
Supertree Algorithms for Ancestral Divergence

Dates and Nested Taxa

Charles Semple1, Philip Daniel1, Wim Hordijk1, Roderic D. M. Page2, and
Mike Steel1

1 Biomathematics Research Centre, Department of Mathematics and Statistics,
University of Canterbury, Christchurch, New Zealand

2 DEEB, IBLS, Graham Kerr Building, University of Glasgow, Glasgow G12 8QP,
United Kingdom

Abstract. Motivation: Supertree methods have been often identified
as a possible approach to the reconstruction of the ‘Tree of Life’. However,
a limitation of such methods is that, typically, they use just leaf-labelled
phylogenetic trees to infer the resulting supertree.
Results: In this paper, we describe several new supertree algorithms
that extend the allowable information that can be used for phylogenetic
inference. These algorithms have been recently implemented and we de-
scribe here two illustrative applications.
Availability: These new algorithms are freely available for application
at http://darwin.zoology.gla.ac.uk/cgi-bin/build.pl

Contact: c.semple@math.canterbury.ac.nz

1 Introduction

Rooted phylogenetic trees are used in evolutionary biology to represent the an-
cestral history of a collection of present-day species. For example, ignoring the
numerals, Fig. 1 shows a rooted phylogenetic tree where the labels a, b, c, d, e,
and f represent the present-day species. A supertree is a rooted phylogenetic tree
that is the result of combining a collection of smaller rooted phylogenetic trees
on overlapping subsets of species. There are now many techniques (‘supertree
methods’) for constructing supertrees. However, for almost all of these methods,
the input is restricted to leaf-labelled phylogenetic trees (without branch lengths
or interior node labels or dates), in which case any other related information is
ignored. In this paper, we describe several new, and recently implemented, su-
pertree methods which extend the typical input to include some of this additional
information.

The new supertree methods divide into two groups depending upon the type
of additional information being used as input. The first group allows the input
to include ancestral divergence dates which may be either relative or explicit.



For example, in this group the input could include information such as whether
one particular divergence event on one side of a tree occurred before or after a
divergence event on the other side of the tree, or actual time estimates of certain
divergence events. The second group of supertree algorithms takes as its input
rooted trees in which some of the interior vertices as well as all of their leaves
are labelled. This allows the inclusion of nested taxa in the input.

All of the new supertree algorithms described in this paper have been im-
plemented in Java (and are thus platform independent) and are available for
applications at

http://darwin.zoology.gla.ac.uk/cgi-bin/build.pl

The implementation requires the input trees to be given in the Newick format1.
Any tree that is returned by these algorithms is also in the Newick format. All
of the algorithms run quickly (that is, require just polynomial time) in the size
of the input.

The notation and terminology in this paper follows Semple and Steel (2003).
The paper is organised as follows. Each of the new algorithms can be viewed as
a variation of Build, one of the oldest supertree algorithms. Indeed, the general
approach used in each of the algorithms is similar to that used by Build. This
approach is outlined in the next section. In Sections 3 and 4, we describe the
new algorithms for ancestral divergence dates and nested taxa, respectively, and
include two applications of these algorithms to some data sets.

We end this section by noting that the formal details of the algorithms de-
scribed in this paper, including their correctness, are not included here as these
details are to appear as chapters (Bryant et al., 2004; Daniel and Semple, 2004)
of a forthcoming book on supertrees (Bininda-Emonds, 2004).

2 The Build Approach

Originally designed for other purposes, Build (Aho et al., 1981) is an exact
algorithm in that it outputs a tree precisely if the input collection satisfies a
particular compatibility criteria. A rooted phylogenetic tree T displays a rooted
phylogenetic tree T ′ if the label set X ′ of T ′ is a subset of the label set of T
and, up to suppressing degree-two vertices, T ′ is a refinement of the minimal
rooted subtree of T that connects the labels in X ′. For the purposes of this
paper, ‘up to suppressing degree-two vertices’ essentially means ‘overlooking
degree-two vertices’. A collection P of rooted phylogenetic trees is compatible
1 See for example http://evolution.genetics.washington.edu/phylip/newicktree.html



if there exists a rooted phylogenetic tree that displays each of the trees in P .
Intuitively, P is compatible if there is a rooted phylogenetic tree that, up to
polytomies, preserves all of the ancestral relationships described by the trees in
P . In particular, if the most recent common ancestor of a and b is a descendant of
the most recent common ancestor of a and c in a tree in P , then this relationship
is also preserved in T .

