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Abstract

In the study of rooted phylogenetic networks, analyzing the set of rooted
phylogenetic trees that are embedded in such a network is a recurring task.
Algorithmically, this analysis requires a search of the exponentially-sized mul-
tiset S of rooted phylogenetic trees that are embedded in a rooted phyloge-
netic network N . In this paper, we introduce the notion of a non-essential
arc, which is an arc whose deletion from N results in a rooted phylogenetic
network N ′ that embeds the same set of rooted phylogenetic trees as N but
whose associated multiset is smaller than S. We characterize non-essential
arcs for the popular class of tree-child networks and show that identifying
and deleting such arcs takes time that is cubic in the number of leaves of
the network. Moreover, we show that deciding if a given arc of an arbitrary
phylogenetic network is non-essential is ΠP

2 -complete.
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1. Introduction

As a generalization of rooted phylogenetic trees to rooted directed acyclic
graphs with labeled leaves, rooted phylogenetic networks provide advanced
opportunities to accurately represent ancestral relationships between entities
such as species, viruses, and cancer cells [13, 15]. This is particularly true if

Email addresses: s.linz@auckland.ac.nz (Simone Linz),
charles.semple@canterbury.ac.nz (Charles Semple)

Preprint submitted to Journal of Computer and System Sciences March 19, 2022



the evolutionary history includes non-treelike processes such as hybridization,
lateral gene transfer, or recombination that cannot be represented by a single
phylogenetic tree. However, since the evolutionary history of a single gene or
short DNA fragment is, in most cases, correctly described by a tree, the set
of rooted phylogenetic trees that are embedded in a network are of recurring
interest in the reconstruction and analysis of rooted phylogenetic networks.

For example, one way of generalizing the popular tree reconstruction
methods parsimony and likelihood [9] to rooted phylogenetic networks is by
scoring each phylogenetic tree that is embedded in a given network instead
of scoring the network directly [14, 18, 23]. Another question that considers
tree embeddings is the fundamental question of whether or not a given phy-
logenetic tree is embedded in a given phylogenetic network. This problem,
known as Tree Containment, was first introduced by Kanj et al. [20] and
continues to be actively studied (e.g. [2, 3, 11, 16]). Computing the parsimony
or likelihood score of a rooted phylogenetic network as well as solving Tree
Containment are, without imposing additional structural properties on the
input, three NP-hard problems [10, 18, 19, 20, 24]. Other computationally
hard problems that consider embeddings of rooted phylogenetic trees in a
network include counting the number of phylogenetic trees that are embed-
ded in a rooted phylogenetic network and deciding if a rooted phylogenetic
tree is a so-called base tree of a rooted phylogenetic network [1, 21].

Due to the computational complexity of the aforementioned problems, it
is not surprising that algorithms to solve these problems often exhaustively
search through a multiset of all rooted phylogenetic trees that are embedded
in a rooted phylogenetic network N . We next describe a standard procedure
to obtain this multiset of trees for when each non-root vertex in N has
in-degree one or two. A straightforward generalization of the process can
be applied to networks with vertices of higher in-degree. By deleting exactly
one incoming arc for each vertex in N that has in-degree two, and repeatedly
suppressing vertices of in-degree one and out-degree one, deleting unlabeled
vertices with in-degree one and out-degree zero, and deleting vertices with in-
degree zero and out-degree one, one obtains a rooted phylogenetic tree that
is embedded in N . Indeed, each rooted phylogenetic tree that is embedded
in N can be obtained in this way. Hence, if N has k vertices of in-degree two,
the systematic process of deleting subsets of arcs of size k in N generates a
multiset S of rooted phylogenetic trees that are embedded in N . If a rooted
phylogenetic tree T of S has multiplicity c, then this implies that there
are c combinations of arcs to delete in N that each yield T . Although the
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Figure 1: A rooted phylogenetic network N that, regardless of the number of reticulations,
only embeds the two rooted phylogenetic trees T and T ′ shown on the right-hand side. If
N has k reticulations, then there are exactly 2k−1 distinct combinations of arcs to delete
from N that each yield T .

cardinality of S is 2k, it is known that the number of elements in S is often
smaller than 2k [5]. For instance, it is easy to construct a rooted phylogenetic
network that embeds exactly two (distinct) rooted phylogenetic trees for any
given k (see Figure 1). In Figure 1, as well as in all other figures of this
paper, arcs are directed down the page.

Given the potential difference between the cardinality of S and the num-
ber of elements in S, we ask the following question. Does there exist an arc
e in N such that, by deleting e from N , we obtain a rooted phylogenetic
network N ′ whose set of embedded trees is the same as the set of embedded
trees of N ? We make the process of obtaining N ′ from N by deleting e more
precise in Section 2. If there exists such an arc e, we call e a non-essential arc
of N . Furthermore, if e is directed into a vertex of in-degree two in N , then,
from an algorithmic viewpoint, the existence of e implies that |S| = 2|S ′|,
where S ′ is the multiset of rooted phylogenetic trees that are embedded in
N ′. Thus, the deletion of e in N reduces the running time of an algorithm
that searches S by up to one half. It is consequently of interest to explore
ways that simplify N by means of arc deletions without losing any element
of S.

In this paper, we take a first step in this exploration and characterize non-
essential arcs in tree-child networks, which are rooted phylogenetic networks
that were initially introduced by Cardona et al. [4] and are formally defined
in the next section. Specifically, given a tree-child network N , we show that
each non-essential arc of N is a reticulation arc of a particular family of
subgraphs of N . We call these subgraphs caterpillar ladders. Although a
caterpillar ladder can have arbitrary size, it always has exactly two non-
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essential arcs, one of which can be deleted. Intuitively, once one of the two
non-essential arcs is deleted, the other arc becomes essential in the resulting
network. Moreover these arcs can be identified inN in polynomial time. This
implies that we can preprocess a tree-child network and eliminate its non-
essential arcs quickly before running any algorithm that searches through the
exponentially-sized multiset of rooted phylogenetic trees that are embedded
in N . Despite this encouraging result, we also show that, in general, deciding
if a given arc of an arbitrary phylogenetic network is non-essential is ΠP

2 -
complete. With NP-complete and coNP-complete problems being placed
on the first level of the polynomial-time hierarchy, ΣP

2 -complete and ΠP
2 -

complete problems are placed on the second level of this hierarchy. Generally
speaking, problems that are complete for the second level of the polynomial-
time hierarchy are more difficult than problems that are complete for the
first level. For more information about the polynomial-time hierarchy and
its complexity classes, we refer the interested reader to [12, 26].

The remainder of the paper is organized as follows. Section 2 provides
definitions and terminology for phylogenetic networks and makes the no-
tion of a non-essential arc precise. We also show that, in considering which
arcs of a phylogenetic network are non-essential, it suffices to consider only
reticulation arcs. Additionally, Section 2 establishes two preliminary lemmas
concerning the arcs in tree-child networks. In Section 3, we formally intro-
duce caterpillar ladders and their embeddings in tree-child networks. These
ladders and two of their variants are the main tool in characterizing the non-
essential arcs in tree-child networks, the main theorem of the paper. This
theorem is stated in Section 3 and proved in Section 4. In Section 5, we show
that the number of arcs that need to be deleted from a tree-child network
N so that the resulting network N ′ has only essential arcs and embeds the
same set of trees as N is fixed, and thus does not depend on the ordering
in which non-essential arcs are deleted from N . Subsequently, in the same
section, we present an algorithm to identify a single non-essential arc in N
and show how this algorithm can be used to obtain N ′ from N in time that
is cubic in the number of leaves of N . Lastly, in Section 6, we establish the
hardness result mentioned at the end of the last paragraph.

2. Preliminaries

This section introduces notation and terminology. Throughout the paper,
X denotes a non-empty finite set.
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Phylogenetic networks. A rooted binary phylogenetic network N on X is
a rooted acyclic directed graph with no parallel arcs satisfying the following
three properties:

(i) the (unique) root has in-degree zero and out-degree two;

(ii) a vertex of out-degree zero has in-degree one, and the set of vertices
with out-degree zero is X; and

(iii) all other vertices either have in-degree one and out-degree two, or in-
degree two and out-degree one.

For technical reasons, if |X| = 1, then we additionally allow N to consist of
the single vertex in X. We use V (N ) to denote the vertex set of N . The
vertices of N of out-degree zero are called leaves, and X is referred to as
the leaf set of N . Furthermore, a vertex of in-degree one and out-degree
two is a tree vertex, while a vertex of in-degree two and out-degree one is a
reticulation. An arc directed into a reticulation is called a reticulation arc.
All other arcs are called tree arcs. Moreover, a reticulation arc (u, v) of N is a
shortcut if N has a directed path from u to v avoiding (u, v). A rooted binary
phylogenetic X-tree is a rooted binary phylogenetic network on X with no
reticulations. To ease reading, we will refer to a rooted binary phylogenetic
network and a rooted binary phylogenetic tree as a phylogenetic network and
a phylogenetic tree, respectively, since all such networks and trees in this
paper are rooted and binary.

Now, let N be a phylogenetic network, and let P be a directed path in N .
If (v1, v2, . . . , vn) is the sequence of vertices that P traverses, then we denote
P by v1, v2, . . . , vn. Furthermore, a directed path P = v1, v2, . . . , vn in N
with n ≥ 1 is a called a tree path of N if each vertex vj with j ∈ {2, 3, . . . , n}
is a tree vertex or a leaf.

