
TRINETS ENCODE ORCHARD PHYLOGENETIC

NETWORKS

CHARLES SEMPLE AND GERRY TOFT

Abstract. Rooted triples, rooted binary phylogenetic trees on three
leaves, are sufficient to encode rooted binary phylogenetic trees. That
is, if T and T ′ are rooted binary phylogeneticX-trees that infer the same
set of rooted triples, then T and T ′ are isomorphic. However, in general,
this sufficiency does not extend to rooted binary phylogenetic networks.
In this paper, we show that trinets, phylogenetic network analogues of
rooted triples, are sufficient to encode rooted binary orchard networks.
Rooted binary orchard networks naturally generalise rooted binary tree-
child networks. Moreover, we present a polynomial-time algorithm for
building a rooted binary orchard network from its set of trinets. As
a consequence, this algorithm affirmatively answers a previously-posed
question of whether there is a polynomial-time algorithm for building a
rooted binary tree-child network from the set of trinets it infers.

1. Introduction

The evolutionary relationships of a collection of present-day species are
typically represented by a rooted phylogenetic (evolutionary) tree. Over
recent decades, a wide variety of methods for building rooted phylogenetic
trees from genomic data have been developed [6] and these methods are
routinely used by computational biologists. However, it is now well recog-
nised [11] that, as the result of non-treelike (reticulate) processes, rooted
phylogenetic networks provide a more accurate representation of the evo-
lutionary relationships for many such collections. These processes include
hybridisation and lateral gene transfer. Consequently, a central current task
in computational biology is the development of methods for building rooted
phylogenetic networks.

A canonical and practical approach to building rooted phylogenetic net-
works is to amalgamate smaller networks (or trees) on overlapping leaf sets

Date: August 17, 2021.
2020 Mathematics Subject Classification. 05C85, 68R10.
Key words and phrases. Level-k networks, tree-child networks, orchard networks,

trinets.
The first author was supported by the New Zealand Marsden Fund.

1

2 CHARLES SEMPLE AND GERRY TOFT

into a single rooted phylogenetic network. In the context of building rooted
phylogenetic trees, which amalgamate smaller trees, these approaches are
collectively called supertree methods and they have been very successful in
the inference of rooted phylogenetic trees (for example, see [3]). A desirable
property of any supertree method is that if the smaller trees are consistent,
then the returned supertree infers each of the smaller trees. The theorem
that underlies this property is the following. Loosely speaking, a set P of
(smaller) rooted phylogenetic networks “encodes” a rooted phylogenetic net-
work N if N is the only rooted phylogenetic network to infer each of the
networks in P. A rooted binary phylogenetic tree is encoded by the set of
all rooted triples it infers, where a rooted triple is a rooted binary phyloge-
netic tree on three leaves (see, for example, [1, 19]). In this paper, we are
interested in analogues of this theorem for phylogenetic networks.

With a necessary mild restriction, Gambette and Huber [7] showed that
rooted binary level-1 networks, that is, rooted binary phylogenetic networks
whose underlying cycles are vertex disjoint, are encoded by the set of all
rooted triples they infer. However, this result does not generalise to rooted
binary level-2 networks [7]. On the other hand, generalising level-1 networks
in a different direction, Linz and Semple [17] showed recently that rooted
binary normal networks [20], while not encoded by the set of rooted triples
they infer, are encoded by the set of all rooted binary caterpillars on three
and four leaves they infer. This improves upon a result of Willson [21] who
showed that a rooted binary normal network on n leaves is encoded by the
set of all rooted phylogenetic trees on n leaves it infers. Note that a rooted
caterpillar on three leaves is the same as a rooted triple. However, analogous
results for rooted binary tree-child networks [4], a slight generalisation of
rooted binary normal networks, do not hold. In particular, rooted binary
tree-child networks on n leaves are not necessarily encoded by the set of
all rooted binary phylogenetic trees on n leaves they infer (for an example,
see [17]). Thus, if we want to build the correct rooted phylogenetic network
using a supertree-type approach, doing so with trees is limiting.