The algorithms we present in this paper follow the approach of Build. Each
algorithm is exact and outputs a tree precisely if the input collection satisfies
some particular compatibility criteria. Furthermore, like Build, the descriptions
of the algorithms take the following form. Each algorithm attempts to construct a
tree T that satisfies the compatibility criteria by constructing the set of clusters
of T . In all cases, this is done by starting with the cluster that is the union
of the labels of the trees in P and successively breaking it down into disjoint
subclusters. How the clusters are broken down is determined by an associated
graph at each iteration. For each algorithm, this graph as well as the process for
breaking up clusters is different. The process continues provided the graph at
each iteration satisfies some condition. Eventually, either

(i) the algorithm outputs a tree that satisfies the compatibility criteria, or
(ii) outputs a statement indicating that the input collection does not satisfy this

criteria.

3 Supertree Algorithms for Ancestral Divergence Dates

We first describe a supertree algorithm that incorporates relative divergence
times. This algorithm is called RankedTree. An extension of this algorithm
to include absolute divergence times or intervals on these times is also possible
and this is mentioned at the end of this section.

Essentially, RankedTree is an extension of Build and its input consists
of rooted phylogenetic trees as well as information detailing the order in which
the divergence events of certain different pairs of species occurred. We call the
latter type of input a relative divergence date and such information is based, for
example, on fossil data or molecular dating techniques. Formally, this type of
input takes the form ‘div(c, d) predates div(a, b)’ which is interpreted as, ‘for
species a, b, c, and d, the divergence of species c and d predates the divergence
of species a and b’.

To include both types of input on a single supertree, we extend the concept of
a rooted phylogenetic tree. A ranked phylogenetic tree T is a rooted phylogenetic
tree in which the interior vertices are assigned a positive integer so that if v1, v2

are interior vertices and v2 is a descendant of v1, then the integer assigned to v1

is less than the integer assigned to v2. Such an assignment of positive integers is a



called a ranking of the interior vertices of T . An example of a ranked phylogenetic
tree is shown in Fig. 1. Ranking the interior vertices of T in this way corresponds
to an ordering of the speciation events associated to these vertices. Note that
two different interior vertices may be assigned the same positive integer, in which
case, it is inferred that there is no particular ordering on the associated speciation
events.

1
2

3
4

a e d c fb

4

Fig. 1. A ranked phylogenetic tree.

A relative divergence date ‘div(c, d) predates div(a, b)’ is preserved by a
ranked phylogenetic tree T if a, b, c, d are leaf labels of T , and the rank assigned
to the interior vertex of T corresponding to the most recent common ancestor of
c and d is less than the rank assigned to the interior vertex of T corresponding
to the most recent common ancestor of a and b. Thus, for example, the ranked
phylogenetic tree shown in Fig. 1 preserves the relative divergence date ‘div(e, b)
predates div(c, f)’. A collection P of rooted phylogenetic trees and a collection
D of relative divergence dates are compatible if there is a ranked phylogenetic
tree T such that the discrete topology of T displays each of the trees in P and
the ranking of the interior vertices of T preserves all of the relative divergence
dates in D.