The main focus of this paper is on a particular class of phylogenetic net-
works which we now define. A phylogenetic network N is called tree-child if
each non-leaf vertex has a child that is a tree vertex or a leaf. Equivalently,
N is tree-child if, for each vertex v in N there exists a tree path from v to a
leaf. This equivalence is used frequently throughout this paper. To illustrate,
Figure 2 shows a non-tree-child network N and a tree-child network N ′ at
the bottom left and bottom right, respectively. Note that N is not tree-child,
because both children of u are reticulations.
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Figure 2: Top: The caterpillar T = (1, 2, 3, 4). Bottom left: A phylogenetic network N
that is not tree-child and displays T . The thick arcs indicate an embedding of T in N .
Bottom right: A tree-child network N ′.

Subtrees and caterpillars. Let T be a phylogenetic X-tree, and let X ′ be
a non-empty subset of X. Then T |X ′ is the phylogenetic X ′-tree obtained
from the minimal subtree of T that connects all leaves in X ′ by suppressing
all vertices with in-degree one and out-degree one. We refer to T |X ′ as the
restriction of T to X ′. Furthermore, for two elements `1, `2 ∈ X, we say that
{`1, `2} is a cherry of T if `1 and `2 have the same parent.

Let X = {`1, `2, . . . , `n} with n ≥ 2, and let T be a phylogenetic X-
tree. For each `j ∈ X with j ∈ {1, 2, . . . , n}, let pj be the parent of `j in
T . We call T a caterpillar if there exists an ordering, say `1, `2, . . . , `n, on
the elements in X such that, p1 = p2 and, for all j ∈ {2, 3, . . . , n − 1} we
have that (pj+1, pj) is an arc in T . Furthermore, we denote such a caterpillar
T by (`1, `2, `3 . . . , `n) or, equivalently, (`2, `1, `3, . . . , `n). An example of a
caterpillar with cherry {1, 2} is shown in Figure 2.

Embeddings. Let N be a phylogenetic network on X, and let T be a phy-
logenetic X ′-tree, where X ′ is a non-empty subset of X. Furthermore, let E
be a subset of the arcs of N . We say that N displays T if T can be obtained
from N by deleting arcs and vertices, and suppressing any resulting vertices
of in-degree one and out-degree one. Moreover, E is an embedding of T in N
if the subgraph of N induced by the elements in E is a subdivision of T . If
E is an embedding of T in N , then T is displayed by N . Now, suppose that
E is an embedding of T in N , and let {e1, e2, . . . , em} be a subset of the arcs
in N . If {e1, e2, . . . , em} ⊆ E , we say that E uses {e1, e2, . . . , em}. To ease
reading, if E uses a singleton {e1}, we write that E uses e1. The phylogenetic
tree T that is shown in Figure 2 is displayed by each of the two phylogenetic
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networks N and N ′ that are shown in the same figure. An embedding of T
in N is indicated by the thick arcs of N .

Essential arcs. Let N be a phylogenetic network on X, and let e be an
arc of N . If there exists a phylogenetic X-tree T displayed by N such that
every embedding of T in N uses e, we say that e is essential. Otherwise, if,
for each phylogenetic X-tree T displayed by N , there exists an embedding
of T that avoids e, we say that e is non-essential. To decide which arcs of N
are non-essential, it follows from the next lemma that it suffices to consider
only the reticulation arcs of N .

Lemma 2.1. Let N be a phylogenetic network on X, and let e be a tree
arc of N . If e is non-essential, then there is a reticulation arc of N that is
non-essential.

Proof. Let e = (t, u), and suppose that e is non-essential. Let P be a
maximal length tree path starting at u. If P ends at a leaf, then every
embedding of a phylogenetic X-tree displayed by N uses e, a contradiction.
Thus P ends at a tree vertex, v say, whose two children are both reticulations.
Let w be one of these reticulations. Now, let T be a phylogenetic X-tree that
is displayed by N . Since e is non-essential, it follows that there exists an
embedding of T in N that avoids e and, consequently, it also avoids (v, w).
Therefore, as e is non-essential, (v, w) is also non-essential. This completes
the proof of the lemma. �

It follows from Lemma 2.1 that if every reticulation arc of a phylogenetic
network N is essential, then every tree arc of N is essential. Thus, for the
remainder of the paper, when considering non-essential arcs of a phylogenetic
network, we restrict our attention to reticulation arcs.

We end this section with two lemmas and an observation that establish
basic properties of essential and non-essential arcs in tree-child networks. Let
e = (u,w) be a tree arc of a phylogenetic network N . If N is tree-child, then
there exists a tree path starting at u, traversing e, and ending at a leaf in N .
The next lemma now follows from [25, Theorem 1.1]. This lemma is used
freely throughout this paper.

Lemma 2.2. Let N be a tree-child network on X, and let E be a subset of
the arcs of N . Then E is an embedding of a phylogenetic X-tree in N if and
only if E contains every tree arc of N and E contains, for each reticulation
v in N with parents u and u′, exactly one of (u, v) and (u′, v).
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As an aside, it follows from Lemma 2.2 that every tree arc of a tree-child
network is essential.

Let N be a tree-child network, and let e = (u, v) be a reticulation arc of
N . We denote by N \ {e} the network obtained from N by either deleting
e and suppressing u and v if u is not the root of N , or deleting both arcs
incident with u and suppressing v if u is the root of N . It follows from [6,
Lemma 7(i)] thatN is tree-child. Moreover, with the definition of an essential
arc in mind, we have the following observation.

Observation 2.3. Let e be a reticulation arc of a tree-child network N on
X. Then the following two statements are equivalent:

(a) e is essential, and

(b) N displays a phylogenetic X-tree that is not displayed by N \ {e}.

Lemma 2.4. Let v be a reticulation of a tree-child network N on X. Let e
and e′ be the reticulation arcs that are directed into v. If neither e nor e′ is
a shortcut, then e and e′ are both essential.

Proof. Let e = (u, v) and let e′ = (u′, v). Since N is tree-child and neither
e nor e′ is a shortcut, there are three distinct elements `1, `2, and `3 in X such
that there exists a tree path from u to `1, a tree path from u′ to `2, and a tree
path from v to `3. Moreover, by Lemma 2.2, N displays phylogenetic X-trees
T and T ′ such that T |{`1, `2, `3} = (`1, `3, `2) and T ′|{`1, `2, `3} = (`2, `3, `1).
Furthermore, it is easily seen that T is not displayed by N \ {e} and T ′ is
not displayed by N \ {e′}. It now follows by Observation 2.3 that e and e′

are both essential. �

3. Caterpillar Ladders and Statement of the Main Result

Let N be a phylogenetic network on X = {`0, `1, `2, . . . , `k}, where k ≥ 1,
and let `0, `1, `2, . . . , `k be an ordering of the elements in X. Under this
ordering, we say that N is the (unique) caterpillar ladder on X if, up to
isomorphism, it has vertex set

X
⋃

j∈{1,2,...,k}

{vj, pj, qj},

and the vertices and arcs satisfy the following two properties:
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Figure 3: Left: The caterpillar ladder 〈`0, `1, `2, . . . , `7〉 with spine
q7, q6, p7, q5, p6, q4, p5, q3, p4, q2, p3, q1, p2, p1. For each j ∈ {1, 2, . . . , 7}, note that vj
is the parent of `j . Right: A tree-child network N with thick arcs highlighting that
〈4, 6, 3〉 is a tight caterpillar ladder of N . Note that 〈4, 6, 1〉 is also a tight caterpillar
ladder of N .

(i) If k = 1, then (q1, p1) is an arc, where q1 is the root of N . Other-
wise, qk, qk−1, pk, qk−2, pk−1, qk−3, pk−2, . . . , q3, p4, q2, p3, q1, p2, p1, `0 is a
directed path, where qk is the root of N .

(ii) For each j ∈ {1, 2, . . . , k}, the vertex vj is a reticulation that is incident
with the three arcs (vj, `j), (pj, vj), and (qj, vj).

For convenience, if k = 1, we set q0 = p1 and p2 = q1. We denote the above
caterpillar ladder by 〈`0, `1, `2, . . . , `k〉. Furthermore, for k > 1 (resp. k = 1),
we call the directed path

qk, qk−1, pk, qk−2, pk−1, qk−3, pk−2, . . . , q3, p4, q2, p3, q1, p2, p1

(resp. the arc (q1, p1)) the spine of N . Note that a caterpillar ladder is tree-
child. To illustrate, the caterpillar ladder 〈`0, `1, `2, . . . , `7〉 is shown on the
left-hand side of Figure 3.
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Tight caterpillar ladders. Let N be a phylogenetic network on X, and let
C = 〈`0, `1, `2, . . . , `k〉 be a caterpillar ladder such that {`0, `1, `2, . . . , `k} ⊆
X. We next define an embedding of C in N . We say that C is a tight cater-
pillar ladder of N if there exists a one-to-one map φ : V (C) → V (N ) with
φ(`j) = `j for all j ∈ {0, 1, 2, . . . , k} satisfying the following three properties:

(P1) For (p1, `0) and each arc (vj, `j) in C with j ∈ {1, 2, . . . , k}, there
exists a tree path from φ(p1) to φ(`0) and from φ(vj) to φ(`j) in N ,
respectively.

(P2) For each reticulation arc (u, vj) in C with j ∈ {1, 2, . . . , k}, there
exists an arc (φ(u), φ(vj)) in N .

(P3) For each arc (u,w) on the spine of C, there exists an arc (φ(u), φ(w))
in N .

Informally, a caterpillar ladder of N is referred to as tight because each arc
of the spine of C is mapped to an arc in N . Towards the end of this section,
we introduce two additional types of caterpillar ladders of N for which (P3)
is progressively relaxed and arcs on the spine of C are mapped to directed
paths and tree paths in N .

