leaf. Let P1 be the subset of trees in P not displayed by N1 and let P2 =
P−P1. Note that {x1, y1} is a cherry of each tree in P1. For each tree in P1,
delete the edge incident with x1, suppress any resulting degree-two vertex,
and reattach x1 to the rest of the tree containing y1 by subdividing an edge
with a new vertex and adding an edge joining this vertex and x1 so that the
resulting phylogenetic X-tree is displayed by N1. It is easily seen that this
is always possible. Let P ′1 denote the resulting collection of trees obtained
from P1. For this instance, let P ′ = P ′1 ∪ P2 and observe that N1 displays
P ′.

To complete the induction it suffices to show that if

σ′ = (x2, y2), (x3, y3), . . . , (xi−1, yi−1), (xi,−)

is a cherry-picking sequence for P ′ whose weight w(σ′) is at most h(N1), then
σ is a cherry-picking sequence for P whose weight w(σ) is at most h(N0),
that is, at most h(N ). First assume that {x1, y1} is a cherry of N0. Then,
as σ′ satisfies (P) and x1 6∈ L(N1), it follows that σ also satisfies (P) and so
σ is a cherry-picking sequence for P . Since x1 only appears once as the first
coordinate of an ordered pair in σ, we have

w(σ) = w(σ′) ≤ h(N1) = h(N0).

Now assume that {x1, y1} is a reticulated cherry of N0 with x1 as the
reticulation leaf. Without loss of generality, let v1 denote the associated
reticulation, so that x1 = `1. We next show that σ satisfies (P). If the
in-degree of v1 is at least three in N0, then v1 exists in N1 and so, by con-
struction, x1 does not appear as the second coordinate of an ordered pair in
σ′ as well as in σ. Therefore, if the in-degree of v1 is at least three in N0,
then σ satisfies (P).
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Now suppose that the in-degree of v1 is two in N0. To establish that σ
satisfies (P), assume to the contrary that x1 appears as the second coordinate
of an ordered pair in σ′. Let (z, x1) denote the first such ordered pair. Then,
at some iteration j, either {z, x1} is a cherry or a reticulated cherry of Nj−1.
If {z, x1} is a cherry of Nj−1, then, since x1 = `1, we are in Step 3(a) in
iteration j of the construction and so the ordered pair should be (x1, z); a
contradiction. On the other hand, if {z, x1} is a reticulated cherry of Nj−1,
then z is the reticulation leaf of {z, x1} and, by construction of σ, one of the
parents of v1 in N0 is the parent of two reticulations in N0, namely v1 and
the reticulation for which, by construction, there is a tree path starting at
this reticulation and ending at z; a contradiction as N0 is tree-child. Hence
σ satisfies (P). Thus, since each tree in P1 has {x1, y1} as a cherry and σ′ is a
cherry-picking sequence for P ′, it follows that σ is a cherry-picking sequence
for P . Furthermore, as w(σ) = w(σ′) + 1 and h(N0) = h(N1) + 1,

w(σ) = w(σ′) + 1 ≤ h(N1) + 1 = h(N0).

This completes the proof of the lemma. �

Proof of Theorem 2.1. Combining Corollary 3.2 and Lemma 3.4 estab-
lishes the theorem. �

We next establish Theorem 2.2.

Proof of Theorem 2.2. We first show that h(P) ≤ s+(P). Let P ′ be
a set of phylogenetic trees obtained from P by attaching a set Z such that
X ∩Z is empty and s+(P) = s(P ′). It follows by Theorem 2.1 that there is a
tree-child networkN ′ on X∪Z that displays P ′ with h(N ′) = s(P ′). Observe
that N ′ displays P . Let N be the phylogenetic network on X obtained from
N ′ by deleting every vertex that is not on a directed path from the root to
a leaf in X, and suppressing any resulting non-root vertex of degree two.
Noting that no deleted vertex is used to display a phylogenetic tree in P , it
is easily checked that, up to the root having out-degree one, N displays P .
Furthermore, h(N ) ≤ h(N ′). Therefore, by Theorem 2.1,

h(P) ≤ h(N ) ≤ h(N ′) = s(P ′) = s+(P).