The algorithm RankedTree decides whether or not collections of rooted
phylogenetic trees and relative divergence dates are compatible. Furthermore, if
these collections are compatible, then RankedTree returns a ranked phyloge-
netic tree that displays each of the rooted phylogenetic trees and preserves each
of the relative divergence dates. To illustrate RankedTree, consider the two
ranked phylogenetic trees shown in Fig. 2(a) (Janczewski et al., 1995) and (b)
(Slattery et al., 1994), each of which is a phylogenetic tree of the cat family. The
species labels are the 3-letter abbreviations used in these references. The branch
lengths of the source trees have been translated into rankings and added to the
interior vertices of these trees. (These branch lengths are also shown.) Observing
that species ‘LPA’, ‘PON’, and ‘CCR’ are common to both trees, the ranked phy-
logenetic tree shown in Fig. 2(c) is the result of applying RankedTree to these
two trees. Note that the branch lengths of the resulting ranked phylogenetic tree
do not reflect real time.



PLE

PPA
9

PON

PUN

8

NNE

PTI
8

7

LCA

LRU
8

PMA

6

PTE

AJU

PCO
6

LSE

CCA

PAU
7

6

5

4

FCA

3

LPA

2

CCR

1

LPA

LWI

7

OGU

OGE

LCO
6

5

3

PON

LTI

4

2

CCR

1

(a) (b)

LCA

LRU
8

PMA

6

CCA

PAU
7

LSE

6

AJU

PCO
6

PTE

5

PLE

PPA
9

PON

PUN

8

NNE

PTI
8

7

LTI

4

FCA

3

OGE

LCO
6

OGU

5

LPA

LWI
7

3

2

CCR

1

(c)

Fig. 2. An application of RankedTree.

An extension of RankedTree allows for time bounds on speciation events
as well as rooted phylogenetic trees and relative divergence dates in its input.
A divergence time bound for species a and b is either an upper or lower bound
(or both) on the number of years ago a and b diverged. To include this infor-
mation as well as the other information provided by the other inputs, we use a
dated phylogenetic tree. Such a tree is similar to that of a ranked phylogenetic
tree in that values are assigned to the interior vertices except that these values
now represent the number of years ago the corresponding speciation events oc-
curred. Compatibility for this extended input is defined in the obvious way and
RankedTree can be modified to solve this compatibility problem also.



4 Supertree Algorithms for Nested Taxa

For supertree algorithms that take as their input collections of rooted phyloge-
netic trees and only return rooted trees that are leaf-labelled, it is implicit that,
as a whole, the leaves of the trees in the input collection represent non-nested
taxa. Thus, for example, Rattus rattus and ‘mammal’ cannot be represented by
two distinct leaves in such a collection as the former is nested inside the latter.
This is somewhat limiting in the choice of trees for our input collection. In this
section, we describe two supertree algorithms for combining rooted trees in which
all of the leaves as well as some of the interior vertices are labelled. These trees
are called rooted semi-labelled trees and the interior labels of such trees represent
taxa at a level higher than that of their descendants. Two semi-labelled trees
are shown in Fig. 3.

T ′

a b f c d e

hg

T

ba c d e

g

Fig. 3. Two semi-labelled trees.

The two algorithms for combining collections of rooted semi-labelled trees are
called Semi-LabelledBuild and AncestralBuild. Both algorithms allow a
leaf of one of the input trees to represent a taxa that is represented by an interior
label of another tree. The motivation for both algorithms came from a problem
posed by Page (2004).

4.1 Semi-LabelledBuild

We say that a rooted semi-labelled tree T perfectly displays a rooted semi-labelled
tree T ′ if the label set X ′ of T ′ is a subset of the label set of T and, up to
suppressing degree-two vertices, T ′ is the minimal rooted subtree of T that
connects the labels in X ′. Intuitively, T perfectly displays T ′ if T preserves all of
the ancestral relationships described by T ′ exactly. In particular, T preserves all
of the most recent common ancestor relationships described by T ′. A collection
P of rooted semi-labelled trees is perfectly compatible if there is a rooted semi-
labelled tree T that perfectly displays each of the trees in P .



