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Abstract In conservation biology, phylogenetic diversity (PD) provides a way
to quantify the impact of the current rapid extinction of species on the evo-
lutionary ‘Tree of Life’. This approach recognises that extinction not only re-
moves species but also the branches of the tree on which unique features shared
by the extinct species arose. In this paper, we investigate three questions that
are relevant to PD. The first asks how many sets of species of given size k
preserve the maximum possible amount of PD in a given tree. The number
of such maximum PD sets can be very large, even for moderate-sized phy-
logenies. We provide a combinatorial characterisation of maximum PD sets,
focusing on the setting where the branch lengths are ultrametric (e.g. propor-
tional to time). This leads to a polynomial-time algorithm for calculating the
number of maximum PD sets of size k by applying a generating function; we
also investigate the types of tree shapes that harbour the most (or fewest)
maximum PD sets of size k. Our second question concerns optimising a linear
function on the species (regarded as leaves of the phylogenetic tree) across
all the maximum PD sets of a given size. Using the characterisation result
from the first question, we show how this optimisation problem can be solved
in polynomial time, even though the number of maximum PD sets can grow
exponentially. Our third question considers a dual problem: If k species were
to become extinct, then what is the largest possible loss of PD in the result-
ing tree? For this question, we describe a polynomial-time solution based on
dynamical programming.
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1 Introduction

Advances in molecular genetics and computational techniques over recent
decades have allowed biologists to reconstruct evolutionary relationships
among thousands of species (Jetz et al., 2014; Upham et al., 2019). How-
ever, as fast as this ‘Tree of Life’ is being assembled, many of these species are
heading to extinction because of anthropogenic impacts (Davis et al., 2018).
This extinction of species also entails the loss of features and genetic variation
through the differential pruning of the underlying tree structure. The impact
on this tree is often estimated by the reduced sum of edge lengths measured
in evolutionary time (Faith, 1992). For example, if all 575 bird species classi-
fied as ‘imperilled’ were to disappear from the bird phylogeny (from ∼10,000
species), this would result in the loss of 2.7 billion years of evolution (Jetz
et al., 2014).

The ancestral relationships between a set of species are generally modelled
using phylogenetic trees (Felsenstein, 2004), and one measure of how much
of a tree is spanned by a subset of species is the phylogenetic diversity (PD)
measure (precise definitions are provided in the next section; here, we give an
informal description). In simple terms, every non-empty set of species defines
a minimal subtree which connects those species to the root of the tree, and
the length of every branch in that subtree is summed to give a PD score for
the set overall. The greater the PD score, the more diverse a set of species is
assumed to be. To illustrate, Fig. 1 shows the relative ancestry of the species
x1, x2, . . . , x7. Solid edges are those used in the calculation of the PD score for
species x3, x4 and x7. Thus the PD score of {x3, x4, x7} is 16. Note that the
PD score of {x4, x7} is 10.
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Fig. 1 The minimal subtree connecting species x3, x4 and x7 has a PD score of 16.

An important concern of conservationists is preventing the extinction of
species and the subsequent reduction of biodiversity. For a phylogenetic tree,
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an extinction is represented by the removal of that species’ leaf from the tree.
This also removes the edge which connected that species to the rest of the
tree, lowering the PD score. In the case where more than one species becomes
extinct, the combined effect can be much larger than the sum of individual
extinctions. We can interpret Fig. 1 as representing the extinction of x1, x2, x5,
and x6. Notice that the simultaneous extinction of x1 and x2 has caused the
removal of a third edge, that connecting their least common ancestor to the
rest of the tree. These types of dependencies can lead to large differences in
PD scores among sets of equal size.

Research has been conducted to assess the usefulness of the PD measure
to inform conservation strategy. To this end, sets of species which attain the
maximum value of PD (for a given number of species) have been used as a
benchmark against a measured response, to be contrasted with random selec-
tions of species (Tucker et al., 2019). However, the sets of a given size which
maximise PD are not unique. In applications of PD, we see the algorithms
which generate such sets being run multiple times to account for this. For ex-
ample, Molina-Venegas et al. (2021)[p. 586] and Mazel et al. (2018)[p. 7] both
performed ten runs on each phylogenetic tree under consideration because:

“there are multiple subsets of size S that maximises PD in a phylogeny”

and

“For a given tree there are likely multiple, and possibly very many, sets
of species with the same [maximum] PD”,

respectively. Furthermore, Mazel et al. (2017)[p. 1021] noted that:

“this number will vary across simulations and could, in some case, be
very large.”

Although the non-uniqueness of these sets is known and accounted for,
their total number is not well understood. This leaves open questions about
the most appropriate number of runs to perform in the above trials, and what
the chances are that random selections of species also happen to form sets
which maximise PD. In this paper, we investigate mathematical questions
concerning the enumeration of maximum PD sets of given size, as well as
identifying the sets of species of given size whose extinction would result in
the largest loss of phylogenetic diversity.

1.1 Outline of the paper

We begin by stating in the next section the key mathematical definitions re-
quired in the paper. In Section 3, we present a new characterisation of those
sets which maximise PD for each possible size (Theorem 1). This characteri-
sation allows us to count the number of such sets on any rooted phylogenetic
tree, which previous methods could not achieve concisely. Theorem 2 sets out
how this process may be achieved efficiently. The conceptual approach from
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Theorem 1 is continued in Section 4, leading to Algorithm 1, which selects, in
polynomial time, one of these maximising sets that is optimal against a second
measure. In Section 5, we consider a dual problem: determining the greatest
possible loss of PD if a certain number of species becomes extinct (this turns
out to be equivalent to minimising PD for a given number of species). A dy-
namic programming approach is used to solve this problem in polynomial time
for binary (or degree-bounded) rooted phylogenetic trees.

2 Preliminaries

Phylogenetic trees. Let X be a non-empty set of taxa (e.g. species), with
|X| = n. A rooted phylogenetic X-tree is a rooted tree T = (V,E), where
X is the set of leaves, and all edges are directed away from a distinguished
root vertex ρ, and every non-leaf, non-root vertex has out-degree at least 2.
In addition, when |X| = 1, the tree consisting of a single vertex is a rooted
phylogenetic X-tree. All edges drawn in this paper will be directed down the
page. If all non-leaf vertices of T have out-degree 2, we say that T is binary.

Three types of restrictions on T will be useful. For A ⊆ X, the A-subtree
of T is the minimal tree which connects the leaves of A to the root vertex ρ.
In order for an A-subtree to be a phylogenetic tree, we suppress any non-root
vertices with out-degree 1 which arise during its construction. For a set of
vertices V ′ ⊆ V (T ), the forest T [V ′] is the restriction of T to those vertices
in V ′ and (directed) edges (u′, v′) ∈ E(T ), where u′, v′ ∈ V ′. A subtree of T
is pendant if it can be disconnected from ρ by deleting a single edge of T . As
shorthand, for an arbitrary set A and element x, we write A ∪ x in place of
A ∪ {x} and A− x in place of A\{x}.