In particular, h(P) ≤ s+(P).
To prove the converse, h(P) ≥ s+(P), let N be a phylogenetic network on

X that displays P and h(N ) = h(P). Let N ′ be the phylogenetic network
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obtained by attaching a new leaf to each reticulation edge in N , i.e. for
each reticulation edge e, subdivide e with a new vertex u and add a new
edge (u, ze), where ze /∈ X. It is easily checked that N ′ is tree-child and
h(N ′) = h(N ). Let Z denote the set of new leaves attached to N . For
each tree T in P , let Tr denote a binary refinement of T that is displayed
by N , and let T ′r be a binary phylogenetic tree with leaf set X ∪ Z that is
displayed by N ′ and obtained from Tr by attaching Z. Note that T ′r is a
binary refinement of a tree that can be obtained from T by attaching Z. Set

P ′r = {T ′r : T ∈ P},

and note that htc(P ′r) ≤ h(N ′) as N ′ is tree-child and displays P ′r. Since
each tree in P ′r is a binary refinement of a tree that can be obtained from a
tree in P by attaching Z, we have s+(P) ≤ s(P ′r). Thus, by Theorem 2.1,

s+(P) ≤ s(P ′r) = htc(P ′r) ≤ h(N ′) = h(N ) = h(P),

and so s+(P) ≤ h(P). �

We end this section with the pseudocode of an algorithm—called Con-
struct Tree-Child Network—that constructs a tree-child network from
a cherry-picking sequence. Specifically, given a cherry-picking sequence σ for
a set P of phylogenetic X-trees, Construct Tree-Child Network re-
turns a tree-child network N on X that displays P and h(N ) ≤ w(σ). This
is the same construction as that used to prove Lemma 3.1 and so the proof
of its correctness is not given.

Algorithm. Construct Tree-Child Network
Input. A set P of phylogenetic X-trees, and a cherry-picking sequence

σ = (x1, y1), (x2, y2), . . . , (xs, ys), (xs+1,−)

for P .
Output. A tree-child network N on X that displays P and h(N ) ≤ w(σ).

Step 1. If |X| = 1, set Ns+1 to be the phylogenetic network consisting of
the single vertex xs+1 in X and return Ns+1. Otherwise, set Ns+1 to
be the phylogenetic network consisting of the single edge (ρ, xs+1)
and set i = s.
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Step 2. Depending on which holds, do exactly one of the following three
steps.

(a) If xi ∈ L(Ni+1) and the parent pi of xi is a reticulation in Ni+1,
then obtain Ni from Ni+1 by subdividing the edge directed into
yi with a new vertex u and adding a new edge (u, pi).

(b) If xi ∈ L(Ni+1) and the parent pi of xi is not a reticulation
in Ni+1, then obtain Ni from Ni+1 by subdividing the edge di-
rected into yi with a new vertex u, subdividing the edge (pi, xi)
with a new vertex v, and adding a new edge (u, v).

(c) Else xi /∈ L(Ni+1), and obtain Ni from Ni+1 by subdividing
the edge directed into yi with a new vertex u and adding a new
edge (u, xi).

Step 3. If i = 1, then set N to be the network obtained from Ni by deleting
the unique edge incident with ρ and return N . Otherwise, decre-
ment i by one and go to Step 2.

Now, let σ be a leaf-added cherry-picking sequence for a set P of phylo-
genetic X-trees. Then there exists a set P ′ of phylogenetic trees on X ∪ Z
obtained from P by attaching Z such that σ is a cherry-picking sequence
for P ′. It is straightforward to check that the network N on X resulting
from calling Construct Tree-Child Network for P ′ and σ and, sub-
sequently, restricting to vertices and edges on a path from the root to leaves
in X as described in the first direction of the proof of Theorem 2.2 displays
P and h(N ) ≤ w(σ).

4. Bounding the maximum number of auxiliary leaves

In light of Theorem 2.2, a natural question to ask is how many auxiliary
leaves need to be attached to a given set P of phylogenetic X-trees in order
to calculate h(P). Attaching auxiliary leaves to P is necessary whenever
h(P) < htc(P). Here, we provide an upper bound on the number of auxiliary
leaves in terms of htc(P). We start by introducing two operations that,
repeatedly applied, transform any phylogenetic network N that displays P
into a tree-child network without increasing h(N ) and that displays a set of
phylogenetic trees obtained from P by attaching auxiliary leaves.
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LetN be a phylogenetic network on X, and let (u, v) be an edge inN such
that u and v are reticulations. Obtain a phylogenetic network N ′ from N
by contracting (u, v) and, for each resulting pair of parallel edges, repeatedly
deleting one of the two edges in parallel and suppressing the resulting degree-
two vertex. We say that N ′ has been obtained from N by a contraction.

Lemma 4.1. Let P be a collection of phylogenetic X-trees, and let N be a
phylogenetic network on X that displays P. Let N ′ be a phylogenetic network
obtained from N by a contraction. Then N ′ displays P and h(N ′) ≤ h(N ).