For a collection P of rooted semi-labelled trees, Semi-LabelledBuild de-
cides whether or not P is perfectly compatible. Moreover, if P is perfectly com-
patible, then Semi-LabelledBuild returns a rooted semi-labelled tree that
perfectly displays each of the trees in P . Figure 4 shows an application of Semi-
LabelledBuild. The input consists of the two rooted semi-labelled trees shown
in Fig. 4(a) and (b). Both input trees describe the evolution of spiders and were
obtained from study S1x6x97c14c42c30 in TreeBASE. There are taxa common
to both trees and it is of particular interest to note that the taxon Araneoclada
labels a leaf in the tree in (a), but an interior vertex in the tree in (b). The
rooted semi-labelled tree resulting from applying Semi-LabelledBuild to the
two input trees is shown in Fig. 4(c).

Gradungulidae

Austrochilidae

Araneoclada

Neocribellatae

Hypochilidae

Araneomorphae

Mygalomorphae

Opisthothelae

Liphistiomorphae

Araneae

Amblypygi

Arachnida

Scytodoidea

Filistatidae

Amaurobioidea

Lycosoidea

Eresidae

Oecobiidae

Deinopidae

Uloboridae

Araneoidea

Dictynoidea

Araneoclada

Austrochilidae

Neocribellatae

Paleocribellatae

Araneomorphae

Orbiculariae

(b)(a)

Scytodoidea

Filistatidae

Amaurobioidea

Lycosoidea

Eresidae

Oecobiidae

Uloboridae

Deinopidae

Araneoidea

Dictynoidea

Araneoclada

Austrochilidae

Gradungulidae

Neocribellatae

Paleocribellatae

Hypochilidae

Araneomorphae

Mygalomorphae

Opisthothelae

Liphistiomorphae

Araneae

Amblypygi

Arachnida

(c)

Orbiculariae

Fig. 4. An application of Semi-LabelledBuild.

4.2 AncestralBuild

The criteria of perfectly displays is very strong as a collection P of rooted semi-
labelled trees is perfectly compatible precisely if there is a rooted semi-labelled



tree T that preserves all of the most recent common ancestor relationships de-
scribed by the collection. Thus Semi-LabelledBuild does not allow for the
resolution of polytomies. The compatibility criteria and the associated algorithm
we describe next relaxes this criteria and allows for the resolution of polytomies.

A rooted semi-labelled tree T ancestrally displays a rooted semi-labelled tree
T ′ if the following properties hold:

(i) the label set X ′ of T ′ is a subset of the label set of T ;
(ii) up to suppressing degree-two vertices, T ′ is a refinement of the minimal

rooted subtree of T that connects the labels in X ′; and
(iii) for all labels in X ′,

(a) if a is a proper ancestor of b in T ′, then a is a proper ancestor of b in T ,
and

(b) if a is neither an ancestor nor a descendant of b in T ′, then a is neither
an ancestor nor a descendant of b in T .

To illustrate ancestrally displays and compare it with perfectly displays, in Fig. 3,
T ancestrally displays T ′, but T does not perfectly display T ′.

One can think of ancestrally displays as preserving all of the ancestor-descendant
relationships. However, observe that it does not preserve the most recent com-
mon ancestor relationships. For example, if the most recent common ancestor
of a and b is c in T ′, then, although c is an ancestor of both a and b in T , and
neither a nor b is an ancestor of each other in T , c need not be the most recent
common ancestor of a and b in T . A collection P of rooted semi-labelled trees is
ancestrally compatible if there is a rooted semi-labelled tree T that ancestrally
displays each of the trees in P . The algorithm AncestralBuild determines
the ancestral compatibility of a collection of rooted semi-labelled trees, in which
case, it outputs a rooted semi-labelled tree that ancestrally displays each of the
trees in this collection.

5 Conclusion

Supertree methods have attracted much interest recently, particularly in the
light of well-funded ‘Tree of Life’ initiatives, and studies that have combined
large numbers of trees to construct phylogenies on hundreds, or even thousands
of species. This has led to some vigorous argument both for and against the use of
supertree (versus supermatrix) approaches for phylogeny reconstruction, as well
as the emergence of some new techniques as alternatives to the standard MRP
(matrix recoding with parsimony) approach. In this paper, we have described
some further new methods, that allow for additional types of information to



be incorporated—information that would be difficult to include directly using a
traditional MRP analysis.