For any vertex v ∈ V (T ), we write x ∈ cT (v) if x ∈ X and the unique path
from ρ to x includes v. That is, cT (v) is the set (cluster) of leaves descended
from v in T . For the (directed) edge e = (u, v), we define cT (e) = cT (v). If
a cluster has size two or three, we call it, respectively, a cherry or a triple.
A cluster of size four which contains two distinct cherries is called a fork. In
the rooted phylogenetic tree T1 of Fig. 1 the set {x1, x2, x3} is a triple, the
set {x4, x5, x6, x7} is a fork, and each of {x1, x2}, {x4, x5} and {x6, x7} is a
cherry.

Phylogenetic diversity. The edges of every rooted phylogenetic tree con-
sidered in this paper are positively weighted. Let T be a rooted phylogenetic
X-tree, and let ℓ : E(T ) → R>0 be a function which assigns a positive real-
valued length ℓ(e) to each edge e ∈ E(T ). Suppose that u, v ∈ V (T ) are two
vertices of T connected by a directed path from u to v (this path is unique if
it exists). Then the distance from u to v, denoted d(u, v), is the sum of the
lengths of the edges in this path. If an edge e is subdivided into two edges e1
and e2, we require ℓ(e1) + ℓ(e2) = ℓ(e). If ℓ is such that for any two distinct
leaves x and y we have d(ρ, x) = d(ρ, y), we say that ℓ satisfies the ultrametric
condition.
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For a non-empty subset Y of X, we define the phylogenetic diversity of
Y on T , denoted by PD(T,ℓ)(Y ), to be the sum of the edge lengths of the
Y -subtree. That is,

PD(T,ℓ)(Y ) =
∑

e∈E(T ):
cT (e)∩Y ̸=∅

ℓ(e).

It will be usual for us to remove the subscript notation and write PD(Y ) when
it is clear which rooted phylogenetic tree and edge length function we refer to.
We also write PD(T ) to denote the phylogenetic diversity of the entire X-tree
T , in place of PD(T,ℓ)(X).

Let T be a rooted phylogenetic X-tree whose edges are assigned a positive
real-valued weighting, and let A ⊆ X. If |A| = k and PD(A) ≥ PD(Y ) for all
Y ⊆ X with |Y | = k, then we call A a size-k maxPD set. Similarly, if |A| = k
and PD(A) ≤ PD(Y ) for all Y ⊆ X with |Y | = k, then we call A a size-k
minPD set. To illustrate, Fig. 2 shows an example of a size-3 maxPD and an
example of a size-3 minPD sets for the same rooted phylogenetic tree.
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Fig. 2 A size-3 maxPD set {x2, x3, x6} and a size-3 minPD set {x5, x6, x7} for T1. Solid lines
indicate the {x2, x3, x6}- and {x5, x6, x7}-subtrees respectively. Hence PD({x2, x3, x6}) =
16, and PD({x5, x6, x7}) = 11.

3 The number of maxPD sets on rooted phylogenetic trees

Given a rooted phylogenetic X-tree T , with |X| = n and a weighting on
E(T ), a natural question is to find a subset Y of X of size t whose extinction
minimises PD loss. The solution to this question is to take Y to be X −W ,
where W is a subset of X of size n − t that maximises PD(W ). It turns out
that a greedy algorithm provably constructs such sets W of k = n − t leaves
(Pardi and Goldman, 2005; Steel, 2005). This result relies on an underlying
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combinatorial ‘strong exchange property’ that induces a greedoid structure on
maximal PD sets of given size.

Although a greedy algorithm will output a maxPD set, it does not give a
clear indication of how many distinct maxPD sets exist for T . Such an algo-
rithm begins with an empty set of leaves and iteratively adds k leaves, based
on which leaf adds most to the running total of PD at each iteration. There
may be multiple steps at which a choice has to be made between equally-good
options. By altering the procedure for breaking ties when they occur, it is pos-
sible to discover numerous size-k maxPD sets. This effect is most pronounced
for rooted phylogenetic X-trees satisfying the ultrametric condition. For ex-
ample, Fig. 1 and Fig. 2 show two of the 20 different size-3 maxPD sets for
the rooted phylogenetic tree T1.

All possible maxPD sets can be obtained by using a greedy algorithm, by
taking each option separately when presented with ties (Steel, 2005, Theorem
1). However, this process can become quite involved even for small phylogenetic
trees. Moreover, each maxPD set could be counted multiple times, as greedy
algorithms sometimes select the same set of leaves in different orders.

In this section, we present a more straightforward method for determining
exactly how many maxPD sets exist on a given rooted phylogenetic X-tree
whose edge lengths satisfy the ultrametric condition. Firstly, by deleting cer-
tain edges near the root vertex, we partition the leaf set into disjoint subsets.
Then we use a generating function which takes the sizes of these subsets and
outputs the number of maxPD sets as a coefficient.

3.1 Counting maxPD sets in an ultrametric context

We restrict our attention to the problem of counting maxPD sets on a rooted
phylogenetic X-tree T whose edge lengths satisfy the ultrametric condition.
Suppose T = (V,E), and let 1 ≤ k ≤ |X|. It turns out that the minimal
subtrees of T connecting size-k maxPD sets to the root all contain particular
subsets of edges. Furthermore, these common edges induce a subtree of T
containing the root vertex. Our approach is to determine which edges of T will
be in common to all size-k maxPD sets. From there, we can enumerate these
maxPD sets by analysing the forest that results from deleting the common
edges.

For example, all twenty size-3 maxPD sets of T1 from Fig. 1 (with a score of
16) can be found by checking the 35 possible sets of 3 leaves. Comparing these,
we see that all of the minimal subtrees of T1 that connect a size-3 maxPD set
to the root of T1 contain both edges incident with the root, as well as exactly
3 out of the 4 edges descending from the two highest non-root vertices.

We extend the metaphor that the ultrametric condition produces clock-like
trees and consider time to run down the page. Vertices at the same height are
therefore contemporary and, in particular, the leaves are in the present. Let d
be a non-negative real number and let

R(d) = {v ∈ V : d(v, x) ≤ d for some x ∈ X}
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be the set of recent vertices of T that are at most d units of time from the
present. Let c(d) be the number of connected components in T [R(d)]. If there
exists a distance d such that c(d) = k, we define dk = min{d ∈ R : c(d) = k}.
Note that dk may not be defined for all k < n. However, if dk is defined, we
call k a branching value, and dk a branching distance. In other words, dk is
the most recent time for which T [R(d)] has exactly k connected components,
if such a time exists. For example, the rooted phylogenetic tree T2 in Fig. 3
has {1, 2, 4, 7, 9, 11} as its set of branching values. The forests T2[R(d4)] and
T2[R(d7)] are shown below T2 in the same figure.