Proof. Let (u, v) be the edge in N that is incident with two reticulations
and contracted in the process of obtaining N ′ from N . Furthermore, let w
be the vertex in N ′ that results from identifying u and v. We have d−(w) ≤
d−(u) + d−(v) − 1 while all other reticulations w′ in N ′ correspond to a
reticulation u′ in N and d−(w′) = d−(u′). It now follows that h(N ′) ≤ h(N ).

Now, let T be a tree in P . If v is not used to display T in N , then u
is also not used to display T in N , and it is easily seen that N ′ displays T
without using w. On the other hand, if v is used to display T in N , then
exactly one parent, t say, of v is used to display T in N . If t 6= u, it is clear
that N ′ displays P . Furthermore, if t = u, then exactly one parent of u, say
s, is used to display T in N . Now, regardless of whether or not s is also a
parent of v in which case s is suppressed in obtaining N ′ from N , it again
follows that N ′ displays T . Hence N ′ displays each tree in P and the lemma
follows. �

We call a phylogenetic network with no edges whose end vertices are both
reticulations stack free. It follows from repeated applications of Lemma 4.1
that if P is a collection of phylogenetic X-trees, then there is a stack-free
network N on X that displays P such that h(N ) = h(P).

For the second operation, letN be a phylogenetic network on X, and let u
be a tree vertex inN whose two children are both reticulations. Furthermore,
let (u, v) be a reticulation edge, and let z /∈ X. Obtain a phylogenetic network
N ′ on X ∪ {z} from N by subdividing the edge (u, v) with a new vertex w
and adding a new edge (w, z). We say that N ′ has been obtained from N
by a leaf-attaching operation. Figure 3 illustrates (a) a contraction and (b)
a leaf-attaching operation.

We are now in a position to establish the main result of this section.

Theorem 4.2. Let P be a collection of phylogenetic X-trees. There exists a
set Z of auxiliary leaves with the following two properties.
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Figure 3: The phylogenetic networks at the bottom are obtained from their respective
networks at the top by (a) a contraction and (b) a leaf-attaching operation.

(i) |Z| ≤ htc(P), and

(ii) there is a collection PZ of phylogenetic trees with leaf set X∪Z obtained
from P by attaching Z such that h(P) = htc(PZ).

Proof. Let N be a stack-free network on X that displays P with h(N ) =
h(P). By Lemma 4.1, N exists. Now obtain a phylogenetic network NZ
from N by a minimum number of repeated applications of the leaf-attaching
operation until each tree vertex in the resulting network has at least one
child that is a tree vertex or a leaf. Clearly, h(N ) = h(NZ). Moreover,
since no leaf-attaching operation results in a new edge in NZ that is incident
with two reticulations, NZ is stack free. It now follows that NZ is tree-child.
Let Z = L(NZ) − X. Then, by construction, the size of Z is equal to the
number of tree vertices in N whose two children are both reticulations. Let
PZ be a set of phylogenetic trees obtained from P by attaching Z to P such
that NZ displays PZ . Since N displays P , such a set PZ always exists. By
construction, h(P) ≥ htc(PZ). Moreover, as each tree in P is a restriction of
a tree in PZ , it follows that h(P) ≤ htc(PZ); thereby establishing part (ii) of
the theorem.

Using the construction of the previous paragraph, we now establish part
(i) of the theorem. Let Er be the set of reticulation edges in N , and let
Vt be the set of tree vertices of N whose children are both reticulations.
Recall that |Vt| = |Z|. We next make two observations. First, each vertex
in Vt is incident with two edges in Er. Second, each edge in Er is incident
with at most one vertex in Vt. In summary, this implies that |Z| ≤ 1

2
|Er|.
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Furthermore, we have |Er| = h(P) + |Vr|, where Vr is the set of reticulations
in N . Therefore, as |Vr| ≤ h(P), we have |Er| ≤ 2h(P). As h(P) ≤ htc(P),
it now follows that

|Z| ≤ 1
2
|Er| ≤ 1

2
· 2h(P) ≤ 1

2
· 2htc(P) = htc(P).

This establishes part (i) of the theorem. �

5. Scoring an optimum forest

For a collection P of binary phylogeneticX-trees, acyclic-agreement forests
characterise h(P) for when P consists of exactly two trees. Indeed, many
algorithms and theoretical results that deal with Minimum Hybridisa-
tion for two trees are deeply-anchored in the notion of acyclic-agreement
forests [1, 2, 4, 16]. In this section, we establish a particular hardness result
that contributes to an explanation of why acyclic-agreement forests appear,
however, to be of little use to solve Minimum Hybridisation for more
than two trees. This result is a particular instance of a conjecture in [13,
page 1626].