To illustrate, the caterpillar ladder 〈4, 6, 3〉 is a tight caterpillar ladder of
the phylogenetic network that is shown on the right-hand side of Figure 3.
Now suppose that C = 〈`0, `1, `2, . . . , `k〉 is a tight caterpillar ladder of N .
Then it follows by (P3) and the existence of the two arcs (φ(qk), φ(qk−1)) and
(φ(p2), φ(p1)) in N that there exists no tight caterpillar ladder of N whose
leaf set strictly contains {`0, `1, `2, . . . , `k}, that is, C cannot be extended.
Furthermore, in N , we refer to the arc (φ(p1), φ(v1)) as the first rung of C,
and to the arc (φ(qk), φ(vk)) as the last rung of C.

We are now in a position to state the main result of this paper.

Theorem 3.1. Let e be a reticulation arc of a tree-child network N on X.
Then e is non-essential if and only if e is the first or last rung of a tight
caterpillar ladder of N .

Before describing two embedding variants of caterpillar ladders in a phy-
logenetic network, we detail a connection between Theorem 3.1 and a pre-
viously established result. Cordue et al. [5] have shown that a tree-child
network N on X displays a phylogenetic X-tree twice precisely if N con-
tains an avoidable cycle. Roughly speaking, an underlying cycle C of N is
avoidable if there exists an embedding E of a phylogenetic X-tree T in N
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Figure 4: A tree-child network N with an avoidable cycle (indicated by thick arcs) that
displays the three phylogenetic trees T1, T2, and T2.

such that E uses no more than two arcs (u, v) of N with the property that u
is a vertex of C and v is not a vertex of C, in which case T is displayed twice
by N . Hence, if N has a non-essential reticulation arc e, then e is an arc
of an avoidable cycle. Indeed, every underlying cycle of a tight caterpillar
ladder in N is avoidable. However, the converse does not hold. That is,
if N contains an avoidable cycle C, then C does not necessarily contain a
non-essential reticulation arc. Equivalently, if N displays less than 2k phy-
logenetic X-trees, where k is the number of reticulations in N , then N may
or may not contain a non-essential reticulation arc. An example is shown in
Figure 4, where the phylogenetic tree T1 is displayed twice by the tree-child
network N that is shown in the same figure. However, a straightforward
check shows that all four reticulation arcs of N are essential.

As an immediate consequence of Theorem 3.1, we also have the following
corollary. Let N be a phylogenetic network. Then N is called normal if it is
tree-child and has no shortcut. Moreover, N is called level-1 if every under-
lying cycle of N contains exactly one reticulation, that is, if the underlying
cycles of N are vertex disjoint. The classes of normal and level-1 networks
are proper subclasses of tree-child networks. Note that if N is normal, then it
has no tight caterpillar ladder. Furthermore, if C is a tight caterpillar ladder
of a level-1 network, then C has exactly one reticulation.

Corollary 3.2. Let N be a phylogenetic network. If N is normal, or if
N is level-1 and every underlying cycle has length at least four, then every
reticulation arc of N is essential.

For normal networks, Corollary 3.2 was independently established in [17]
and [27] while, for level-1 networks, Corollary 3.2 follows from [5] as all of
the underlying cycles of a level-1 network are unavoidable.

The remainder of this section contains definitions of two variants of em-
beddings of caterpillar ladders in a phylogenetic network. These variants are
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used to establish Theorem 3.1 in the next section.

Nearly-tight and loose caterpillar ladders. Let N be a phylogenetic
network on X, and let C = 〈`0, `1, `2, . . . , `k〉 be a caterpillar ladder such that
{`0, `1, `2, . . . , `k} ⊆ X. If k = 1, recall that q0 = p1 and p2 = q1. Further-
more, let φ : V (C)→ V (N ) be a one-to-one map such that φ(`j) = `j for all
j ∈ {0, 1, 2, . . . , k}. First, we say that C is a nearly-tight caterpillar ladder
of N if φ satisfies (P1) and (P2), as well as exactly one of the following two
weaker versions of (P3):

(P3+) For each arc (u,w) on the spine of C with (u,w) 6= (qk, qk−1), there
is an arc (φ(u), φ(w)) in N , and there exists a directed path from
φ(qk) to φ(qk−1) in N .

(P3−) For each arc (u,w) on the spine of C with (u,w) 6= (p2, p1), there
is an arc (φ(u), φ(w)) in N , and there exists a directed path from
φ(p2) to φ(p1) in N .

If (P3+) applies, we refer to C as C+k and, if (P3−) applies, we refer to C
as C−k . To clarify, if k = 1 and C is a nearly-tight caterpillar ladder of N ,
then there is a directed path from q1 to p1. Second, we say that C is a loose
caterpillar ladder of N if φ satisfies (P1) and (P2), as well as exactly one of
the following two weaker versions of (P3):

(P3↑) For each arc (u,w) on the spine of C with (u,w) 6= (qk, qk−1), there
exists a tree path from φ(u) to φ(w) in N , and there exists a di-
rected path from φ(qk) to φ(qk−1) in N .

(P3↓) For each arc (u,w) on the spine of C with (u,w) 6= (p2, p1), there ex-
ists a tree path from φ(u) to φ(w) in N , and there exists a directed
path from φ(p2) to φ(p1) in N .

If (P3↑) applies, we refer to C as C↑k and, if (P3↓) applies, we refer to C as

C↓k . If k = 1, then the definitions of a nearly-tight caterpillar ladder and
a loose caterpillar ladder coincide. It is an immediate consequence of the
above definitions that each tight caterpillar ladder of N is also a nearly-tight
caterpillar ladder of N , and each nearly-tight caterpillar ladder of N is also
a loose caterpillar ladder of N .
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4. Proof of Theorem 3.1

In this section, we establish Theorem 3.1. Lemma 4.1 establishes one
direction of the theorem, whereas the converse is an amalgamation of Lem-
mas 4.7 and 4.8. The converse is obtained by repeatedly applying one of the
latter two lemmas to extend a nearly-tight caterpillar ladder C+1 = 〈`0, `1〉
(resp. C−1 = 〈`0, `1〉) of a tree-child network N to a tight caterpillar lad-
der C = 〈`0, `1, `2, . . . , `k〉 of N by moving towards (resp. away from) the
root of N . Lemmas 4.2–4.5 and Corollary 4.6 establish certain properties of
loose caterpillar ladders that are frequently used in the proofs of Lemmas 4.7
and 4.8. Lastly, as a reminder to the reader, throughout this section we freely
use Lemma 2.2.

Let N be a phylogenetic network, and let C = 〈`0, `1, `2, . . . , `k〉 be a
caterpillar ladder that is a tight caterpillar ladder of N , where k ≥ 1. Then
there exists a map φ from the vertex set of C to the vertex set of N that sat-
isfies (P1)–(P3). To ease reading, we use the following notation throughout
this section, where j ∈ {1, 2, . . . , k}:

1. For each reticulation vj in C, the vertex φ(vj) in N is denoted by vj.

2. For each vertex u on the spine of C, the vertex φ(u) in N is denoted by
u. Hence, each reticulation vj in N has parents pj and qj.

3. For each j, the arc (pj, vj) in N is denoted by ej.

4. For each j, the arc (qj, vj) in N is denoted by fj.

Note that each fj is a shortcut of N . The notation naturally carries over for
a nearly-tight caterpillar ladder and a loose caterpillar ladder of N .

The next lemma establishes one direction of Theorem 3.1.

Lemma 4.1. Let C = 〈`0, `1, `2, . . . , `k〉 be a tight caterpillar ladder of a tree-
child network N on X. Then each element in {e1, fk} is non-essential and
each element in {f1, e2, f2, e3, f3, . . . , ek−1, fk−1, ek} is essential.

Proof. We first show that each of e1 and fk is non-essential. Let E be
an embedding of a phylogenetic X-tree T in N that uses e1, and let j be
the maximum element in {1, 2, . . . , k} such that E also uses {e2, e3, . . . , ej}.
Observe that T |{`0, `1, `2, . . . , `j} = (`0, `1, `2, . . . , `j). Now, as the choice of
j implies that E uses fj+1 unless j = k, it is straightforward to check that

(E − {e1, e2, . . . , ej}) ∪ {f1, f2, . . . , fj}
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is an embedding of T inN . If j = k, then this set of arcs is also an embedding
of T in N . Thus e1 is non-essential. Similarly, let E ′ be an embedding of
a phylogenetic X-tree T ′ in N that uses fk, and let j′ be the minimum
element in {1, 2, . . . , k} such that E ′ also uses {fj′ , fj′+1, . . . , fk−1}. Then
T ′|{`0, `j′ , `j′+1, . . . , `k} = (`0, `j′ , `j′+1, . . . , `k). Again, as the choice of j′

implies that E ′ uses ej′−1 unless j′ = 1, it follows that

(E ′ − {fj′ , fj′+1, . . . , fk}) ∪ {ej′ , ej′+1, . . . , ek}

is an embedding of T ′ in N . If j′ = 1, then this set of arcs is also an
embedding of T in N . Thus fk is non-essential.