As a consequence of the work in [7], Huber and Moulton [8] considered
building rooted phylogenetic networks from smaller networks, in particular,
rooted phylogenetic networks on three leaves which they called trinets. In
contrast to above, van Iersel and Moulton [13] showed that rooted binary
level-2 networks as well as rooted binary tree-child networks are encoded
by the set of all trinets they infer. In this paper, we generalise this result
for tree-child networks to the recently introduced class of rooted binary
orchard networks [5, 14]. That is, we show that a rooted binary orchard
network is encoded by the set of trinets it infers. Unlike rooted binary tree-
child networks whose total number of vertices is bounded linearly in the
size of its leaf set [4], for a fixed set of leaves, the total number of vertices
in a rooted binary orchard network can be arbitrarily large. Also, for any

TRINETS ENCODE ORCHARD PHYLOGENETIC NETWORKS 3

positive integer k, there exists a rooted binary orchard network whose level
is at least k. Furthermore, we present a polynomial-time algorithm for
building a rooted binary orchard networks from the set of trinets it infers.
As a consequence, this answers a question of van Iersel and Moulton [13] of
whether it is possible to build a rooted binary tree-child network from the
set of trinets it infers in polynomial time. We remark here that this question
about tree-child networks was independently answered by van Bemmelen [2].
We next formally state the main result of the paper.

Throughout the paper, X denotes a non-empty finite set and all paths
are directed.

Phylogenetic networks. A binary phylogenetic network N on X is a
rooted acyclic directed graph with no arcs in parallel satisfying the following
properties:

(i) the (unique) root has in-degree zero and out-degree two;
(ii) the set of vertices with out-degree zero is X and all such vertices have

in-degree one;
(iii) all other vertices either have in-degree one and out-degree two, or in-

degree two and out-degree one.

Additionally, if |X| = 1, we allow N to consist of the single vertex in X.
The vertices in X are called leaves, and so we refer to X as the leaf set
of N . Furthermore, vertices of in-degree one and out-degree two are tree
vertices, while vertices of in-degree two and out-degree one are reticulations.
Arcs directed into a reticulation are called reticulation arcs. If N has no
reticulations, then N is a rooted binary phylogenetic X-tree. Since we only
consider rooted binary phylogenetic trees and binary phylogenetic networks,
we will abbreviate such trees and networks to rooted phylogenetic trees and
phylogenetic networks, respectively. To illustrate, a phylogenetic network
N1 on {x1, x2, . . . , x6} is shown in Fig. 1. In this figure, as in all other figures
in the paper, all arcs are directed down the page.

Let N be a phylogenetic network on X. If u and v are vertices of N and
there is a path from u to v, we say u is an ancestor of v or, equivalently,
v is a descendant of u. Note that every vertex is an ancestor, and thus a
descendant, of itself. Furthermore, if |X| ≥ 2, for each leaf x ∈ X, we denote
the (unique) parent of x by px.

Let N1 and N2 be two phylogenetic networks on X with vertex and arc
sets V1 and E1, and V2 and E2, respectively. We say N1 is isomorphic to N2

if there exists a bijection φ : V1 → V2 such that φ(x) = x for all x ∈ X, and
(u, v) ∈ E1 if and only if (φ(u), φ(v)) ∈ E2 for all u, v ∈ V1.

4 CHARLES SEMPLE AND GERRY TOFT

x1 x6x2

u

x3

v

x4 x5

(i) N1

x1

x2

x3

(ii) N2

Figure 1. A phylogenetic network N1 on {x1, x2, . . . , x6}
and a phylogenetic network N2 on {x1, x2, x3}. In N1, both
u and v are stable ancestors of {x5, x6}.

Orchard networks. Let N be a phylogenetic network on X. Let {a, b} be
a 2-element subset of X. We say {a, b} is a cherry if pa = pb. Furthermore,
(a, b) is a reticulated cherry if (pa, pb) is a reticulation arc of N where,
necessarily, pa is a tree vertex and pb is a reticulation. The arc (pa, pb) is
called the reticulation arc of (a, b). As an example, consider the phylogenetic
network N1 shown in Fig. 1. The set {x1, x2} is a cherry, while (x3, x4)
and (x6, x5) are reticulated cherries of N1. We next describe two reduction
operations associated with cherries and reticulated cherries. First, suppose
that {a, b} is a cherry of N . Let N ′ be the phylogenetic network on X−{b}
obtained from N by deleting b and its incident arc, and suppressing the
resulting degree-two vertex pa. We say that N ′ has been obtained from N
by reducing b. Note that if pa is the root of N , the operation of reducing
b corresponds to replacing N with the phylogenetic network consisting of
the single vertex a. Second, suppose that (a, b) is a reticulated cherry of
N . Now let N ′ be the phylogenetic network on X obtained from N by
deleting (pa, pb) and suppressing the two resulting degree-two vertices pa
and pb. We say that N ′ has been obtained from N by cutting (a, b). For
ease of reading, we sometimes refer to these operations as picking a cherry
or picking a reticulated cherry, respectively.