For the purpose of the upcoming definitions, we regard the root of a
binary phylogenetic X-tree T as a vertex labelled ρ at the end of a pendant
edge adjoined to the original root. Furthermore, we view ρ as an element
of the leaf set of T ; thus L(T ) = X ∪ {ρ}. Let T and T ′ be two binary
phylogenetic X-trees. An agreement forest F = {Lρ,L1,L2, . . . ,Lk} for T
and T ′ is a partition of X∪{ρ} such that ρ ∈ Lρ and the following conditions
are satisfied:

(i) For all i ∈ {ρ, 1, 2, . . . , k}, we have T |Li ∼= T ′|Li.

(ii) The trees in
{T (Li) : i ∈ {ρ, 1, 2, . . . , k}}

and
{T ′(Li) : i ∈ {ρ, 1, 2, . . . , k}}

are vertex-disjoint subtrees of T and T ′, respectively.

Now, let F = {Lρ,L1,L2, . . . ,Lk} be an agreement forest for T and T ′. Let
GF be the directed graph that has vertex set F and an arc from Li to Lj
precisely if i 6= j and
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(iii) the root of T (Li) is an ancestor of the root of T (Lj) in T , or the root
of T ′(Li) is an ancestor of the root of T ′(Lj) in T ′.

We call F an acyclic-agreement forest for T and T ′ if GF has no directed
cycle. Moreover, if F contains the smallest number of elements over all
acyclic-agreement forests for T and T ′, we say that F is a maximum acyclic-
agreement forest for T and T ′, in which case, we denote this number minus
one by ma(T , T ′).

Baroni et al. [2] established the following characterisation for when a
collection of binary phylogenetic X-trees contains exactly two trees.

Theorem 5.1. Let P = {T , T ′} be a collection of two binary phylogenetic
X-trees. Then h(P) = ma(T , T ′).

Let N be a phylogenetic network on X with root ρ that displays a set
P of binary phylogenetic X-trees. As above, we regard ρ as a vertex at the
end of a pendant edge adjoined to the original root. We obtain a forest from
N by deleting all reticulation edges, repeatedly contracting edges where one
end-vertex has degree one and is not in X ∪ {ρ}, deleting isolated vertices
not in X ∪ {ρ} and, lastly, suppressing all vertices with in-degree one and
out-degree one. Let {Sρ,S1,S2, . . . ,Sk} be the forest obtained from N in this
way. We say that F = {L(Sρ),L(S1),L(S2), . . . ,L(Sk)} is the forest induced
by N . Moreover, F is said to be optimum if N is a tree-child network with
htc(P) = h(N ). For example, up to regarding ρ as a new vertex that is
adjoined to the original root of the two phylogenetic networks N and N ′
shown in Figure 1,

F = {{ρ, 1, 2, 6}, {3}, {4}, {5}} and F ′ = {{ρ, 1, 3, 5, 6}, {2}, {4}}

is the induced forest of N and N ′, respectively.
In [13], the authors investigate Minimum Hybridisation for three trees

and conjecture that, given a set P of three binary phylogenetic X-trees
and the induced forest of a phylogenetic network N that displays P and
h(P) = h(N ), it is NP-hard to determine N . For |P| ≥ 3, we affirmatively
answer their conjecture in the context of tree-child networks. More precisely,
using cherry-picking sequences, we show that the following decision problem
is NP-complete.
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Scoring Optimum Forest
Instance. A non-negative integer k, a collection P of binary phylogenetic
X-trees, an optimum forest F induced by a tree-child network N on X that
displays P .
Question. Is htc(P) ≤ k?

If |P| = 2, then, by Observation 1.1, htc(P) = h(P) and F is a maximum
acyclic-agreement forest with htc(P) = |F| − 1. Hence, Scoring Optimum
Forest is polynomial time when |P| = 2. However, the general problem is
NP-complete.

Theorem 5.2. The problem Scoring Optimum Forest is NP-complete.

The remainder of this section consists of the proof of Theorem 5.2. To
establish the result, we use a reduction from a particular instance of the NP-
complete problem Shortest Common Supersequence. Let Σ be a finite
alphabet, and let W be a finite subset of words in Σ∗. A word z ∈ Σ∗ is a
common supersequence of W if each word in W is a subsequence of z.