If k is not a branching value, we will be interested in the nearest integers
which are. We write k+ to denote the smallest branching value of at least k,
and k− to denote the largest branching value of at most k. Note that k = 1
and k = |X| are branching values, so that k+ and k− are well-defined. If k is
a branching value, then k− = k = k+. Theorem 1 gives a characterisation of
maxPD sets of a rooted phylogenetic tree T in terms of the forests T [R(dk−)]
and T [R(dk+)].

We first prove Lemma 1. Let X = {x1, . . . , xn}. We define T ′
k = (V ′, E′)

to be the rooted tree derived from T (by adding vertices to subdivide edges
as necessary) where, for each xi ∈ X, there is a vertex vi on the path ρ to xi

for which d(vi, xi) = dk− . Since T ′
k is derived from T solely by subdivision of

edges, PDT (A) = PDT ′
k
(A). Let V ′

Top(k) = {v ∈ V ′ : d(ρ, v) ≤ d1− dk−}, and
let T̂k be the rooted tree T ′

k[V
′
Top(k)].

Lemma 1 Let T be a rooted phylogenetic X-tree whose edge lengths satisfy
the ultrametric condition, and let A ⊆ X with |A| = k. Then

PDT (A) ≤ PD(T̂k) + kdk− .

Proof Let A = {x1, . . . , xk} be a size-k subset of X. Each element xi of A
contributes at most d(ρ, xi) to the total of PDT ′

k
(A). We separate the path

from ρ to xi within T ′
k into two parts at vertex vi. Hence

d(ρ, xi) = d(ρ, vi) + d(vi, xi) = d(ρ, vi) + dk− .

For all 1 ≤ i ≤ k, the path from ρ to vi lies within T̂k. Therefore the total
contribution of these paths to PDT ′

k
(A) cannot exceed PD(T̂k). This means

PDT ′
k
(A) must be less than or equal to PD(T̂k) plus a contribution of (at most)

dk− from each of the k elements of A. Thus PDT ′
k
(A) ≤ PD(T̂k) + kdk− , and

the lemma holds. ⊓⊔

Lemma 2 Let T be a rooted phylogenetic X-tree whose edge lengths satisfy
the ultrametric condition. Let A ⊆ X with |A| = k, and let d be a branching
distance of T . If one component of T [R(d)] contains no members of A, while
a second component of T [R(d)] contains two or more distinct members of A,
then A is not a size-k maxPD set.
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Fig. 3 A rooted phylogenetic tree T , and the forests T [R(d4)] and T [R(d7)] corresponding to
the branching values 4 and 7. The branching distances d4 and d7 are indicated by horizontal
dotted lines.

Proof Assume some component of T [R(d)] contains two (distinct) leaves, say
x1, x2, of A. The PD contribution of adding x1 to A − x1 cannot exceed d
because all edges of T in the path from ρ to x2 have already been counted
towards PD(A− x1). In particular, PD(A)− PD(A− x1) ≤ d.
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Now let y be a leaf in a component of T [R(d)] which contains no member
of A. The shortest defined distance from a vertex in the (A − x1)-subtree to
y must exceed d. (If not, there would be some vertex of the (A− x1)-subtree
in the same component of T [R(d)] as y.) Hence PD((A− x1) ∪ y) > PD(A).
Since |(A− x1) ∪ y| = |A|, the set A is not a size-k maxPD set. ⊓⊔

Theorem 1 Let T be a rooted phylogenetic X-tree whose edge lengths satisfy
the ultrametric condition. Let A ⊆ X, and let |A| = k. Then A is a size-k
maxPD set if and only if A contains at least one leaf from each component of
T [R(dk−)], and at most one leaf from each component of T [R(dk+)].

Proof First suppose that A is a size-k maxPD set. Assume some component of
T [R(dk+)] contains two (distinct) leaves, say x1,x2, of A. Since k+ ≥ k, there
must be some component of T [R(dk+)] which has no leaf in A. Then, by Lemma
2, the set A cannot be a maxPD set, contradicting our initial supposition. Thus
A contains at most one leaf from each component of T [R(dk+)].

Next, assume that some component of T [R(dk−)] contains no element of
A. Since k− ≤ k, there is a component of T [R(dk−)] that contains two or
more leaves of A. Then, by Lemma 2, the set A cannot be a maxPD set, again
contradicting our initial supposition. Thus A contains at least one leaf from
each component of T [R(dk−)].

Now suppose that A = {x1, . . . , xk} contains at least one leaf from each
component of T [R(dk−)], and at most one leaf from each component of
T [R(dk+)]. By Lemma 1, the value PD(T̂k) + kdk− is an upper bound for
the PD score of size-k sets. We show that PD(A) achieves this bound.

Notice that the components of T [R(dk−)] match those of T ′
k[R(dk−)], and

the components of T [R(dk+)] match those of T ′
k[R(dk+)], in terms of their

constituent leaves. For each xi ∈ A there exists a vertex vi ∈ V ′ for which
d(vi, xi) = dk− . Since each component of T ′

k[R(dk+)] contains at most one
leaf, the paths from vi to xi, and from vj to xj contain no common edges, for
any distinct 1 ≤ i, j ≤ k. So in total, the collection of all paths vi to xi for all
i contributes exactly kdk− to PD(A). Furthermore, since A contains at least
one leaf from each component of T [R(dk−)], every edge of T̂k is included in the
A-subtree of T . Thus PDT (A) = PDT ′

k
(A) = PD(T̂k) + kdk− , the maximum

possible value, and hence A is a size-k maxPD set. ⊓⊔

When k is a branching value for a rooted phylogenetic X-tree T , then
k− = k = k+ and T [R(dk−)] = T [R(dk)] = T [R(dk+)]. Hence, as a direct
consequence of Theorem 1, we obtain the following result.

Corollary 1 Let T be a rooted phylogenetic X-tree whose edge lengths satisfy
the ultrametric condition. Let A ⊆ X with |A| = k. If k is a branching value
of T , then A is a size-k maxPD set if and only if A contains exactly one leaf
from each component of T [R(dk)].

Theorem 1 can be used to count the number of size-k maxPD sets for a
rooted phylogenetic X-tree T whose edge lengths are ultrametric. Note that
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this result does not require T to be binary. Let m(T, k) denote the number
of size-k maxPD sets on T . The next proposition derives m(T, k) when k is a
branching value of T . The case when k is not a branching value of T is covered
separately. We express the forest T [R(dk)] as a union of components κi(k) for
i ∈ {1, 2, . . . , k}, and write λ(κi(k)) for the number of leaves in κi(k).