A phylogenetic network N is orchard if there is a sequence

N = N0,N1,N2, . . . ,Nk

of phylogenetic networks such that, for each i ∈ {1, 2, . . . , k}, the phyloge-
netic network Ni is obtained from Ni−1 by either reducing a leaf of a cherry
or cutting a reticulated cherry, and Nk consists of a single vertex. It is easily
checked that both N1 and N2 in Fig. 1 are orchard networks. For N2, we
can obtain a sequence by repeatedly cutting the reticulated cherry (x1, x2)
until there are no more reticulations, and then reducing x3 of the cherry

TRINETS ENCODE ORCHARD PHYLOGENETIC NETWORKS 5

{x2, x3}, and reducing x2 of the cherry {x1, x2}. It may appear that the
order in which we pick a cherry or a reticulated cherry is important, but
this is not the case as the following lemma [5, 14] shows.

Lemma 1.1. Let N be an orchard network, and suppose that N ′ is obtained
from N by picking either a cherry or a reticulated cherry. Then N ′ is an
orchard network.

Orchard networks were introduced independently in [5] and [14], and gen-
eralise the more familiar class of tree-child networks. A phylogenetic network
is tree-child if every non-leaf vertex is the parent of a tree vertex or a leaf [4].
However, not all phylogenetic networks are orchard. For example, neither
of the two phylogenetic networks shown in Fig. 3 is orchard.

Trinets. A trinet is a phylogenetic network on three leaves. Observe that
trinets generalise the more familiar concept of rooted triples, rooted (binary)
phylogenetic trees on three leaves.

Let N be a phylogenetic network on X, and let X ′ be a subset of X. A
stable ancestor of X ′ is a vertex u of N having the property that, for all x ∈
X ′, every path from the root of N to x traverses u. In the literature, a stable
ancestor of X ′ is also referred to as a “visible” ancestor of X ′. Since the
root itself satisfies this property, such a vertex always exists. Furthermore,
we say u is a lowest stable ancestor of X ′ if no distinct stable ancestor of X ′

is a descendant of u. Note that if u and v are stable ancestors of X ′, then
there is either a path from u to v, or a path from v to u. It follows that the
lowest stable ancestor of X ′ is unique. We denote the lowest stable ancestor
of X ′ by lsa(X ′). In Fig. 1, u and v are stable ancestors of {x5, x6} in N1,
but v is the lowest stable ancestor of {x5, x6} in N1.

For a directed graph G, the full simplification of G is the directed graph
obtained from G by repeatedly suppressing vertices of in-degree one and out-
degree one, and deleting exactly one arc of any pair of arcs in parallel until
neither of these operations are applicable. Now, let N be a phylogenetic
network on X, and let X ′ be a subset of X. Suppose that u is the lowest
stable ancestor of X ′. The path graph of N on X ′ is the directed subgraph
of N obtained by deleting all vertices and arcs not on a path from u to
a leaf in X ′. That is, the path graph of N on X ′ consists of all paths of
N starting at u and ending at a vertex in X ′. The phylogenetic network
exhibited by N on X ′ is the full simplification of the path graph of N on X ′.
We denote the phylogenetic network exhibited by N on X ′ by NX′ . In the
special case |X ′| = 3, this process constructs the trinet exhibited by N on X ′.
The set of all trinets exhibited by N is denoted by Tn(N). Again consider
the phylogenetic network N1 shown in Fig. 1. Noting that the root is the
lowest stable ancestor of {x2, x3, x4}, the path graph of N1 on {x2, x3, x4}

6 CHARLES SEMPLE AND GERRY TOFT

x2 x3 x4

(i) The path-graph exhibited by
N1 on {x2, x3, x4}.

x2 x3 x4

(ii) The trinet exhibited by N1 on
{x2, x3, x4}.

Figure 2. The path graph of the phylogenetic network N1,
shown in Fig. 1, on {x2, x3, x4}, and the trinet exhibited by
N1 on {x2, x3, x4}.

is shown in Fig. 2(i), while the full simplification of this path graph, that is,
the trinet exhibited by N1 on {x2, x3, x4}, is shown in Fig. 2(ii).

A phylogenetic network N on X is recoverable if it has no arc (u, v) whose
deletion disconnects N and v is an ancestor of every element in X, that is,
v is a stable ancestor of X (and v is not the root). Equivalently, N is
recoverable if lsa(X) is the root of N . We say a recoverable phylogenetic
network N is encoded by Tn(N) if it has the following property: If N ′

is a recoverable phylogenetic network and, up to isomorphism, Tn(N) =
Tn(N ′), then N is isomorphic to N ′. Observe that if a phylogenetic network
N is not recoverable, then Tn(N) provides no information of the structure
of N between the root of N and an arc (u, v) whose deletion disconnects N
and in which every leaf is descendant of v.