Shortest Common Supersequence (SCS)
Instance. A non-negative integer k, a finite alphabet Σ, and a finite subset
W of words in Σ∗.
Question. Is there a supersequence of the words inW with at most k letters?

Timkovskii [23, Theorem 2] established the next theorem. The orbit of a
letter in Σ is the set of its occurrences in the words in W . Note that if a word
in W uses a letter, b say, twice, then that word contributes two occurrences
to the orbit of b.

Theorem 5.3. The decision problem SCS is NP-complete even if each word
in W has 3 letters and the size of all orbits is 2.

A consequence of Theorem 5.3 is the next corollary.

Corollary 5.4. The decision problem SCS is NP-complete even if each word
in W has 3 letters, the size of all orbits is at most 2, and no word in W
contains a letter twice.
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Proof. Let k, Σ, and W be an instance of SCS, where each word W has
3 letters and all orbits have size 2. Let Y be the subset of W that consists of
those words in W in which no letter occurs twice. Observe that if b ∈ Σ and b
occurs twice in a word in W , then no word in Y contains b. Furthermore, with
regards to Y , each word has 3 letters, the size of all orbits is at most 2, and
no word contains a letter twice. Let t denote the number of distinct letters
that occur in two distinct words in W − Y . Note that the construction of Y
and the computation of t can both be done in time polynomial in |W |. The
corollary will follow from Theorem 5.3 by showing that SCS with parameters
Σ and W has a supersequence of length at most

2|W − Y |+ t+ k

if and only if SCS with parameters Σ and Y has a supersequence of length
at most k.

Suppose that SCS with parameters Σ and Y has a supersequence z of
length at most k. Now iteratively extend z to a sequence z′ as follows. Let
w ∈ W − Y . Then w contains two occurrences of a letter, b say, in Σ. Let d
denote the third letter in w. Note that b occurs in no other word in Σ and
d occurs in exactly one other word in Σ. First assume that d occurs in a
word in Y . Depending on whether d is the first, second, or third letter in w,
extend z by adding bb to the end of z, adding b at the beginning and b at
the end of z, or adding bb at the beginning of z, respectively. The resulting
sequence is a supersequence for Y ∪ {w}. Second assume that d does not
occur as a word in Y . Then d occurs in a word w′ in W −Y . Let c denote the
letter occurring twice in w′. Extend z by adding w to the beginning of z and
then, to the resulting sequence, add two occurrences of c after w, add one
occurrence of c before w and one occurrence of c after w, or two occurrences
of c before w depending on whether d is the first, second, or third letter of
w′, respectively. The resulting sequence is a supersequence for Y ∪ {w,w′}.
Taking the resulting sequence and repeating this process for each remaining
word in W − (Y ∪ {w}) or W − (Y ∪ {w,w′}), respectively, we eventually
obtain a supersequence z′ for W . Moreover, z′ has length

2|W − Y |+ t+ k.

For the converse, suppose that there is a supersequence z of W of length

2|W − Y |+ t+ k.
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Let z′ be the sequence obtained from z by deleting each occurrence of a
letter that occurs twice in a word in W and deleting exactly one occurrence
of a letter that occurs in two distinct words in W − Y and, hence, does
not occur in a word in Y . It is easily checked that z′ is a supersequence of
Y . Furthermore, since there are 2|W − Y | deletions of the first type and t
deletions of the second type, it follows that z′ has length k. This completes
the proof of the corollary. �

The decision problem described in the statement of Corollary 5.4 is the
one we will use for the reduction in proving Theorem 5.2. Let k, Σ, and W
be an instance of SCS such that each word in W has 3 letters, the size of
all orbits is at most 2, and no word in W contains a letter twice. Without
loss of generality, we may assume that, for each ` ∈ Σ, there is a word in W
containing `, and that |W | ≥ 3, so no letter is contained in each word. Let

W = {w1, w2, . . . , wq}

and, for each i ∈ {1, 2, . . . , q}, let wi = wi1wi2wi3. Also, let

o(Σ) = `1, `2, . . . , `|Σ|

denote a fixed ordering of the letters in Σ. For each wi in W , we denote the
sequence obtained from o(Σ) by removing each of the three letters in wi by
o(Σ)− wi.

We now construct an instance of Scoring Optimum Forest. A rooted
caterpillar is a binary phylogenetic tree T whose leaf set can be ordered, say
x1, x2, . . . , xn, so that {x1, x2} is a cherry and if pi denotes the parent of xi,
then, for all i ∈ {3, 4, . . . , n}, we have (pi, pi−1) as an edge in T . Here, we
denote the rooted caterpillar by (x1, x2, . . . , xn).