We complete the proof by showing that each element in

{f1, e2, f2, e3, f3, . . . , ek−1, fk−1, ek}

is essential, where k ≥ 2. Let ej ∈ {e2, e3, . . . , ek}, and let E be an embedding
of a phylogenetic X-tree T inN that uses {fj−1, ej, }. Then T |{`0, `j−1, `j} =
(`0, `j, `j−1). However, for every phylogeneticX-tree T ′ displayed byN\{ej},
we have T ′|{`0, `j−1, `j} = (`0, `j−1, `j). Hence, by Observation 2.3, ej is
essential. Now let fj ∈ {f1, f2, . . . , fk−1}, and let E be an embedding of a
phylogenetic X-tree T in N that uses {fj, ej+1, }. Then T |{`0, `j, `j+1} =
(`0, `j+1, `j). But, for every phylogenetic X-tree T ′ displayed by N \ {fj},
we have T ′|{`0, `j, `j+1} = (`0, `j, `j+1). Hence, again by Observation 2.3, fj
is essential. �

The next four lemmas and subsequent corollary establish properties of a
loose caterpillar ladder of a tree-child network. These properties are then
used in the proofs of Lemmas 4.7 and 4.8 that, taken together, establish the
converse of Theorem 3.1.

Lemma 4.2. Let C↑k = 〈`0, `1, `2, . . . , `k〉 be a loose caterpillar ladder of a
tree-child network N on X. If E and E ′ are two embeddings of the same
phylogenetic X-tree T in N such that E uses {e1, e2, . . . , ek} and E ′ uses f1,
then E ′ also uses {f2, f3, . . . , fk}.

Proof. If k = 1, then the lemma vacuously holds, so we may assume
that k ≥ 2. By (P3↑), there is a unique tree path from qk−1 to p1 in
N . Hence, since E uses {e1, e2, . . . , ek}, we have T |{`0, `1, `2, . . . , `k} =
(`0, `1, `2, . . . , `k). Now, towards a contradiction, assume that E ′ uses ej for
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some j ∈ {2, 3, . . . , k}. Without loss of generality, we may assume that j
is maximized so that E ′ uses {f1, f2, . . . , fj−1}. Then, by considering E ′, we
have T |{`0, `1, `2, . . . , `j} = (`0, `1, `2, . . . , `j−2, `j, `j−1) which gives a contra-
diction since E and E ′ are embeddings of the same phylogenetic X-tree, and
j ≥ 2. �

Note that the analogue of the next lemma when k = 2 is established as
Corollary 4.6.

Lemma 4.3. Let C↓k = 〈`0, `1, `2, . . . , `k〉 be a loose caterpillar ladder of a
tree-child network N on X, where k = 1 or k ≥ 3. If E and E ′ are
two embeddings of the same phylogenetic X-tree T in N such that E ′ uses
{f1, f2, . . . , fk} and E uses ek, then E also uses {e1, e2, . . . , ek−1}.

Proof. If k = 1, then the lemma vacuously holds. Thus assume that k ≥ 3.
By (P3↓), there is a unique tree path from qk to p2 in N . Therefore, as E ′
uses {f1, f2, . . . , fk}, it follows that T |{`1, `2, . . . , `k} = (`1, `2, . . . , `k). Now,
towards a contradiction, assume that E uses fj for some j ∈ {1, 2, . . . , k−1}.
Without loss of generality, we may assume that j is minimized so that E
uses {ej+1, ej+2, . . . , ek}. If j ≤ k − 2, then, by considering E , it follows that
T |{`j, `j+1, `j+2 . . . , `k} = (`j+1, `j, `j+2, . . . , `k), a contradiction as j ≤ k−2.
Otherwise, if j = k − 1, then, regardless of whether E uses ek−2 or fk−2, we
have T |{`k−2, `k−1, `k} = (`k−2, `k, `k−1), again a contradiction as k ≥ 3. �

Lemma 4.4. Let C↑k = 〈`0, `1, `2, . . . , `k〉 be a loose caterpillar ladder of a
tree-child network N on X. Suppose that e1 is a non-essential arc in N . Then

(i) there is a unique tree path from qk to qk−1 in N , and

(ii) every tree path in N that starts at qk traverses p1.

Proof. Throughout the proof, let E be an embedding of a phylogenetic
X-tree T in N that uses {e1, e2, . . . , ek}. We first show that there is a tree
path from qk to qk−1 from which the uniqueness result is immediate. Let P be
a directed path from qk to qk−1. By (P3↑), it follows that P exists. Assume
that P is not a tree path. Let w be the first reticulation on P , and let u be
the parent of w that lies on P . Since N is tree-child and qk is a parent of
a reticulation, it follows that u is a tree vertex and u 6= qk. Moreover, there
exists a tree path from u to a leaf x with x /∈ {`0, `1, . . . , `k}, and so

T |{x, `0, `1, . . . , `k} = (`0, `1, . . . , `k, x). (1)
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Since e1 is non-essential, there exists an embedding E ′ of T in N such that
E ′ uses f1. By Lemma 4.2, E ′ also uses {f2, f3, . . . , fk}. If E ′ uses (u,w), then
T |{x, `0, `1, . . . , `k} = (`0, `1, . . . , `k−1, x, `k). On the other hand, if E ′ does
not (u,w), it follows that T |{x, `0, `1, . . . , `k} is (`0, `1, . . . , `k−1, x, `k) or it
has {`k, x} as a cherry. All outcomes contradict the restriction of T in (1).
Hence P is the unique tree path from qk to qk−1.

We complete the proof by showing that every tree path that starts at qk
traverses p1. Assume that there is a tree path Q that starts at qk and does
not traverse p1. Let P ′ be the (unique) tree path in N that starts at qk, ends
at `0, and traverses in order

qk−1, pk, qk−2, pk−1, . . . , q2, p3, q1, p2, p1.

Furthermore, let w be the first vertex on Q that does not lie on P ′. As
N is tree-child, there exists a tree path from w to a leaf x such that x /∈
{`0, `1, . . . , `k}. Now consider the maximum length subpath of Q that coin-
cides with P ′, and let u be the last vertex of that subpath that is an ele-
ment in {q1, p2, q2, p3, q3, . . . , pk, qk}. Since Q does not traverse p1, we have
u 6= p1. We next distinguish two cases. First, assume that u = pj for some
j ∈ {2, 3, . . . , k}. Then, k ≥ 2 and, by considering E ,

T |{x, `0, `1, . . . , `k} = (`0, `1, . . . , `j−1, x, `j, . . . , `k).

Since e1 is non-essential, there exists an embedding E ′ of T in N such that
E ′ uses f1 and, by Lemma 4.2, it also uses {f2, f3, . . . , fk}. Considering E ′, it
now follows that

T |{x, `0, `1, . . . , `k} = (`0, `1, . . . , x, `j−1, `j, . . . , `k),

a contradiction. Thus u 6= pj. Second, assume that u = qj for some j ∈
{1, 2, . . . , k}. Then, by considering E ,

T |{x, `0, `1, . . . , `k} = (`0, `1, . . . , `j, `j+1, x, . . . , `k)

if u 6= qk or
T |{x, `0, `1, . . . , `k} = (`0, `1, . . . , `k, x)

if u = qk. Again, since e1 is non-essential, there exists an embedding E ′ of
T in N such that E ′ uses f1. By Lemma 4.2, E ′ also uses {f2, f3, . . . , fk}.
Regardless of whether or not u = qk, it now follows that

T |{x, `0, `1, . . . , `k} = (`0, `1, . . . , `j−1, x, `j, . . . , `k),

another contradiction. This establishes the lemma. �
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For the next lemma, recall that if k = 1, we set p2 = q1.

Lemma 4.5. Let C↓k = 〈`0, `1, `2, . . . , `k〉 be a loose caterpillar ladder of a
tree-child network N on X. Suppose that fk is a non-essential arc in N . Then

(i) there is a unique tree path from p2 to p1 in N , and

(ii) every tree path in N that starts at p2 traverses p1.

Proof. The proof is similar to that of Lemma 4.4. Throughout the proof, let
E ′ be an embedding of a phylogeneticX-tree T inN that uses {f1, f2, . . . , fk}.

To prove (i), let P be a directed path from p2 to p1. By (P3↓), such a
path exists. Assume that P is not a tree path. Let w be the first reticulation
on P , and let u be the parent of w that lies on P . Since N is tree-child
and p2 is a parent of a reticulation, it follows that u is a tree vertex and
u 6= p2. Moreover, there exists a tree path from u to a leaf x with x /∈
{`0, `1, `2 . . . , `k}. By considering E ′, it is easily checked that T |{x, `0, `1}
does not have {`0, `1} as a cherry. Since fk is non-essential, there exists an
embedding E of T in N such that E uses ek. If k = 1 or k ≥ 3, then, by
Lemma 4.3, E also uses {e1, e2, . . . , ek−1}. Regardless of whether E uses (u,w)
or not, it follows that T |{x, `0, `1} has {`0, `1} as a cherry, a contradiction.
So assume that k = 2. Recall that E ′ uses f2 and E uses e2. If E uses e1,
then T |{x, `0, `1, `2} has {`0, `1} as a cherry, a contradiction. If E uses f1,
then T |{x, `1, `2} = (x, `2, `1) but, by considering E ′, we have T |{x, `1, `2} =
(x, `1, `2), another contradiction. Hence P is the unique tree path from p2 to
p1, and so (i) holds.