Proposition 1 Let T be a rooted phylogenetic X-tree whose edge lengths sat-
isfy the ultrametric condition. If k is a branching value for T , then

m(T, k) =
∏

i∈{1,...,k}

λ(κi(k)).

Proof By Corollary 1, each maxPD set contains exactly one leaf from compo-
nent κi(k), for all i ∈ {1, 2, . . . , k}. There are exactly λ(κi(k)) ways to choose
one leaf from component κi(k). Since the choice in each component is indepen-
dent of the choices in all other components, m(T, k) =

∏
i∈{1,...,k}

λ(κi(k)). ⊓⊔

Example. Mazel et al. (2018) exhibit a phylogeny of 32 mammal families
(reprinted as Fig. 4). Let us call this phylogeny P . We calculate the number
of size-8 and size-16 maxPD sets for P .

The family Leporidae appears as a single vertex component in both
P [R(d8)] and P [R(d16)]. For P [R(d8)], the components appearing clockwise,
starting from Leporidae, have sizes 1, 8, 3, 2, 7, 3, 5, and 3. The product of
these values gives a total of 15120 size-8 maxPD sets for P . Note that this rep-
resents 0.14% of the possible sets of 8 leaves. For P [R(d16)], the components
appearing clockwise, starting from Leporidae, have sizes 1, 2, 4, 1, 1, 3, 1, 1,
2, 1, 4, 3, 5, 1, 1, and 1. This gives a total of 2880 size-16 maxPD sets for P .

If k is not a branching value for a rooted phylogenetic X-tree T , calculating
the number of size-k maxPD sets is not as immediate. In this case, we use a
generating function to determine m(T, k). The following lemma is presented
for a more general context.

Lemma 3 Suppose that C = (Xij : i = 1, . . . , nj ; j = 1, . . . , r) is an array of
disjoint sets, and let nij denote the size of set Xij. Let NC(k) be the number of
sets of size k that can be obtained by selecting at most one element from each
set Xij but in such a way that at least one element is selected from

⋃
i Xij for

each value of j. Then NC(k) is the coefficient of xk in the polynomial

pC,k(x) =

r∏
j=1

(
−1 +

nj∏
i=1

(1 + nijx)

)
. (1)

Proof For each integer j ≥ 1, let pj(x) = −1 +
∏nj

i=1(1 + nijx), and for each
l ≥ 0, let clj denote the coefficient of xl in pj(x). Then c0j = 0 for each j,
and for l > 0, the coefficient clj is the number of ways of selecting l elements
from

⋃nj

i=1 Xij in such a way that at most one element is selected from the



Counting and optimising maximum phylogenetic diversity sets 11

Fig. 4 A phylogeny of 32 mammalian families, appearing originally as Fig. 3a in Mazel
et al. (2018).

(pairwise-disjoint) sets (Xij : i = 1 . . . , nj) and at least one element is selected
(since l > 0).

Now pC,k(x) =
∏r

j=1 pj(x) and so the coefficient of xk in pC,k(x) is the sum
(call it Sk) of the terms cl1,1cl2,2 · · · clr,r across all choices of (l1, l2, . . . , lr) for
which l1 + l2 + · · ·+ lr = k, and lm > 0 for all m (this second condition holds
because c0j = 0 for all j). Since the sets Xij are pairwise-disjoint (across all
choices of i, j), we have Sk = NC(k) as required. ⊓⊔

Let T be a rooted phylogenetic X-tree, and let k be a positive integer such
that k ≤ |X|. We write pT,k(x) instead of pC,k when C is constructed from
component-connected clusters of T , using the branching values k− and k+. If
k is a branching value of T , we have nj = 1 for all j, and the result coincides
with Proposition 1. In the general case, Lemma 1 gives a polynomial-time
algorithm to compute m(T, k).

Theorem 2 Let T be a rooted phylogenetic X-tree whose edge lengths satisfy
the ultrametric condition. Let |X| = n, and let k ≤ n. The components of
T [R(dk−)] and T [R(dk+)] can be determined in time O(n2). The value m(T, k)
can be computed in time O(n3).

Proof There are at most n different branching values for T (one for every
non-leaf vertex, and the value n) from which to select the appropriate k− and
k+ values. Determining the components of a forest can be achieved in O(n2)
time. Once the components have been determined, the polynomial pT,k(x) is
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calculated, and the coefficient of xk is extracted. With a näıve approach of
sequentially multiplying factors, this can be completed in time O(n3). ⊓⊔

The following example highlights a nice property of the generating
function pT,k(x) for a rooted phylogenetic tree T . Calculating the number of
size-k maxPD sets for some non-branching value k also gives the number of
size-m maxPD sets for every positive integer m in the interval [k−, k+].

Example. Consider the rooted phylogenetic tree T2 in Fig. 3. Firstly, 4 is
a branching value for T2. Thus the number of its size-4 maxPD sets is the
product of the number of leaves in each of the four components of T2[R(d4)].
That is, m(T2, 4) = 3 · 1 · 4 · 3 = 36.

However, 5 is not a branching value for T2, so we use the generating function
approach to find m(T2, 5). First note that the greatest branching value less
than 5 is 4 and the least branching value greater than 5 is 7. The forests
T2[R(d4)] and T2[R(d7)] are shown in Fig. 3. We then construct an array of
disjoint sets C(T2), with a view to using Eqn. 1. Each entry of C(T2) consists
of a set of leaves contained in one component of T2[R(d7)]. That is, the entries
of C(T2) are {x1, x2}, {x3}, {x4}, {x5, x6}, {x7, x8}, {x9, x10}, {x11}.

Lastly, we arrange the entries of C(T2) so that each column contains pre-
cisely those leaves that share a component of T2[R(d4)]. Thus we have 4
columns in C(T2), and set r = 4 in Eqn. 1. As T2 is binary, there are at
most two components of T2[R(d7)] contained in any component of T2[R(d4)].
We use an empty set as a placeholder, if required, to ensure that C(T2) is a
rectangular array. As such, we are able to set nj = 2 for all j in Eqn. 1. The
completed array is

C(T2) =

[
{x1, x2} {x4} {x5, x6} {x9, x10}
{x3} ∅ {x7, x8} {x11}

]
.