Now, for each i ∈ {1, 2, . . . , q}, let Ti denote the rooted caterpillar

Ti = (α,wi1, wi2, wi3, β1, β2, . . . , βq|Σ|, o(Σ)− wi),

and let P = {T1, T2, . . . , Tq}. Note that each of the trees in P has leaf set

X = {α, β1, β2, . . . , βq|Σ|} ∪ Σ

and P can be constructed in time polynomial in the size of Σ and W .
We next establish a lemma that reveals a relationship between the weight

of a cherry-picking sequence for P and the length of a supersequence for W .
Let

σ = (x1, y1), (x2, y2), . . . , (xs, ys), (xs+1,−)
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be a cherry-picking sequence for a set P of binary phylogenetic X-trees. For
each i ∈ {1, 2, . . . , s}, we say that (xi, yi) corresponds to n trees in P if {xi, yi}
is a cherry in exactly n trees obtained from P by picking x1, x2, . . . , xi−1,
where 1 ≤ n ≤ |P|.

Lemma 5.5. Let k ≤ 2|Σ| be a positive integer. Then there is a cherry-
picking sequence of P of weight k if and only if there is a supersequence of
W of length k.

Proof. First suppose there is a common supersequence z of W of length k.
Let

z = m1m2 · · · mk,

and let σ denote the sequence

(m1, α), . . . , (mk, α), (β1, α), . . . , (βq|Σ|, α), (`1, α), . . . , (`|Σ|, α), (α,−).

Since z is a supersequence of W , it is easily seen that σ is a cherry-picking
sequence of P . Moreover,

w(σ) = (k + |X|)− |X| = k.

Now suppose that there is a cherry-picking sequence

σ = (x1, y1), (x2, y2), . . . , (xs, ys), (xs+1,−)

of P of weight k. Without loss of generality, we may assume that each ordered
pair in σ is essential. We first show that there is a positive integer i′ such
that Pi′ is obtained from P by picking x1, x2, . . . , xi′ and each tree in Pi′ has
a cherry consisting of two elements in {α, β1, β2, . . . , βq|Σ|}. If not, then there
is a word wi in W such that either (wij, βq|Σ|) or (βq|Σ|, wij) is an ordered pair
in σ, where j ∈ {1, 2, 3}. Now, by considering a word not containing wij and
its associated tree in P , it is easily seen that w(σ) ≥ q|Σ| − 1 as each of the
elements in {β1, β2, . . . , βq|Σ|−1} appears at least twice as the first element of
an ordered pair in σ. But then

q|Σ| − 1 > 2|Σ|

as q ≥ 3 and |Σ| ≥ 3, contradicting the assumption k ≤ 2|Σ|.
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Consider the first i′ ordered pairs in σ. For each tree Ti in P , there are
exactly three ordered pairs whose first and second elements are in

S = {α,wi1, wi2, wi3}

and picking x1, x2, . . . , xi′ from Ti picks three elements of S. Since the size
of all orbits is at most 2, such an ordered pair corresponds to at most two
trees in P . We next construct a sequence σ′ of ordered pairs obtained from
σ. We start by modifying the first i′ ordered pairs of σ as follows:

(a) Amongst the first i′ ordered pairs, replace each ordered pair of the form
(α, `) with (`, α), where ` ∈ Σ.

(b) With the sequence obtained after (a) is completed, sequentially move
along the sequence to the i′-th ordered pair replacing each ordered pair
of the form (`, `′), where `, `′ ∈ Σ in one of the following ways:

(i) If (`, `′) corresponds to exactly one tree in P , then replace it with
(`, α) or (`′, α) depending on whether (`′, α) or (`, α), respectively,
is an earlier ordered pair.

(ii) If (`, `′) corresponds to two trees, Ti and Tj say, in P and the order
of the letters ` and `′ is the same in wi and wj, then replace it with
(`, α) or (`′, α) depending on whether (`′, α) or (`, α), respectively,
is an earlier ordered pair.

(iii) If (`, `′) corresponds to two trees, Ti and Tj say, in P and the order
of the letters ` and `′ in wi is not the same as that in wj, then re-
place it with (`, α) if (`, α) occurs as an ordered pair before (`′, α)
earlier in the sequence; otherwise, (`′, α) occurs as an ordered pair
before (`, α) earlier in the sequence and so replace it with (`′, α).