It is important to note that all of the algorithms described in this paper are
‘all-or-nothing’ algorithms. Each algorithm either returns a supertree with cer-
tain desirable properties relative to the input or returns a statement indicating
that there is no such supertree. In practice, this limits their use. However, such
algorithms are important first steps in developing supertree algorithms that al-
ways return a supertree and whose input includes information that goes beyond
leaf-labelled phylogenetic trees. Indeed, for each of the algorithms described in
this paper, we are currently developing MinCutSupertree type algorithms
(Page, 2002; Semple and Steel, 2000) that overcomes this limitation.

Lastly, if a supertree is returned by one of the algorithms described in this
paper, two natural questions arise: (i) how many such supertrees are there and
(ii) what common information is carried by all of these supertrees? In the case
of (i), if there are too many, one may want to refine the original data to reduce
this number. However, it is an immediate consequence of the main result by
Bordewich et al. (in press) that determining this number exactly is #P-complete
for all of the algorithms described in this paper. For (ii), Daniel (2004) has
investigated this problem in the case where the input consists of just rooted
phylogenetic trees. An approach similar to that taken by Daniel could be used
for the algorithms described in this paper.

Acknowledgements. The second author was supported by the New Zealand
Institute of Mathematics and its Applications funded programme Phylogenetic
Genomics and the first and last authors were supported by the New Zealand
Marsden Fund.

References

1. Aho, A. V., Sagiv, Y., Szymanski, T. G., and Ullman, J. D. (1981). Inferring a tree
from lowest common ancestors with an application to the optimization of relational
expressions, SIAM Journal on Computing, 10, 405-421.

2. Bininda-Emonds, O. R. P., ed. Phylogenetic supertrees: combining information to
reveal the Tree of Life, in press.

3. Bordewich, M., Semple, C., and Talbot, J. Counting consistent phylogenetic trees
is #P-complete, Advances in Applied Mathematics, in press.

4. Bryant, D., Semple, C., and Steel, M. Combining evolutionary trees with ancestral
divergence dates. In O. Bininda-Emonds (ed.), Phylogenetic supertrees: combining
information to reveal the Tree of Life, Computational Biology Series, Kluwer, in
press.

5. Daniel P. (2004). Supertree Methods: Some New Approaches, MSc thesis, University
of Canterbury.

6. Daniel, P. and Semple, C. Supertree algorithms for nested taxa. In O. Bininda-
Emonds (ed.), Phylogenetic supertrees: combining information to reveal the Tree of
Life, Computational Biology Series, Kluwer, in press.



7. Janczewski, D. N., Modi, W. S., Stephens, J. C., and O’Brien, S. J. (1995). Molec-
ular Evolution of Mitochondrial 12S RNA and Cytochrome b Sequences in the
Pantherine Lineage of Felidae, Molecular Biology and Evolution, 12, 690-707.

8. Page, R. D. M. (2002). Modified mincut supertrees. In R. Guigó and D. Gus-
field (eds.), Proceedings of the Second International Workshop on Algorithms in
Bioinformatics (WABI 2002), pp.537-552, Springer.

9. Page, R. D. M. Taxonomy, Supertrees, and the Tree of Life. In O. Bininda-Emonds
(ed.), Phylogenetic supertrees: combining information to reveal the Tree of Life,
Computational Biology Series, Kluwer, in press.

10. Semple, C. and Steel, M. (2000). A supertree method for rooted trees, Discrete
Applied Mathematics, 105, 147-158.

11. Semple, C. and Steel, M. (2003). Phylogenetics, Oxford University Press.
12. Slattery, J. P., Johnson, W. E., Goldman, D., O’Brien, S. J. (1994). Phylogenetic

Reconstruction of South American Felids Defined by Protein Electrophoresis, Jour-
nal of Molecular Evolution, 39, 296-305.