To complete the proof, assume that there exists a tree path Q that starts
at p2 and does not traverse p1. We use an argument that is similar to that
of the first part of the proof. Let w be the first vertex on Q that does not lie
on the unique tree path from p2 to p1 in N . Then there exists a tree path
from w to a leaf x such that x /∈ {`0, `1, `2, . . . , `k}. Since (i) holds, it follows
by considering E ′ that

T |{x, `0, `1} = (`0, x, `1). (2)

Since fk is non-essential, there exists an embedding E of T in N such that E
uses ek. If k = 1 or k ≥ 3, then, by Lemma 4.3, it also uses {e1, e2, . . . , ek−1}.
Thus

T |{x, `0, `1} = (`0, `1, x),
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contradicting (2). If k = 2 and E uses e1, then T |{x, `0, `1, `2} = (`0, `1, x, `2),
a contradiction to the restriction of T in (2). Furthermore, if k = 2 and E
uses f1, then T |{x, `0, `1, `2} = (`0, x, `2, `1), but, by considering E ′, we have
T |{x, `0, `1, `2} = (`0, x, `1, `2). This last contradiction completes the proof
of the lemma. �

The next corollary settles Lemma 4.3 when k = 2 with an additional
assumption that f2 is non-essential.

Corollary 4.6. Let C↓2 = 〈`0, `1, `2〉 be a loose caterpillar ladder of a tree-
child network N on X. Suppose that f2 is non-essential. If E and E ′ are two
embeddings of the same phylogenetic tree T in N such that E ′ uses {f1, f2}
and E uses e2, then E also uses e1.

Proof. It follows by Lemma 4.5 that the directed path from p2 to p1
in the definition of C↓2 is a tree path. Hence, by considering E ′, we have
T |{`0, `1, `2} = (`0, `1, `2). Thus if E does not use e1, then, by considering E ,
we have

T |{`0, `1, `2} = (`0, `2, `1),

a contradiction. Hence E uses {e1, e2}. �

Lemma 4.7. Let C+k = 〈`0, `1, `2, . . . , `k〉 be a nearly-tight caterpillar ladder
of a tree-child network N on X. If e1 is non-essential in N , then exactly
one of the following two properties holds:

(i) C+k is a tight caterpillar ladder of N , or

(ii) there exists an element `k+1 ∈ X − {`0, `1, `2, . . . , `k} such that C+k+1 =
〈`0, `1, `2, . . . , `k, `k+1〉 is a nearly-tight caterpillar ladder of N .

Proof. Assume that (i) does not hold, that is (qk, qk−1) is not an arc in
N . We will show that (ii) holds. By Lemma 4.4, it follows that there is a
unique tree path P from qk to qk−1. Now, let pk+1 be the child of qk such that
pk+1 6= vk. Since P is a tree path, pk+1 is a tree vertex and pk+1 has a child
vk+1 that does not lie on P . Applying Lemma 4.4 again, it follows that every
tree path that starts at qk traverses p1. Hence, as there is a unique tree path
from qk to p1, it follows that vk+1 is a reticulation. Let qk+1 be the parent of
vk+1 such that qk+1 6= pk+1. Furthermore, let `k+1 be a leaf at the end of a
tree path that starts at vk+1. As N is tree-child, `k+1 /∈ {`0, `1, . . . , `k}.
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Following the notation of a nearly-tight caterpillar ladder, let ek+1 =
(pk+1, vk+1), and let fk+1 = (qk+1, vk+1). Furthermore, let E be an embed-
ding of a phylogenetic X-tree T in N that uses {e1, e2, . . . , ek, ek+1}. Since
T |{`0, `1, . . . , `k} = (`0, `1, . . . , `k), it follows that

T |{`0, `1, . . . , `k, `k+1} = (`0, `1, . . . , `k, `k+1). (3)

As e1 is non-essential, there exists an embedding E ′ of T in N that uses f1.
By Lemma 4.2, E ′ also uses {f2, f3, . . . , fk} and, by the restriction of T in
(3), E ′ uses fk+1.

4.7.1. The arc fk+1 is a shortcut.

Proof. First assume that neither ek+1 nor fk+1 is a shortcut, in which case
qk+1 does not lie on P . Let x be a leaf at the end of a tree path that starts
at qk+1. As N is tree-child, x 6= `k+1. Furthermore, as ek+1 and fk+1 are not
shortcuts, x /∈ {`0, `1, . . . , `k}. Therefore, by considering E , it follows that
T |{x, `0, `1, . . . , `k, `k+1} = (`0, `1, . . . , `k, `k+1, x). But, by considering E ′ and
recalling that E ′ uses fk+1, it is easily checked that T |{x, `0, `1, . . . , `k, `k+1}
has {x, `k+1} as a cherry, a contradiction. Hence, x ∈ {`0, `1, . . . , `k}, and so
one of ek+1 and fk+1 is a shortcut. Assume that ek+1 is a shortcut. Then,
by considering E , we again have the restriction of T in (3). On the other
hand, as C+k is nearly-tight, by considering E ′, one of the following statements
holds:

(I) If x = `0, then qk+1 lies on the subpath of P from pk+1 to qk−1 and
T |{`0, `1, . . . , `k, `k+1} = (`0, `1, . . . , `k−1, `k+1, `k), or qk+1 lies on the
tree path from p1 to `0 and T |{`0, `1, . . . , `k, `k+1} has {`0, `k+1} as a
cherry.

(II) If x ∈ {`1, `2, . . . , `k}, then qk+1 lies on a tree path from vj to `j for
some j ∈ {1, 2, . . . , k} and T |{`0, `1, . . . , `k, `k+1} has {`j, `k+1} as a
cherry.

Both cases contradict (3); thereby implying that fk+1 is a shortcut. �

By the existence of P and as C+k is a nearly-tight caterpillar ladder of N ,
we have that

4.7.2. C↑k+1 = 〈`0, `1, `2, . . . , `k, `k+1〉 is a loose caterpillar ladder of N .

19



Now, applying Lemma 4.4 to C↑k+1 implies that there is a unique tree path P ′

from qk+1 to qk.

4.7.3. Let u be the child of pk+1 on P . Then u = qk−1.

Proof. Assume that u 6= qk−1. By Lemma 4.4, every tree path that starts
at qk+1 traverses p1. Hence, the child w of u that does not lie on P is a retic-
ulation. Let u′ be the parent of w that is not u, and let x be a leaf at the end
of a tree path that starts at w. Since N is tree-child, x /∈ {`0, `1, `2, . . . , `k+1}.
As before, we play several embeddings of phylogenetic trees off against each
other to show that u = qk−1. Specifically, let E1 be an embedding of a
phylogenetic X-tree T1 in N that uses {(u,w), e1, e2, . . . , ek, ek+1}. Then

T1|{x, `0, `1, . . . , `k, `k+1} = (`0, `1, . . . , `k, x, `k+1). (4)

As e1 is non-essential, there exists an embedding E ′1 of T1 in N that uses f1.
Furthermore, by Lemma 4.2 and (4.7.2), E ′1 also uses {f2, f3, . . . , fk, fk+1}.
Lastly, by the restriction of T1 in (4), E ′1 uses (u′, w) and there is a directed
path Q from a vertex s on P ′ to w that avoids pk+1 and traverses (u′, w).
Assume that s 6= u′. Let y be the leaf at the end of tree path that starts
at u′. As N is tree-child, y 6= x. Furthermore, since Q avoids pk+1, and
P is a tree path, it is easily seen that y 6∈ {`0, `1, . . . , `k+1}. Turning back
to T1, it follows that T1|{x, y, `0, `1, . . . , `k, `k+1} does not have {x, y} as a
cherry by considering E1 and does have {x, y} as a cherry by considering E ′1,
a contradiction. Hence s = u′ and so (u′, w) is a shortcut.

Now let E2 be an embedding of a phylogenetic X-tree T2 in N that uses
{(u′, w), e1, e2, . . . , ek, ek+1}. Then

T2|{x, `0, `1, . . . , `k, `k+1} = (`0, `1, . . . , `k−1, `k, `k+1, x). (5)

Since e1 is non-essential, there exists an embedding E ′2 of T2 inN that uses f1.
By Lemma 4.2 and (4.7.2), E ′2 also uses {f2, f3, . . . , fk, fk+1}. We continue to
consider E ′2. If E ′2 uses (u,w), then

T2|{x, `0, `1, . . . , `k, `k+1} = (`0, `1, . . . , `k−1, x, `k, `k+1)

and, if E ′2 uses (u′, w), then

T2|{x, `0, `1, . . . , `k, `k+1} = (`0, `1, . . . , `k−1, `k, x, `k+1).

Both cases contradict that E2 and E ′2 are embeddings of T2. Hence u = qk−1.
�
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It now follows by (4.7.2) and (4.7.3) that C+k+1 = 〈`0, `1, `2, . . . , `k, `k+1〉
is a nearly-tight caterpillar ladder of N . This completes the proof of the
lemma. �

Lemma 4.8. Let C−k−1 = 〈`0, `2, `3, . . . , `k〉 be a nearly-tight caterpillar ladder
of a tree-child network N on X. If fk is non-essential in N , then exactly
one of the following two properties holds:

(i) C−k−1 is a tight caterpillar ladder of N , or

(ii) there exists an element `1 ∈ X − {`0, `2, `3, . . . , `k} such that C−k =
〈`0, `1, `2, `3, . . . , `k〉 is a nearly-tight caterpillar ladder of N .

Proof. Assume that (i) does not hold. We will show that (ii) holds. For
the purposes of the proof, if k = 2, we set p3 = q2. By Lemma 4.5, there is a
unique tree path P from p3 to p2. Let q1 denote the child of p3 that lies on P .
Since P does not contain a reticulation, q1 is a tree vertex and q1 has a child
v1 that does not lie on P . Furthermore, applying Lemma 4.5 again, it follows
that every tree path that starts at p3 traverses p2. Hence v1 is a reticulation.
Let `1 be a leaf at the end of a tree path that starts at v1, let f1 = (q1, v1),
and let e1 = (p1, v1) be the other reticulation arc that is directed into v1.