With this modification of σ after (b) is completed, let σ′1 denote the subse-
quence of the first i′ ordered pairs whose coordinates are in Σ∪ {α}, and let
σ′2 denote the subsequence σ−σ′1. Let σ′ denote the concatenation of σ′1 and
σ′2.

Now, consider each tree Ti in P together with its corresponding ordered
pairs in σ and the associated ones in σ′. Let P|σ′

1| be the set of trees obtained
from P by picking x′1, x

′
2, . . . , x

′
|σ′

1|
, where x′j is the first coordinate of the
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j-th ordered pair in σ′ for each j ∈ {1, 2, . . . , |σ′1|}. A routine check shows
that this picking sets the tree corresponding to Ti in P|σ′

1| to be the rooted
caterpillar

(α, β1, β2, . . . , βq|Σ|, o(Σ)− wi).

In particular, (wi1, α), (wi2, α), (wi3, α) is subsequence of σ′1.
We next extend σ′1 to a cherry-picking sequence for P of weight at most

k. Consider σ and σ′. If σ1 denotes the subsequence of ordered pairs in σ
corresponding to σ′1, then |σ1| = |σ′1| and

|σ| − |σ1| ≥ q|Σ|+ |Σ|+ 1

as each of the elements in {β1, β2, . . . , βq|Σ|}∪Σ as well as at least one element
in {β1, β2, . . . , βq|Σ|} ∪ Σ ∪ {α} appears as the first coordinate of an ordered
pair in σ − σ1. Here, an element in {β1, β2, . . . , βq|Σ|} ∪ Σ may be counted
twice as it appears as the first coordinate of two ordered pairs in σ − σ1. It
follows that the sequence of ordered pairs that is the concatenation of σ′1 and

(β1, α), (β2, α), . . . , (βq|Σ|, α), (`1, α), (`2, α), . . . , (`|Σ|, α), (α,−)

is a cherry-picking sequence of P whose weight is at most k.
Let σ′1 be the sequence

(m1, α), (m2, α), . . . , (mk′ , α).

Since (wi1, α), (wi2, α), (wi3, α) is a subsequence of σ′1 for each tree Ti,

m1m2 · · · mk′

is a common supersequence of W . Moreover, as w(σ) = k, we have k′ ≤ k.
It follows that there is a supersequence of W of length k. �

To complete the proof of Theorem 5.2, let

F = {{ρ, α, β1, β2, . . . , βq|Σ|}} ∪ {{`} : ` ∈ Σ}

be a partition of X ∪ {ρ}. We next show that F is an optimum forest
induced by a tree-child network on X with root ρ and that displays P . Let
z = z1z2 · · · zk be a common supersequence of W of minimum length, and
suppose this length is k. Since all orbits have size at most 2 and z is of
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minimum length, each letter in Σ appears at most twice in z, and so k ≤ 2|Σ|.
Let T be the ‘multi-labelled’ rooted caterpillar

T = (α, z1, z2, . . . , zk, β1, β2, . . . , βq|Σ|, o(Σ))

and let N be the tree-child network with root ρ obtained from T as follows.
For each ` ∈ Σ, identify the leaves labelled ` and adjoin a new pendant edge
to the identified vertex with the leaf-end labelled `. Since z is a common
supersequence of W , it is easily checked that N displays P . Furthermore,
h(N ) = k. By Theorem 2.1 and Lemma 5.5, htc(P) = k, and so, as F is
induced by N , it follows that F is an optimum forest for P .

Now, given an arbitrary phylogenetic network, it can be verified in polyno-
mial time whether it is tree-child, it displays P [21], its hybridisation number
is at most k, and it induces F . Hence, Scoring Optimum Forest is in
NP.

Theorem 5.2 now follows by combining Corollary 5.4 with Theorem 2.1
and Lemma 5.5.