The generating function for T2, when k = 5, is calculated below.

pT2,5(x) =

4∏
j=1

(
−1 +

2∏
i=1

(1 + nijx)

)
= [−1 + (1 + 2x)(1 + x)]2[−1 + (1 + x)(1)][−1 + (1 + 2x)2]

= x4(2x+ 3)2(4x+ 4)

= 16x7 + 64x6 + 84x5 + 36x4

Hence T2 has 84 maxPD sets of size 5. We have also determined that T2 has
64 size-6 maxPD sets, 16 of size 7, and confirmed that there are 36 maxPD
sets of size 4.
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3.2 Bounding m(T, k), and its value for a certain family of trees

The shape of a rooted phylogenetic tree impacts the components at each
branching distance, and hence the number of maxPD sets which exist. In
this section we restrict ourselves to rooted binary phylogenetic trees with the
ultrametric constraint on edge lengths. By ‘shape’, we refer to both the par-
ticular branching structure of a tree and the relative distances of the vertices
from its leaves (see Steel, 2016, Ch. 3). Here, we begin to address the question
of which tree shapes and values of k give the most size-k maxPD sets across a
fixed number of leaves. First we consider the lower and upper bounds for the
number of size-k maxPD sets when k is a branching value.

Proposition 2 Let T be a rooted binary phylogenetic X-tree whose edge
lengths satisfy the ultrametric condition, and let |X| = n. If k is a branch-
ing value for T , then

n− k + 1 ≤ m(T, k) ≤
(n
k

)k
.

Moreover, these bounds are sharp.

Proof If k is a branching value for T , then, by Proposition 1, the value m(T, k)
is the product of the number of leaves in the k components. Let S be the
multiset {λ(κi(k)) : 1 ≤ i ≤ k}, that is, the multiset containing the number of
leaves of each component.

To find the lower bound for m(T, k), note that if a and b are integers with
1 < a ≤ b, then (a − 1)(b + 1) < ab. Hence the product of elements of the
multiset (S − {a, b}) ∪ {a− 1, b+ 1} will be less than the product of elements
of S. This exchange of elements can continue until only one element is greater
than 1. Thus the minimum product of k positive integers which sum to n is
n − k + 1, achieved with one value of n − k + 1 and k − 1 values of 1. This
bound is achieved by rooted caterpillar trees (i.e. rooted phylogenetic X-trees
with exactly one cherry).

On the other hand, the maximum such product is bounded above by (nk )
k.

This follows from the fact that the arithmetic mean, AM(S), of a multiset of
positive integers S is greater than or equal to the geometric mean, GM(S), of
the same multiset. Thus

m(T, k) =
∏
s∈S

s = (GM(S))k ≤ (AM(S))k =
(n
k

)k
.

This maximum is obtained when k is a divisor of n and all components contain
n
k leaves. ⊓⊔

Let T be a rooted binary phylogenetic X-tree. If k is not a branching value,
it is possible that m(T, k) exceeds the upper bound given in Proposition 2. For

example, the tree T2 from Fig. 3 has n = 11, andm(T2, 5) = 84 ≥
(
11
5

)5 ≈ 51.5.
We have seen above that if T is a rooted caterpillar tree, then m(T, k) is as

small as possible. The highly asymmetric structure of caterpillar trees restricts
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the possible maxPD sets they contain. In contrast, we now consider m(T, k)
values across the family of fully symmetric rooted trees (with constant edge
lengths) and include cases when k is not a branching value.

We say T is a perfect unit-length tree if the edge lengths of T satisfy the
ultrametric condition, and all edges of T have length 1. Perfect unit-length
trees have 2α leaves, where α ∈ N is the height of the tree (the number of
edges between the root and any leaf).

Proposition 3 Let T be a perfect unit-length tree of height α ∈ N, and let n
denote the number of leaves of T . Let k be a positive integer such that k ≤ n,
and let β be the unique non-negative integer such that 2β−1 < k ≤ 2β. Then

m(T, k) =

(
2β−1

k − 2β−1

)
· 22

β+(α−β−1)k. (2)

The values of k that maximise m(T, k) are k = ⌊ 2n3 ⌋ for all n and, additionally,
k = ⌊ 2n3 ⌋+ 1 when n ≡ 1 (mod 3).

Proof Firstly, if k is a branching value, then k = 2β and each component has
size 2α−β . Therefore, by Proposition 1, m(T, k) = (2α−β)k, which coincides
with Eqn. (2).

Furthermore, if k is not a branching value, we have k− = 2β−1 and k+ = 2β .
Then by Lemma 1, m(T, k) is the coefficient of xk in the polynomial

pT,k(x) = (−1 + (1 + 2α−βx)2)2
β−1

= (22(α−β)x2 + 2α−β+1x)2
β−1

.

Taking the binomial expansion of the last expression we determine that(
2β−1

k−2β−1

)
· 22β+(α−β−1)k is the coefficient of xk in pT,k(x). This establishes

Eqn. (2).
To find the value of k which maximises m(T, k), we first show that

m(T, k) ≤ m(T, n − k) when k ≤ n
2 . Let A be a size-k maxPD set for some

k ≤ n
2 . By Theorem 1, A contains at most one leaf from each cherry of T . Then

X−A contains at least one leaf from every cherry (which are the components of
T [R(d(n−k)−)]), and at most one leaf from each component of T [R(d(n−k)+)],
as these are all single-leaf components. This implies X − A is a size-(n − k)
maxPD set by Theorem 1, and thus there are at least as many size-(n − k)
maxPD sets as size-k ones. Hence the value of k that maximises m(T, k) will
be greater than or equal to n

2 .
In the case when k ≥ n

2 , since 2α = 2β = n, the expression in Eqn. (2)

simplifies to m(T, k) =
( n

2
k−n

2

)
· 2n−k. Computing the ratio m(T,k+1)

m(T,k) , we have

m(T, k + 1)

m(T, k)
=

( n
2

k−n
2 +1

)
· 2n−k−1( n

2
k−n

2

)
· 2n−k

=
n− k

2k − n+ 2
.

This ratio is monotonically decreasing as k increases, and equals 1 when
3k = 2n − 2. Our maximal value of m(T, k) will be found at the smallest

k ≥ n
2 for which m(T,k+1)

m(T,k) ≤ 1, namely when k = ⌊ 2n3 ⌋. Note that when n ≡ 1
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n k m(T, k)
4 1,2,3 4
8 3,5 32
16 10,11 1,792
32 21 8,945,664
64 42,43 ∼ 2.7× 1014

Table 1 Number of size-k maxPD sets for a perfect unit-length tree T with n leaves

T3

ρ

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Fig. 5 A rooted binary phylogenetic tree with more maxPD sets (for its optimal value of
k = 8) than the perfect unit-length tree with the same number of leaves (for its optimal
value of k = 10, 11)

.

(mod 3) and k = ⌊ 2n3 ⌋, we have m(T,k+1)
m(T,k) = 1, so we get an equal number of

maxPD sets for the two consecutive values k and k + 1. ⊓⊔

Table 1 shows the growth of m(T, k) as n increases. We note that for
n = 16, the perfect unit-length tree does not provide the largest value of
m(T, k). Figure 5 shows a rooted binary phylogenetic X-tree T3 on 16 leaves
which contains 1809 size-8 maxPD sets (thus having 17 more maxPD sets than
the perfect unit-length tree on 16 leaves can achieve for its optimal value of
k = 10 or k = 11). For T3 we have pT3,8(x) = (x2 + 2x)2(2x2 + 3x)4.