Now, let E ′ be an embedding of a phylogenetic X-tree T in N that uses
{f1, f2, . . . , fk}. Then

T |{`0, `1, `2, . . . , `k} = (`0, `1, `2, . . . , `k). (6)

As fk is non-essential, there exists an embedding E of T in N that uses ek.
Furthermore, by Lemma 4.3 and Corollary 4.6, E also uses {e2, e3, . . . , ek−1}.
Assume that E uses f1. Then T |{`0, `1, `2, . . . , `k} has {`0, `2} as a cherry, a
contradiction. We may therefore assume that E uses e1.

4.8.1. The arc f1 is a shortcut.

Proof. Let x be a leaf at the end of a tree path that starts at p1. First as-
sume that x /∈ {`0, `2, `3, . . . , `k}. By Lemma 4.5, every tree path that starts
at p3 traverses p2. Considering E ′, it now follows that T |{x, `0, `1, `2, . . . , `k}
is either (`0, `1, `2, . . . , `k, x) or it has a cherry in

{{x, `0}, {x, `2}, {x, `3}, . . . , {x, `k}}.

On the other hand, by considering E , it follows that T |{x, `0, `1, `2, . . . , `k}
has {x, `1} as a cherry, a contradiction. Hence, x ∈ {`0, `2, `3, . . . , `k}. If x ∈
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{`2, `3, . . . , `k}, then, by considering E , we deduce that T |{`0, `1, `2, . . . , `k}
has a cherry in {{`1, `2}, {`1, `3}, . . . , {`1, `k}}, contradicting the restriction
of T in (6). Thus x = `0, and so one of e1 and f1 is a shortcut. Assume that
e1 is a shortcut. Then there is a directed path from p1 to q1. In particular,
p1 is an ancestor of qk. Now, by considering E ′, we again have the restriction
of T in (6), whereas, by considering E , we have

T |{`0, `1, `2, . . . , `k} = (`0, `2, `3, . . . , `k, `1),

a contradiction. Hence f1 is a shortcut. �

We next show that p1 lies on the tree path from p2 to `0. Let x be a leaf at
the end of a tree path starting at p1. Clearly, x 6= `1. Furthermore, since there
is a directed path from q1 to p1, it follows that x 6∈ {`3, `4, . . . , `k}. Assume
that x /∈ {`0, `2}. Then, by considering E ′ and recalling that f1 is a shortcut,
T |{x, `0, `1, `2} has a cherry in {{x, `0}, {x, `2}}, whereas, by considering E ,
we have that T |{x, `0, `1, `2} has {x, `1} as a cherry, a contradiction. Hence
x ∈ {`0, `2}. Continue to consider E . If x = `2, then p1 lies on the tree path
from v2 to `2 and T |{`0, `1, `2} = (`1, `2, `0), contradicting the restriction of
T in (6) when considering E ′. Thus x = `0. If p1 lies on the subpath of
P from q1 to p2, then, by considering E , T |{`0, `1, `2} = (`0, `2, `1), again
contradicting the restriction of T in (6) when considering E ′. It now follows
that p1 lies on the tree path from p2 to `0. In particular, we have that

4.8.2. 〈`0, `1, `2, . . . , `k〉 is a loose caterpillar ladder in N .

4.8.3. Let u be the child of q1 on P . Then u = p2.

Proof. Towards a contradiction, assume that u 6= p2. Then, as P is a tree
path, u has a child w that does not lie on P . Furthermore, w is a reticulation
because, otherwise, there is a tree path in N that starts at p3 and does not
traverse p2, contradicting Lemma 4.5. Let x be a leaf at the end of a tree
path starting at w. Since N is tree-child, x /∈ {`0, `1, `2, . . . , `k}. Let E ′ be
an embedding of a phylogenetic X-tree T that uses {(u,w), e1, f2, f3, . . . , fk}.
Then

T |{`0, `1, `2} = (`0, `1, `2) and (7)

T |{x, `0, `1, `2} = (`0, `1, x, `2). (8)

Since fk is non-essential, there exists an embedding E of T in N that uses
ek. Moreover, by Lemma 4.3 and Corollary 4.6, E also uses {e2, e3, . . . , ek−1}.
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We continue to consider E . First, if E uses f1, then

T |{`0, `1, `2} = (`0, `2, `1),

a contradiction to the restriction of T in (7). Hence E uses e1. Second, if E
uses (u,w), then

T |{x, `0, `1, `2} = (`0, `1, `2, x),

which gives a contradiction to the restriction of T in (8) when considering
E ′. Thus, if u′ denotes the parent of w that is not u, then E uses (u′, w).
We next consider two cases relative to E . First, if (u′, w) is a shortcut, or if
neither (u,w) nor (u′, w) is a shortcut, then T |{x, `0, `1, `2} = (`0, `1, `2, x).
Second, if (u,w) is a shortcut and u′ does not lie on the tree path from
p2 to p1, then T |{x, `0, `1, `2} is either (`0, `1, `2, x) or it has a cherry in
{{x, `0}, {x, `1}, {x, `2}}. Both cases contradict the restriction of T in (8)
when considering E ′; thereby implying that (u,w) is a shortcut and u′ lies
on the tree path from p2 to p1.

Now, let E ′1 be an embedding of a phylogenetic X-tree T ′ that uses
{f1, f2, . . . , fk}. Then

T ′|{x, `0, `1, `2} = (`0, x, `1, `2) (9)

regardless of whether E ′1 uses (u,w) or (u′, w). Since fk is non-essential,
there exists an embedding E1 of T ′ in N that uses ek. Moreover, by (4.8.2),
Lemma 4.3, and Corollary 4.6, E1 also uses {e1, e2, . . . , ek−1}. If E1 uses
(u,w), then T ′|{x, `0, `1, `2} = (`0, `1, `2, x) and, if E1 uses (u′, w), then
T ′|{x, `0, `1, `2} = (`0, `1, x, `2). Both cases give a final contradiction to the
restriction of T ′ in (9). Thus u = p2. �

It now follows that C−k = 〈`0, `1, `2, . . . , `k〉 is a nearly-tight caterpillar
ladder of N . This completes the proof of the lemma. �

At last, we establish Theorem 3.1.

Proof of Theorem 3.1. Suppose that there exists a tight caterpillar ladder
C = 〈`0, `1, `2, . . . , `k〉 of N . It follows from Lemma 4.1 that each of e1 and
fk, the first and last rungs of C, is non-essential in N . For the converse,
suppose that e is non-essential. Let v be the reticulation of N that e is
directed into, and let u and u′ be the two parents of v. By the contrapositive
of Lemma 2.4, we may assume without loss of generality that (u′, v) is a
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shortcut. Since N is tree-child, there exist two distinct elements `0 and `1 in
X such that there is a tree path from u to `0 and a tree path from v to `1.
First, assume that e = (u, v). Then C+1 = 〈`0, `1〉 is a nearly-tight caterpillar
ladder of N with e1 = e. Moreover, by Lemma 4.7, C+1 is either a tight
caterpillar ladder of N or there exists an element `2 in X−{`0, `1} such that
C+2 = 〈`0, `1, `2〉 is a nearly-tight caterpillar ladder of N . As X is finite, it
now follows that, for some k ∈ {1, 2, . . . , |X| − 1}, after k− 1 applications of
Lemma 4.7, C+k = 〈`0, `1, `2, . . . , `k〉 is a tight caterpillar ladder of N in which
e is the first rung. Second, assume that e = (u′, v). Then, up to relabeling
the leaves, using Lemma 4.8 instead of Lemma 4.7 and applying an argument
that is analogous to that applied in the previous case gives the desired result.
This completes the proof of the theorem. �

5. Obtaining Tree-Child Networks with No Non-Essential Arcs

In this section, we show that it takes polynomial time to compute a
tree-child network whose reticulation arcs are all essential and that displays
the same set of phylogenetic trees as a given tree-child network. We start
with three lemmas that establish properties of collections of tight caterpillar
ladders. The first lemma establishes that if two tight caterpillar ladders have
a reticulation or spine vertex in common, then they are essentially the same
tight caterpillar ladder. Furthermore, the latter two lemmas show how the
two sets of caterpillar ladders of two tree-child networks N and N ′ differ if
N ′ = N \ {e}, where e is the first or last rung of a caterpillar ladder of N .

Let N be a tree-child network on X, and let C = 〈`0, `1, `2, . . . , `k〉 and
C ′ = 〈`′0, `′1, `′2, . . . , `′k′〉 be tight caterpillar ladders ofN . Let φ and φ′ be maps
from the vertex sets of C and C ′, respectively, to N that satisfy (P1)–(P3).
Similar to the convention used throughout the proof of Theorem 3.1, we will
use the following notation throughout this subsection, where i ∈ {1, 2, . . . , k}
and j ∈ {1, 2, . . . , k′}:

1. For each reticulation vi in C (resp. v′j in C ′), the vertex φ(vi) (resp. φ′(v′j))
in N is denoted by vi (resp. v′j).

2. For each reticulation vi (resp. v′j) in N , the parents of vi (resp. v′j) are
denoted by pi and qi (resp. p′j and q′j), where there is a directed path from
qi to pi (resp. q′i to p′i) in N .

Lemma 5.1. Let N be a tree-child network on X, and let C and C ′ be tight
caterpillar ladders of N . Let u be a vertex of N . If u is either a reticulation
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or a spine vertex of C and C ′, then all reticulation and spine vertices of C
and C ′ coincide.