6. Concluding remarks

In this paper, we have generalised the concept of cherry-picking sequences
as introduced in [12] and shown how this generalisation can be used to char-
acterise the minimum number of reticulation events that is needed to explain
any set of phylogenetic X-trees in the space of tree-child networks as well
as in the space of all phylogenetic networks. To see that these two minima
can be different for a fixed set of phylogenetic trees, consider the set P of
trees presented in Figure 2. It was shown in [13, 15] that h(P) = 3 and
that there are six phylogenetic networks each of which displays P and has
a hybridisation number of three. However, none of these six phylogenetic
networks is tree-child. Moreover, using cherry-picking sequences a straight-
forward check shows that htc(P) = 4. Furthermore, we have shown that
Scoring Optimum Forest is NP-complete. Hence, given an optimum
forest, it is computationally hard to compute htc(P) for when P is a set of
binary phylogenetic X-trees, where |P| ≥ 3. This contrasts with the two-tree
case for which Scoring Optimum Forest is polynomial-time solvable and
further hints at that agreement forests are of limited use beyond the two-tree
case.
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Of course, restricting to collections of binary phylogenetic trees, one could
generalise the definition of an acyclic-agreement forest for two binary phylo-
genetic trees to more than two trees in the most obvious way. That is, one
requires Conditions (i), (ii), and (iii) in the definition of an acyclic-agreement
forest to hold for each tree in an arbitrarily large collection of binary phy-
logenetic X-trees. With this generalisation in mind and observing that the
number of components in a forest that is induced by a tree-child network is
equal to its number of reticulations plus one, one might conjecture that, given
a set P of binary phylogenetic X-trees, the number of components in a max-
imum acyclic-agreement forest for P is the same as the minimum number of
components in an optimum forest for P . To see that this is not true, we refer
back to Figure 1. Let F be the forest induced by N , and let F ′ be the forest
induced by N ′. Since |F ′| = 3, a maximum acyclic-agreement forest for P
has at most three elements. Moreover, since h(N )=3 and N is tree-child,
we have htc(P) ≤ 3. Indeed, it can be checked that htc(P) = 3. Moreover,
there is no tree-child network that displays P and induces an optimum for-
est that is also a maximum acyclic-agreement forest for P . Consequently,
an approach that exploits maximum acyclic-agreement forests for a set P of
binary phylogenetic trees to compute htc(P), such as computing a maximum
acyclic-agreement forest F for P and, subsequently, scoring F in a way that
reflects the number of edges that are directed into each reticulation vertex
in a network that induces F , is unlikely to give the desired result.

Lastly, from a computational viewpoint, the introduction of acyclic-agree-
ment forests [2] has triggered significant progress towards the development
of ever faster algorithms to solve Minimum Hybridisation for when the
input contains exactly two phylogenetic trees (e.g. see [1, 4, 8, 9, 20, 24]). We
look forward to seeing a similar development now for solving Minimum Hy-
bridisation for arbitrarily many phylogenetic trees by using cherry-picking
sequences. In turn, this is likely to be of benefit to biologists who often wish
to infer evolutionary histories that are not entirely tree-like and for data sets
that usually consists of more than two phylogenetic trees.
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[16] S. Kelk, L. van Iersel, N. Lekić, S. Linz, C. Scornavacca, and L. Stougie
(2012). Cycle killer ... qu’est-ce que c’est? On the comparative ap-
proximability of hybridization number and directed feedback vertex set.
SIAM Journal on Discrete Mathematics, 26,1635–1656.

[17] J. Mallet, N. Besansky, and M. W. Hahn (2016). How reticulated are
species? BioEssays, 38, 140–149.

[18] T. Marcussen, S. R. Sandve, L. Heier, M. Spannagl, M. Pfeifer, Inter-
national Wheat Genome Sequencing Consortium, K. S. Jakobsen, B. B.
Wulff, B. Steuernagel, K. F. Mayer, and O. A. Olsen (2014). Ancient
hybridizations among the ancestral genomes of bread wheat. Science,
345, 1250092.

[19] B. M. E. Moret, L. Nakhleh, T. Warnow, C. R. Linder, A. Tholse, A.
Padolina, J. Sun, and R. Timme (2004). Phylogenetic networks: model-
ing, reconstructibility, and accuracy. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, 1, 13–23.

[20] T. Piovesan and S. Kelk (2012). A simple fixed parameter tractable
algorithm for computing the hybridization number of two (not neces-
sarily binary) trees, IEEE Transactions on Computational Biology and
Bioinformatics, 10, 18–25.

[21] J. Simpson. Tree structure in phylogenetic networks. PhD thesis, Uni-
versity of Canterbury, in preparation.

34



[22] S. M. Soucy, J. Huang, and J. P. Gogarten (2015). Horizontal gene
transfer: building the web of life. Nature Reviews Genetics, 16, 472–
482.

[23] V. G. Timkovskii (1989). Complexity of common subsequence and su-
persequence problems and related problems. Cybernetics, 25, 565–580.

[24] Y. Wu and J. Wang (2010). Fast computation of the exact hybridiza-
tion number of two phylogenetic trees. In: International Symposium on
Bioinformatics Research and Applications, Springer, pp. 203–214.

[25] Y. Wu (2010). Close lower and upper bounds for the minimum reticulate
network of multiple phylogenetic trees. Bioinformatics, 26, i140–i148.

35