The next theorem is one of two main results in [13]. It generalises the
well-known result mentioned earlier that says a rooted phylogenetic tree T
is encoded by the set of all rooted triples exhibited by T (see, for example,
[1, 19]). All tree-child networks are recoverable since, provided the leaf set
has size at least two, the root has out-degree two and every non-leaf vertex
is the parent of a tree vertex or a leaf.

Theorem 1.2. Let N be a tree-child network on X, where |X| ≥ 3. Then
Tn(N) encodes N .

The first part of Theorem 1.3, the main result of this paper, generalises
Theorem 1.2 to the class of orchard networks. The second part of Theo-
rem 1.3 shows that orchard networks can be reconstructed from the set of
trinets they exhibit in polynomial time which, as a consequence, answers a

TRINETS ENCODE ORCHARD PHYLOGENETIC NETWORKS 7

question of [13] of whether such a reconstruction is possible for tree-child
networks.

Theorem 1.3. Let N be an orchard network on X, where |X| ≥ 3. Then

(i) Tn(N) encodes N , and
(ii) up to isomorphism, N can be reconstructed from Tn(N) in time

O(|V |6), where V is the vertex set of N .

As we show in the next section, like tree-child networks, orchard networks
are recoverable. However, unlike tree-child networks whose total number of
reticulations is at most linear in the size of their leaf sets, and so the total
number of vertices in a tree-child network is bounded (see [18]), the total
number of reticulations in an orchard network is not bounded by the size
of its leaf set. For example, by extending N2 in Fig. 1 in the obvious way,
it follows that, even with three leaves, the total number of reticulations in
an orchard network is not bounded. Moreover, this extension also shows
that, for each non-negative integer k, there exists an orchard network whose
level is at least k. A phylogenetic network is level-k if each biconnected
component contains at most k reticulations.

In addition to Theorem 1.2, the second main result in [13] establishes
that recoverable level-2 phylogenetic networks are also encoded by their sets
of exhibited trinets. These results, together with Theorem 1.3, support the
conjecture in [8], and restated in [13], that if a phylogenetic network N is
recoverable, then Tn(N) encodes N . However, Huber et al. [9] construct a
family of counterexamples to this conjecture, where the level of the phylo-
genetic network is exponential in the size of the leaf set. In particular, for
all n ≥ 4, if the size of the leaf set is n, then the level of the phylogenetic
network is (2n−2 − 1)n. Thus if n = 4, then the level of the counterex-
ample is 12. This raises the problem of determining the largest value of k
for which all recoverable level-k phylogenetic networks are encoded by their
sets of trinets. In the last section of the paper, we show that this value is
at most 3 by showing that the two non-isomorphic recoverable phylogenetic
networks N1 and N2, each of level-4, shown in Fig. 3 have the property that,
up to isomorphism, Tn(N1) = Tn(N2). Note that each of the counterexam-
ples N in [9] have the much stronger property that the set of all phylogenetic
networks exhibited by N on all proper subsets of the leaf set of N does not
encode N .

The paper is organised as follows. The next section consists of some
preliminary lemmas which are used in the proof of Theorem 1.3. The proof
of Theorem 1.3 is by induction on the sum of the number of leaves and
the number of reticulations of an orchard network. The approach taken
is to initially pick either a cherry, thereby reducing the number of leaves,

8 CHARLES SEMPLE AND GERRY TOFT

x3x2 x4x1

x5

(i) N1

x3x2 x4x1

x5

(ii) N2

Figure 3. Two non-isomorphic level-4 phylogenetic net-
works N1 and N2. Both N1 and N2 are recoverable and,
up to isomorphism, Tn(N1) = Tn(N2).

or a reticulated cherry, thereby reducing the number of reticulations. In
Section 3, we establish various lemmas concerning the notion of exhibit and
that of cherries and reticulated cherries. The proof of Theorem 1.3 is given
in Section 4. The last section, Section 5, verifies the above-mentioned level-4
example.

We end the introduction with two remarks. First, a concept in math-
ematical phylogenetics that is similar to exhibit is that of “display”. In
particular, let N be a phylogenetic network on X and let T be a rooted
phylogenetic X ′-tree, where X ′ ⊆ X. We say N displays T if T can be ob-
tained from N by deleting arcs and vertices, and suppressing any resulting
vertices of in-degree one and out-degree one. If N is a rooted phylogenetic
tree, then the concepts of exhibit and display are equivalent. For clarifica-
tion, in the initial part of the introduction, whenever we said, for example,
a phylogenetic network “infers” a rooted phylogenetic tree, we really meant
a phylogenetic network displays a rooted phylogenetic tree.