4 Finding a maxPD set that maximises a linear function on the
leaves

Section 3 presented methods for determining the number of size-k maxPD
sets for a given rooted phylogenetic tree. These methods confirmed the ob-
servations in the literature that, in general, maxPD sets are far from unique.
This provides scope for evaluating the collection of maxPD sets against other
strategic considerations. In developing strategies for conservation planning,
PD is often seen as one measure to be used in conjunction with others (for
examples of this, see Cadotte and Tucker (2018); Isaac et al. (2007); Kling
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et al. (2019)). For instance, we may wish to incorporate benefit-cost ratios of
focussed conservation spending, or employ IUCN categorisations into the anal-
ysis. This section provides an algorithm to optimise a further measure across
the collection of maxPD sets.

Here, we frame the further measure in terms of a real-valued linear function
on the leaves. Each leaf is assigned a function value, and the linear function
score of a set of leaves is the weighted sum of the function values of the
constituent leaves. We seek a size-k set which has as large a linear function
score as possible among the size-k maxPD sets. By suitably modifying the
linear function, the problem can be rephrased as maximising the unweighted
sum across maxPD sets. Thus, for a function ϕ : X → R we want to determine

max

{∑
x∈A

ϕ(x) : A is a size-k maxPD set

}
.

We note that it is not always possible to achieve this result by simply adding
the function score of each leaf to the length of its incident pendant edge, and
then finding a size-k maxPD set of the resulting rooted phylogenetic tree. We
provide a counterexample using the tree T1 from Fig. 2. Consider the function

f(x) =

{
1, if x ∈ {x1, x2, x3, x4};
100, if x ∈ {x5, x6, x7}.

Adding the function values to appropriate pendant edges, results in a tree with
a unique size-3 maxPD set {x5, x6, x7}. However this set is not a maxPD set
of the original tree T1.

For a rooted phylogenetic tree T , MaximiseLinearSum selects a set A
consisting of k leaves of T in the following manner. Initially, it determines the
components of T [R(dk−)] (‘tall’ components) and those of T [R(dk+)] (‘short’
components). For every short component, it keeps (in the set of ‘potential’
leaves P ) one leaf x such that ϕ(x) is maximal for that short component. It then
discards all other leaves from further consideration. In every tall component, it
adds one leaf x to A from the leaves retained in P such that ϕ(x) is maximal
for that tall component. Finally, from the remaining k+ − k− leaves under
consideration, it chooses k − k− with the largest ϕ values. In presenting the
algorithm, we make use of the following notation. For a pendant subtree C of
T , write XC for the set of leaves in C. For S ⊆ X, let ϕ(S) = {ϕ(x) : x ∈ S}.

Proposition 4 Let T be a rooted phylogenetic X-tree whose edge lengths sat-
isfy the ultrametric condition. The MaximiseLinearSum algorithm outputs
a maxPD set of T .

Proof The for-loop from Lines 4 to 7 ensures that A cannot contain more than
one leaf from any short component. The for-loop from Lines 10 to 13 ensures
that A contains at least one leaf from every large component. Since Line 15
ensures that |A| = k, it follows by Theorem 1, that A is a maxPD set of T . ⊓⊔
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Algorithm 1: MaximiseLinearSum

Input: a rooted phylogenetic X-tree T whose edge lengths satisfy
the ultrametric condition,
a positive integer k ≤ |X|,
ϕ : X → R

Output: a size-k maxPD subset A ⊆ X, with the largest linear
function score among all maxPD sets

1 determine T [R(dk−)] and T [R(dk+)];
2 P ← ∅ ; /* Potential leaves to include */

3 A← ∅ ; /* Output set */

4 foreach component C in T [R(dk+)] do
5 choose one leaf m from the set {x ∈ X : ϕ(x) = maxϕ(XC)};
6 P ← P ∪m

7 end
8 foreach component C in T [R(dk−)] do
9 choose one leaf m from the set {x ∈ P : ϕ(x) = maxϕ(XC ∩ P )};

10 A← A ∪m;
11 P ← P −m

12 end
13 for each of the k − k− largest elements ϕ(x) of ϕ(P ) add x to A;
14 return A

Proposition 5 Let T be a rooted phylogenetic X-tree whose edge lengths sat-
isfy the ultrametric condition, and let ϕ : X → R be a function on the leaves of
T . Let k be a positive integer such that k ≤ |X|. Then MaximiseLinearSum
applied to T , ϕ, and k correctly outputs a size-k maxPD set with the largest
function score among all maxPD sets.

We give a proof of this result shortly, but first give a short description of
our approach. The algorithmMaximiseLinearSum was designed to construct
a set containing the largest possible values of ϕ while obeying the constraints
imposed by Theorem 1 to ensure the selection of a maxPD set. Suppose that
A is a size-k maxPD set of T . The proof considers two possible cases when A
is not a valid output of the algorithm, and exhibits a size-k maxPD set with
a greater linear function score in each. Finally, outside of these two cases we
prove that the linear function score of A must be at least as large as that of
any other size-k maxPD set.

Proof Suppose that A is a size-k maxPD set of T . For the result to hold, either
A is a valid output of MaximiseLinearSum or there is a size-k maxPD set
B, distinct from A, such that

∑
x∈A ϕ(x) <

∑
x∈B ϕ(x). One of the following

three conditions holds:

1. There is a component of T [R(dk+)] (a short component) which contains
leaf a ∈ A and leaf b ∈ B, where ϕ(a) < ϕ(b). In this case, a would not
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be selected in Line 5 of MaximiseLinearSum, meaning A cannot be a
valid output of this algorithm. However, the set A′ = (A−a)∪ b is a size-k
maxPD set with

∑
x∈A ϕ(x) <

∑
x∈A′ ϕ(x).

2. Condition 1 fails, and there is a component of T [R(dk−)] (a tall component)
which contains leaves {a1, a2, . . . , as} ⊆ A, and {b1, b2, . . . , bt} ⊆ B where,
for some j ∈ {1, 2, . . . , t}, the inequality ϕ(bj) > ϕ(ai) holds across all
i ∈ {1, 2, . . . , s}. In particular, the strictness of this inequality means
that bj /∈ A. In this case, the leaf bj would always be selected by Line
9 of MaximiseLinearSum, precluding A from being a valid output of
this algorithm. Moreover, since Condition 1 fails to hold, no element of
{a1, a2, . . . , as} shares a short component with bj . Thus A

′ = (A− a1)∪ bj
is a size-k maxPD set with

∑
x∈A ϕ(x) <

∑
x∈A′ ϕ(x).