Proof. Throughout this proof, let C = 〈`0, `1, `2, . . . , `k〉, and let C ′ =
〈`′0, `′1, `′2, . . . , `′k′〉. Note that the spine vertices of a caterpillar ladder are
all tree vertices. If k = 1 and u is a reticulation or a spine vertex of C and C ′
in N , then it is clear that the lemma holds. So we may assume that k ≥ 2
and, similarly, k′ ≥ 2. Suppose that u is a reticulation or spine vertex of C
and C ′ in N . Then, for some i and j, one of vi = v′j, pi = p′j, and qi = q′j
holds. But, regardless of which of these holds, it follows that the other two
equalities also hold. In turn, as C and C ′ are both tight caterpillar ladders
of N , this implies that, unless i ∈ {1, k} or j ∈ {1, k′}, we have vi−1 = v′j−1,
pi−1 = p′j−1, qi−1 = q′j−1, and vi+1 = v′j+1, pi+1 = p′j+1, qi+1 = q′j+1. Further-
more, if i = 1, then, as C is a tight caterpillar ladder of N and, therefore,
satisfies (P3), it is easily seen that j = 1 and so v2 = v′2, p2 = p′2, and q2 = q′2.
Similarly, if i = k, then vk = v′k, pk = p′k, and qk = q′k. By repeating this
process, for vi−1 and then vi+1, we eventually deduce that k = k′ and, for all
i ∈ {1, 2, . . . , k}, we have vi = v′i, pi = p′1, and qi = q′i. This completes the
proof of the lemma. �

Following Lemma 5.1, two tight caterpillar ladders of a tree-child network
are called distinct if they have no reticulation or spine vertex in common.
Furthermore, two tight caterpillars are said to be equivalent if they have the
same set of reticulation and spine vertices.

Lemma 5.2. Let N be a tree-child network on X, and let C and C ′ be two
distinct tight caterpillar ladders of N . If e is the first or last rung of C, then
C ′ is a tight caterpillar ladder of N \ {e}.

Proof. Let e = (u, v) be the first or last rung of C. Since C and C ′ are
distinct, e is not a reticulation arc of C ′. Now let P be a tree path of N .
Then P is a tree path of N \ {e} unless P traverses u or starts at v. If P
traverses u, then deleting u from P gives a tree path of N \ {e} while, if P
starts at v, then deleting v from P gives a tree path of N \ {e} starting at
the child of v in N . Since C ′ is a tight caterpillar ladder of N whose spine
and reticulation vertices in N are distinct from those of C, it now follows
that C ′ is a tight caterpillar ladder of N \ {e}. �
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Lemma 5.3. Let N be a tree-child network on X, and let C be a tight cater-
pillar ladder of N . Let e be the first or last rung of C. If C ′ is a tight cater-
pillar ladder of N \{e}, then either C ′ or a tight caterpillar ladder equivalent
to C ′ is a tight caterpillar ladder of N .

Proof. Let C = 〈`0, `1, `2, . . . , `k〉. Depending on whether e is the first or
last rung of C, after deleting e to obtain N \ {e} either (i) p1 and v1 are
suppressed if e = (p1, v1) is the first rung of C or (ii) qk and vk are suppressed
if e = (qk, vk) is the last rung of C. Note that, if (ii) applies and qk is the
root of N , then after deleting e, the vertex qk and its incident arc are also
deleted, and vk is suppressed. We prove the lemma for when (i) holds. The
proof of the lemma for when (ii) holds is similar and omitted.

Assume that (i) holds. Let R and S denote the reticulation and spine
vertices of C in N . Since N is tree-child, the child of v1 in N is either a tree
vertex or a leaf, and so q1 is not a spine vertex of a tight caterpillar ladder of
N \{e}. It now follows by Lemma 5.1 that no vertex in (R−{v1})∪(S−{p1})
is a reticulation or spine vertex of a tight caterpillar ladder of N \{e}. Thus
C ′ is a tight caterpillar ladder of N unless the tree path either from p′1 to `′0,
or from v′j to `′j for some j ∈ {1, 2, . . . , k′} in N \{e} is no longer a tree path
in N . Note that the existence of e = (p1, v1) in N effects at most one of these
tree paths. Let P ′ denote such a tree path in N \ {e}. Then P ′ traverses
q1. Let u denote the child of p1 in N that is not v1, and let w denote the
child of v1 in N . As N is tree-child, each of u and w is either a tree vertex
or a leaf. Therefore, as P ′ traverses q1, it also traverses either u or w in
N \{e}. If P ′ traverses u, then modify P ′ by replacing the subpath q1, p2, u
with q1, p2, p1 u if k ≥ 2 and replacing the subpath q1 u with q1, p1, u if
k = 1. The resulting path is a tree path in N , and so C ′ is a tight caterpillar
ladder of N . On the other hand, if P ′ traverses w, then replace the subpath
of P ′ from q1 to a leaf `′j′ , where j′ ∈ {0, 1, 2, . . . , k′}, with the (unique)
tree path from q1 to `0. The resulting path is a tree path in N , and so
C ′′ = 〈`′0, `′1, . . . , `′j′−1, `0, `j′+1, . . . , `k′〉 is a tight caterpillar ladder of N and
C ′′ is equivalent to C ′. This completes the proof of the lemma. �

Theorem 5.4. Let N be a tree-child network on X, and let

N = N0,N1,N2, . . . ,Nm = N ′

be a sequence of tree-child networks such that Ni+1 is obtained from Ni by
deleting a non-essential reticulation arc for all i ∈ {0, 1, . . . ,m − 1}. If N ′
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has no non-essential reticulation arcs, then N has exactly m tight caterpillar
ladders. Moreover, N ′ can be obtained from N by deleting either the first or
last rung of each tight caterpillar ladder of N .

Proof. By Lemmas 5.2 and 5.3, Ni+1 has exactly one less tight caterpillar
ladder that Ni. The theorem now follows from Theorem 3.1. �

We next describe an algorithm that finds a tight caterpillar ladder of a
tree-child network N relative to a given reticulation of N if it exists.
Find Tight Caterpillar Ladder
Input. A tree-child network N and a reticulation w of N .
Output. A tight caterpillar ladder 〈`0, `1, `2, . . . , `k〉 of N with v1 = w if it
exists and, otherwise, a statement saying that no such ladder exists.

1. Set i = 1 and v1 = w.

2. Let `1 be a leaf at the end of a tree path starting at v1.

3. Let u and u′ be the parents of v1.

4. If there is a directed path from u to u′ in N , then set p1 = u′ and q1 = u.

5. If there is a directed path from u′ to u in N , then set p1 = u and q1 = u′.

6. Else, go to Step 10.

7. Let `0 be a leaf at the end of a tree path starting at p1.

8. If i = 1, then do the following:

(a) If q1, p1, v1 is a tree path in N , then return 〈`0, `1〉.
(b) If there is a tree path q1, p2, p1, and there is a reticulation v2 such

that (p2, v2) is a reticulation arc of N , then do the following:

i. Increment i by one.
ii. Let `2 be a leaf at the end of a tree path starting at v2.

iii. Let q2 be the parent of v2 that is not p2.

(c) Else, go to Step 10.

9. If i > 1, then do the following:

(a) If (qi, qi−1) is an arc of N , then stop and return 〈`0, `1, `2, . . . , `i〉.
(b) If there is a tree path qi, pi+1, qi−1, and there is a reticulation vi+1

such that (pi+1, vi+1) is a reticulation arc of N , then do the following:

i. Increment i by one.
ii. Let `i be a leaf at the end of a tree path starting at vi.

iii. Let qi be the parent of vi that is not pi.
iv. Go to Step 9.
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(c) Else, go to Step 10.

10. Return “There is no tight caterpillar ladder in N with v1 = w.”

We finish this section by establishing that it takes polynomial time to
obtain a tree-child network whose reticulation arcs are all essential and that
displays the same set of phylogenetic trees as a given tree-child network.

Theorem 5.5. Let N be a tree-child network on X. It takes time O(|X|3)
to obtain a tree-child network on X from N that displays the same set of
phylogenetic X-trees as N and has no non-essential arcs.

Proof. To establish the theorem, we first show that Find Tight Cater-
pillar Ladder works correctly and has running time O(|X|2). We start by
bounding the size of the vertex set and arc set of N . Let r be the number
of reticulations of N . As N is tree-child, it follows from Lemma 2.2 in [22]
that r ≤ |X|−1. Hence, by Lemma 2.1 and Corollary 2.3 of the same paper,
N has at most 4|X| vertices and at most

3r + 2|X| − 2 ≤ 3(|X| − 1) + 2|X| − 2 = 5|X| − 5

arcs, respectively.
Let w be a reticulation of N . By Lemmas 4.7 and 4.8, Find Tight

Caterpillar Ladder correctly decides whether or not there exists a tight
caterpillar ladder of N with v1 = w. Next, we turn to the running time
analysis of Find Tight Caterpillar Ladder. We start by noting that
applying a breadth-first search to N takes time O(|X|) because the running
time of such a search is linear in the sum over the size of the vertex set and
the size of the arc set of a given input graph [7]. Consequently, each of Steps
4 and 5 takes time O(|X|) since the existence of a directed path from a vertex
s to another vertex s′ in N can be decided by applying a breadth-first search
to N that starts at s. Now let t be a vertex of N . As the size of the arc set
of N is O(|X|), it follows that finding a leaf at the end of a tree path that
starts at t takes time O(|X|). Hence, each of Steps 2, 7, 8(b)ii, and 9(b)ii
takes time O(|X|). Moreover, each remaining step of the algorithm takes
constant time. Since Find Tight Caterpillar Ladder iterates at most
r times through Step 9, where r ≤ |X| − 1, it follows that Find Tight
Caterpillar Ladder takes time O(|X|2).