3. Conditions 1 and 2 fail. Thus, in every component of T [R(dk−)], the set A
contains a leaf that has the maximal ϕ value for that component. Assume
that k is a branching value of T . Then A is a valid output of Maximise-
LinearSum, as the choice applied in Line 9 can be the one element of A
from within each component. Additionally, since elements of A have the
maximal ϕ value in each component,

∑
x∈A ϕ(x) ≥

∑
x∈B ϕ(x) for any

size-k maxPD set B. Thus the proposition holds when k is a branching
value of T .
Now assume that k is not a branching value. Let Ā ⊆ A consist of k−

elements of A which have the maximal ϕ value in their tall component,
one from each tall component. We construct the set B̄ ⊆ B to include
(i) elements of B that share a short component with some leaf in Ā, and
(ii) from tall components where no leaf in B satisfies Condition (i), one
element of B in each such tall component with the largest ϕ value. The
set B̄ contains exactly one leaf from each tall component. For a ∈ Ā and
b ∈ B̄ in the same tall component, ϕ(a) ≥ ϕ(b). Thus∑

x∈Ā

ϕ(x) ≥
∑
x∈B̄

ϕ(x). (3)

Let P be the set of ‘potential leaves’ as used in Algorithm 1. Then by our
construction of B̄, we have B − B̄ ⊆ P − Ā. The set A is a valid output of
MaximiseLinearSum if and only if the elements of A− Ā have the k−k−

largest ϕ values among elements of P−Ā. The latter condition is equivalent
to
∑

x∈A−Ā ϕ(x) ≥
∑

x∈B−B̄ ϕ(x), that is
∑

x∈A ϕ(x) ≥
∑

x∈B ϕ(x).

Hence, under all three conditions, either A is a valid output of Maximise-
LinearSum or

∑
x∈A ϕ(x) <

∑
x∈B ϕ(x) for some size-k maxPD set B of T ,

as required. ⊓⊔

Proposition 6 Let T be a rooted phylogenetic X-tree whose edge lengths sat-
isfy the ultrametric condition, and let |X| = n. Then MaximiseLinearSum
runs in time O(n2).

Proof By Theorem 2, Line 1 can be completed in O(n2). We show that this
subroutine dominates the time taken for MaximiseLinearSum to run.
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Determining which vertices are in each component can be achieved by a
depth-first search in linear time. Both for-loops are completed in O(n2) time,
as there are at most n components and a component contains at most n
leaves. Sorting a set and returning the k − k− largest values can be achieved
in O(n log n) time. Hence, MaximiseLinearSum runs in the same order of
time as determining the components of T [R(dk−)] and T [R(dk+)]. ⊓⊔

The algorithm MaximiseLinearSum makes use of the component con-
straints on maxPD sets to solve this problem for rooted phylogenetic X-trees
whose edge lengths satisfy the ultrametric condition. For phylogenetic trees
whose edge lengths do not satisfy the ultrametric condition, the determination
of appropriate connected components requires a further algorithm (Manson,
in preparation).

We note that an alternative approach to solving this more general prob-
lem comes from the area of lexicographic multi-objective linear programming
(Cococcioni et al., 2018, see Section 2). The optimisation can be phrased as a
max-flow min-cost problem, in a similar manner to that used in (Bordewich
et al., 2009). However this approach relies on first scaling every length of
the phylogenetic tree by a suitably large number. Determining an appropri-
ate value for the scaling factor can prove difficult unless the edge lengths are
restricted to take only rational values. For some trees with real-valued edge
lengths this step requires a pairwise comparison of the PD scores across all
sets of k leaves (Manson, in preparation).

5 Maximum possible loss of PD in a tree if k species become
extinct (‘minPD’)

In Section 3, we were interested in finding sets of k species which contained
as much diversity as possible. However, it is also worth considering the dual
problem: determining how must PD could be lost if k extant species were
to become extinct (i.e. a ‘worst case scenario’ in biodiversity conservation in
the face of widespread extinction pressure). More precisely, we consider the
problem of determining the maximum possible PD loss if a given number
species were to become extinct.

Formally, let T = (V,E) be a rooted phylogenetic X-tree and let the func-
tion ℓ : E(T ) → R>0 assign a positive real-valued length ℓ(e) to each edge
e ∈ E(T ). Suppose that each species in a subset Y of the leaf set X of T
is removed from the tree. The resulting loss of PD, which we denote here as
∆(T,ℓ)(Y ) is given by

∆(T,ℓ)(Y ) = PD(T,ℓ)(X)− PD(T,ℓ)(X − Y ).

This is equivalent to the concept of ‘exclusive molecular phylodiversity’ as
described in Lewis and Lewis (2005).1

1 The function ∆(T,ℓ) is a supermodular (and decreasing) function on the lattice of subsets
of X, since PD is a submodular (and increasing) function on this same lattice (Steel, 2016).
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Notice that finding a subset Y of X of size k′ to maximise ∆(T,ℓ)(Y ) is
equivalent to finding a subsetW (= X−Y ) ofX of size k = |X|−k′ to minimise
PD(T,ℓ)(W ). Unlike the max-PD question, this minimisation question is not
solved by the greedy algorithm (Moulton et al., 2007). However, as discussed
in Section 6 of (Spillner et al., 2008), minimal PD scores can be found using
dynamic programming. In particular, (Blum et al., 1994, Section 3.1) describe
an algorithm for an equivalent problem (referred to as the i-tree problem).
Here we present a detailed description of this algorithm using the terminology
of phylogenetic trees.

We call a set of k leaves which has the smallest PD score across all sets
of size k, a size-k minPD set. In this section, we present a polynomial-time
dynamic programming approach to finding minPD scores. For simplicity, we
initially restrict our attention to rooted binary phylogenetic trees; however, we
show that the same idea extends to rooted phylogenetic trees for which each
vertex has bounded out-degree. Note that in this section, we do not require
the branch lengths to satisfy the ultrametric condition.

Given a rooted phylogenetic X-tree T , and an integer 0 ≤ k ≤ |X|, let
φT (k) be the minimum PD score across all size-k subsets of X. When k > |X|,
φT (k) is undefined, and when k = 0, we set φT (0) = 0. For the case when
T is a single vertex, we define φT (k) = 0. Proposition 7 gives the dynamic
programming equation when T is binary.

Proposition 7 Let T be a rooted binary phylogenetic X-tree and let e1 and
e2 be the two edges of T incident with the root. Let e1 have length ℓ1 and e2
have length ℓ2. Finally, let T1 and T2 denote the (maximal) pendant subtrees
formed by the deletion of e1 and e2 respectively.
For all k ∈ {1, 2, . . . , |X|},

φT (k) = min
k1,k2≥0,
k1+k2=k

{φT1(k1) + φT2(k2) + ℓ1 · Ik1>0 + ℓ2 · Ik2>0}, (4)

where Ikj>0 takes the value 1 if kj > 0; otherwise, Ikj>0 = 0.