Next, we apply a breadth-first search to N and, at each reticulation, call
Find Tight Caterpillar Ladder. In this process, we delete either the

28



first or last rung, but not both, of each tight-caterpillar ladder that is re-
turned by a call to Find Tight Caterpillar Ladder and suppress the
resulting two degree-two vertices. Let N ′ be the resulting tree-child network
on X. Since the number of vertices in N is O(|X|) and each call of Find
Tight Caterpillar Ladder takes O(|X|2) time, the aforementioned pro-
cess takes O(|X|3) time in total. Furthermore, it follows from Theorem 5.4
that N ′ displays the same set of phylogenetic X-trees as N and has no non-
essential arcs. This completes the proof of the theorem. �

6. Non-Essential Arcs in Arbitrary Phylogenetic Networks

In this section, we show that, in general, deciding if a reticulation arc of a
phylogenetic network is non-essential is computationally hard. More specif-
ically, we show that the following problem is ΠP

2 -complete, that is complete
for the second level of the polynomial-time hierarchy [26].

Non-Essential-Arc
Input. A phylogenetic network N on X and a reticulation arc e of N .
Question. Is e non-essential?

To establish that Non-Essential-Arc is ΠP
2 -complete, we use a reduction

from the next problem, which was recently shown to be ΠP
2 -complete [8, The-

orem 4.3].

Display-Set-Containment
Input. Two phylogenetic networks N1 and N2 on X.
Question. Is each phylogenetic X-tree that is displayed byN1 also displayed
by N2?

Before we are in a position to prove ΠP
2 -completeness of Non-Essential-

Arc, we need some additional terminology to generalize the notion ofN \{e}
to an arbitrary phylogenetic network. Let G be a directed graph. Up to
isomorphism, the full simplification of G is the directed graph obtained from
G by applying the following two operations repeatedly until neither operation
is applicable:

1. Suppress each vertex with in-degree one and out-degree one.
2. For each pair u and v of vertices, delete all but one arc that joins u and
v.
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Now, let N be a phylogenetic network on X with root ρ, and let e be
a reticulation arc of N . In what follows, we apply a 3-step construction to
N to obtain, up to isomorphism, the phylogenetic network obtained from
N by deleting e. First, obtain G1 from N by deleting e. Second, obtain
the directed acyclic graph G2 from G1 by deleting each vertex and arc of G1

that does not lie on a directed path from ρ to a leaf in X. Observe that
G2 does not have any unlabeled vertex with out-degree zero and that the
set of vertices of G2 with out-degree zero is X. Third, obtain G3 by taking
the full simplification of G2. By construction, G3 is a phylogenetic network
on X unless ρ has out-degree one, in which case, its unique child has out-
degree two. If the exception holds, let G3 be the phylogenetic network on X
obtained from the full simplification of G2 by deleting ρ and its incident arc.
We refer to G3 as N \ {e}.
Theorem 6.1. Non-Essential-Arc is ΠP

2 -complete.

Proof. We first show that Non-Essential-Arc is in ΠP
2 . Let N be a

phylogenetic network on X, and let e be a reticulation arc of N . To decide if
e is a non-essential arc in N , consider an embedding of a phylogenetic X-tree
T in N . Then use an NP-oracle to decide if T is displayed by N \{e}. Since
N and e form a no-instance of Non-Essential-Arc if T is not displayed
by N \ {e}, it follows that Non-Essential-Arc is in ΠP

2 .
To complete the proof, we establish a reduction from the ΠP

2 -complete
problem Display-Set-Containment to Non-Essential-Arc. The re-
duction has a similar flavor to that used in [8, Theorem 4.5]. Throughout
the remainder of the proof, we sometimes label internal vertices of a phyloge-
netic network. The only purpose of these labels is to make references. Indeed,
they should not be regarded as genuine labels as those used for the leaves of
a phylogenetic network. Now, let N1 and N2 be two phylogenetic networks
on X that form the input to an instance of Display-Set-Containment
that asks if each phylogenetic X-tree that is displayed by N1 is also displayed
by N2. Furthermore, let n = |X|. We next construct a phylogenetic network
on leaf set X ∪ {x, y}, where x, y 6∈ X, that, roughly speaking, contains one
copy of N1 and n + 1 copies of N2. More precisely, let G be the directed
acyclic digraph that is obtained from the caterpillar (w0, w1, w2, . . . , wn+1)
by applying the following 4-step process:

1. Replace w0 with N1 by identifying w0 with the root of N1 and, for each
i ∈ {1, 2, . . . , n+1}, replace wi with N2 by identifying wi with the root
of N2.
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2. For each `i ∈ X with i ∈ {1, 2, . . . , n}, identify all leaves labeled `i with
a new vertex ui and add a new arc (ui, `i).

3. Let p be the parent of w0 and w1. Subdivide the arc (p, w0) with a
new vertex v0, subdivide the arc (p, w1) with a new vertex v1, add two
new vertices px and x, and add the three new arcs (v0, px), (v1, px), and
(px, x).

4. Subdivide the arc (p, v0) with a new vertex py, add a new vertex y, and
add the new arc (py, y).

To complete the construction, let N be a phylogenetic network on X∪{x, y}
such that G can be obtained from N by contracting (reticulation) arcs. That
is, N is obtained from G by refining each of the vertices u1, u2, . . . , un so that
every non-root and non-leaf vertex has total degree three. In what follows,
we use vi to denote the parent of wi for each i ∈ {2, 3, . . . , n + 1}. By
construction, note that the parent of w0 is v0, the parent of w1 is v1, and the
parent px of x is a reticulation. To illustrate, a possibility for N is shown in
Figure 5. Since the size of N is polynomial in the number of arcs of N1 and
N2, it follows that the construction of N takes polynomial time.

6.1.1. Each phylogenetic X-tree that is displayed by N1 is also displayed by
N2 if and only if e = (v0, px) is non-essential in N .

Proof. First, suppose that not every phylogenetic X-tree that is displayed
by N1 is also displayed by N2. Then, there exists a phylogenetic X-tree T1
that is displayed by N1 and not displayed by N2. Let T be the phylogenetic
(X∪{x, y})-tree such that T |X = T1 and, for each pair `, `′ of elements in X,

T |{`, `′, x, y} = (`, `′, x, y). (10)

Then there exists an embedding E of T in N that uses e and (v0, w0), and no
arc in {(v1, w1), (v2, w2), . . . , (vn+1, wn+1)}. To establish that e is essential,
we next show that there exists no embedding of T in N \ {e}. Note that
N \ {e} is the phylogenetic network obtained from N by deleting e and
suppressing v0 and px. Assume that there exists an embedding E ′ of T in
N \ {e}. Observe that E ′ uses (v1, px) and (py, y). Moreover, as N2 does
not display T1, if follows that E ′ uses at least two distinct arcs (vi, wi) and
(vj, wj) with i, j ∈ {0, 1, 2, . . . , n + 1}. Without loss of generality, we may
assume that i < j. Let `i (resp. `j) be an element of X such that `i (resp. `j)
is a descendant of wi (resp. wj) in E ′. By considering E ′, a straightforward
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Figure 5: The construction of the phylogenetic network N on X ∪ {x, y} as described in
the proof of Theorem 6.1, where X = {`1, `2, . . . , `n}. The dangling arcs of each square
are paired up with the arcs at the bottom part of the figure as described in Step 2 and
the subsequent refining procedure of the construction.

check shows that T |{`i, `j, x, y} is a phylogenetic tree that has a cherry that
contains x or y, a contradiction to the restriction of T in (10). Hence e is
essential.

Second, suppose that every phylogenetic X-tree that is displayed by N1

is also displayed by N2. Let T be a phylogenetic (X ∪ {x, y})-tree that
is displayed by N with the property that there exists an embedding E of
T in N that uses e. To complete the proof, we show that there exists
an embedding E ′ of T in N \ {e}. For each i ∈ {0, 1, 2, . . . , n + 1}, let
Xi be the subset of X that contains precisely each element in X that is a
descendant of wi in E . By the Pigeonhole Principle, there exists at least one
i ∈ {1, 2, . . . , n + 1} for which Xi is empty. Furthermore X0 may or may
not be empty. Let j be the minimum element in {1, 2, . . . , n + 1} for which
Xj = ∅. For each i ∈ {0, 1, 2, . . . , n} with Xi 6= ∅, we next consider the
pendant subtree T |(Xi ∪ {x, y}) of T . Recalling that E uses e, observe that
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T |(Xi ∪ {x, y}) has cherry {x, y} for each i ∈ {1, 2, . . . , n + 1}. Now, since
each phylogenetic X-tree that is displayed by N1 is also displayed by N2,
it follows from the construction of N that, for each i ∈ {0, 1, 2, . . . , n} with
Xi 6= ∅, there is an embedding of the pendant subtree T |(Xi ∪ {x, y}) in N
that uses (vi+1, wi+1) and (v1, px). Collectively, this implies that, if X0 6= ∅,
then there exists an embedding of the pendant subtree

T |(X0 ∪X1 ∪X2 ∪ · · · ∪Xj−1 ∪ {x, y})

in N that uses {(v1, w1), (v2, w2), . . . , (vj, wj)} and (v1, px). On the other
hand, if X0 = ∅, then there exists an embedding of the pendant subtree

T |(X1 ∪X2 ∪ · · · ∪Xj−1 ∪ {x, y})

inN that uses {(v2, w2), (v3, w3), . . . , (vj, wj)} and (v1, px). It is now straight-
forward to check that there exists an embedding E ′ of T in N \ {e}. �

The result (6.1.1) completes the proof of Theorem 6.1. �
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