Proof We proceed by induction on the number of vertices in T . For the base
case, take the tree T consisting of a single vertex. Since T has no edges, it has
a PD score of 0, which corresponds to φT (k) for all k ≥ 0 by definition.

Suppose that Eqn. (4) fails to give the minimum PD score for some rooted
binary phylogenetic X-tree T . We write φi as shorthand for φTi for i = 1, 2.
Furthermore, suppose that φi(k

′) equals the size-k′ minPD score in Ti for all
k′ ≤ k and i ∈ {1, 2}. Since Eqn. 4 fails, there must be a set of k leaves of T
which has a lower PD score than any value in the set

{φ1(k1) + φ2(k2) + ℓ1 · Ik1>0 + ℓ2 · Ik2>0 : k1, k2 ≥ 0, k1 + k2 = k}.

Let A be such a set of k leaves of T , with k1 leaves in T1 and k2 leaves in T2.
If k2 = 0, then PDT (A) = ℓ1 + PDT1(A) ≥ ℓ1 + φi(k1) by the inductive

assumption. Thus the PD score of A is not lower than the calculated minimum;
hence, k2 ̸= 0. Similarly, k1 ̸= 0. Consequently,

PDT (A) = ℓ1 + ℓ2 + PDT1
(A ∩ T1) + PDT2

(A ∩ T2).
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For A to have a PD score lower than φT (k), we must have

PDT1(A ∩ T1) + PDT2(A ∩ T2) < φ1(k1) + φ2(k2).

This implies that either PDT1(A ∩ T1) < φ1(k1) or PDT2(A ∩ T2) < φ2(k2),
contradicting our inductive assumption. Therefore, no such set A exists, and
φT (k) calculates a minPD score of size k in T . ⊓⊔

We now present an algorithm which utilises Proposition 7 to calculate a
minPD score for a rooted binary phylogenetic X-tree T = (V,E). For a vertex
v ∈ V (T ), we use the notation φv(k) in place of φTv (k), where Tv is the pendant
subtree of T for which vertex v has in-degree 0. Additionally, φρ(k) = φT (k).
Note that the root vertex ρ of T will always appear last in the ordered list L
defined in the algorithm. For a positive integer i, let L[i] denote the ith entry
in list L.

Algorithm 2: MinPDScore

Input : a rooted binary phylogenetic X-tree T = (V,E), with root
ρ,
an integer 0 ≤ k ≤ |X|.

Output: a real number φT (k)

1 foreach x ∈ X do
2 φx(0)← 0;
3 φx(1)← 0

4 end
5 L← ordered list of vertices in V (T )−X such that if u is a

descendant of v, then u appears before v;
6 i← 1;
7 j ← 0;
8 while i < |V (T )−X| do
9 foreach 0 ≤ j ≤ k do

10 calculate φL[i](j) according to Eqn. (4) in Proposition 7;
11 end
12 i← i+ 1;

13 end
14 return φρ(k)

The algorithm MinPDScore computes the minimum PD score for a rooted
binary phylogenetic tree T when selecting k of its leaves. This dynamic pro-
gramming approach calculates the minPD score for pendant subtrees of T ,
which are then combined to calculate the minPD score for T as a whole. Ad-
ditionally, by tracking the indicator function values as we go, a corresponding
size-k minPD set can be determined.

Proposition 8 Let T = (V,E) be a rooted binary phylogenetic X-tree, and
let 0 ≤ k ≤ n, where n = |X|. The algorithm MinPDScore applied to T
and k calculates the minimum PD score for a size-k set of leaves of T in time
O(n4).
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Proof Let |X| = n. The ordering of vertices on Line 5 can be completed in
O(|V (T ) −X| + |E(T )|) = O(n) (Kahn, 1962). The “while” loop from Lines
8 to 13 has order O(n) ·O(n) ·O(n2) = O(n4), since |V (T )−X| = n− 1, and
k ≤ n, and we are comparing k + 1 values in Eqn. (4). ⊓⊔

5.1 minPD scores for non-binary rooted phylogenetic trees

The algorithm MinPDScore can be adapted for a non-binary rooted phylo-
genetic tree with bounded out-degree. Specifically, Line 10 of the algorithm is
adjusted, and an upper bound on the out-degree of every vertex is required to
ensure that the modified algorithm runs in polynomial time.

Let {e1, e2, . . . , et} denote the set of edges incident with the root of T ,
and let Ti denote the subtree of T descending from ei. Set ℓi = ℓ(ei) for
i ∈ {1, 2, . . . , t}, and let

K(k, t) =

{
k = (k1, ..., kt) : ki ≥ 0 for all i and

t∑
i=1

ki = k

}
.

Then, in place of Eqn. (4), we use Eqn. (5) which applies the same notation
as Proposition 7.

φT (k) = min
k∈K(k,t)

{
t∑

i=1

(φi(ki) + ℓi · Iki>0)

}
(5)

6 Concluding Remarks

Phylogenetic diversity provides a formal way to quantify recent (and possible
future) biodiversity loss, resulting from the current high rate of species extinc-
tion. For example, PD has become an integral part of the Zoological Society
of London’s ‘EDGE of Existence’ programme for monitoring biodiversity risk
(Isaac et al., 2007). PD is more nuanced than simply counting species extinc-
tions, since PD explicitly incorporates the evolutionary relationships among
species, and thus provides a proxy for measuring the richness of features that
make species unique (Faith, 1992; Wicke et al., 2021).

In this paper, we have investigated new combinatorial questions concern-
ing PD that arise in its application to large data-sets. In particular, we have
described a precise way to count the number of maxPD sets of given size on a
given tree (in the usual ultrametric setting) and derived some bounds on the
growth rate for these numbers. We have also described further mathematical
results that establish polynomial-time algorithms to (i) optimise a linear func-
tion (across the species at the tips of the tree) over all maxPD sets and (ii)
determine the greatest possible loss of PD on a tree if k species were to become
extinct (this last question amounts to determining minPD sets of given size).

Our results suggest a number of questions. In future work, we hope to
characterise the tree shapes that have the largest number of maxPD sets (of
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any given size). A further question is to count the number of minPD sets in
the binary ultrametric setting. For caterpillars on n leaves (and ultrametric
edge lengths), the number of size-k minPD sets is 1 unless k = 1, in which
case there are n min PD sets. To see this, observe that a size-k minPD set in
a caterpillar is the one that contains the k leaves with the shortest pendant
edges (removing any of these leaves to replace it with one of the n−k unchosen
leaves would necessarily add more to the PD score than what was lost by not
counting the removed pendant edge). A related question is to categorise the
trees which have a unique minPD set.
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