Second, Theorem 1.3 and other analogous theorems are a step towards
developing supertree-type methods for building phylogenetic networks. In
practice, it is unlikely that the input to such a method is the entire set
Tn(N) of trinets exhibited by a phylogenetic network N . A more realistic
task is when the input is an arbitrary subset of trinets and the goal is to
decide whether or not there is a phylogenetic network that exhibits each of
the trinets in this set. This has been considered previously for when the
input is a set of rooted triples and we are asked to find a level-1 network
that displays each of the rooted triples in the set [12, 15, 16] and, more

TRINETS ENCODE ORCHARD PHYLOGENETIC NETWORKS 9

recently, when the input is a set of trinets and we are asked to find a level-1
network that exhibits each of the trinets in the set [10]. As an intermediate
step towards developing a supertree-type method for building orchard net-
works, we leave it as an open problem to develop an algorithm that takes an
arbitrary collection of trinets on overlapping leaf sets and decides whether
or not there is an orchard network that exhibits each trinet in the collection.

2. Exhibiting Lemmas

In this section, we establish some general lemmas in relation to the notion
of exhibiting that will be used in the proof of Theorem 1.3. The first two
lemmas are used in several places.

Lemma 2.1. Let N be a phylogenetic network on X, and let A ⊆ X. Let
GA be the path graph of N on A, and let

GA = G0, G1, G2, . . . , Gk = NA

be a sequence of directed graphs such that, for all i ∈ {1, 2, . . . , k}, the di-
rected graph Gi is obtained from Gi−1 by ether suppressing a vertex of in-
degree one and out-degree one, or deleting an arc in parallel. Let u and v be
vertices of Gi for some i. Then

(i) If there is a path from u to v in Gi, then there is a path from u to v
in GA.

(ii) If u and v are vertices of Gi for some i, then every path from u to a
(fixed) leaf ℓ traverses v in GA if and only if every path from u to ℓ
traverses v in Gi.

Proof. We omit the proof of (i) as it takes the same approach as the proof
of (ii) but is simpler. For the proof of (ii), it suffices to show that if j ∈
{0, 1, . . . , i− 1}, then every path from u to ℓ traverses v in Gj if and only if
every path from u to ℓ traverses v in Gj+1. Clearly, this sufficiency holds if
Gj+1 is obtained from Gj by deleting an arc in parallel. Therefore assume
that Gj+1 is obtained from Gj by suppressing a vertex, say w, of in-degree
one and out-degree one. Let e denote the new arc in Gj+1 resulting from
this suppression. Now, if P is a path from u to ℓ that traverses v and w in
Gj , then the path obtained from P by replacing w and its incident arcs with
e is a path from u to ℓ that traverses v and e in Gj+1. Since the analogous
converse of this also holds, it follows that every path from u to ℓ traverses
v in Gj if and only if every path from u to ℓ traverses v in Gj+1. This
completes the proof of the lemma. □

Lemma 2.2. Let N be a phylogenetic network on X, and let A ⊆ X. Let
u and v be vertices of the path graph GA of N on A, and let ℓ ∈ A. Then

10 CHARLES SEMPLE AND GERRY TOFT

(i) If every path from u to ℓ traverses v in GA, then every path from u to
ℓ traverses v in N .

(ii) If v is a stable ancestor of ℓ in NA, then v is a stable ancestor of ℓ in
N .

Proof. Since u and v are vertices of GA, the proof of (i) is an immediate
consequence of the construction of GA from N . To prove (ii), suppose that
v is a stable ancestor of ℓ in NA. Then, as the root of NA is lsa(A), it follows
by Lemma 2.1, that every path from lsa(A) to ℓ in GA traverses v. As every
path from the root of N to ℓ traverses lsa(A), it follows by (i) that v is a
stable ancestor of ℓ in N . □

The next three lemmas provide sufficient conditions for a vertex of a
phylogenetic network N to be a vertex of the phylogenetic network exhibited
by N on a given subset of leaves.

Lemma 2.3. Let N be a phylogenetic network on X, and let A ⊆ X. Let
v be a tree vertex of N with children c1 and c2, and suppose there exists
ℓ1, ℓ2 ∈ A such that

(i) ℓ1 is a descendant of c1,
(ii) ℓ2 is a descendant of c2, and
(iii) ℓ2 is not a descendant of c1.

Then v is a vertex of NA.

Proof. We first show that v is a vertex of the path graph GA of N on A.
Since there is a path in N from v to a leaf in A, either v is a descendant of
lsa(A) or lsa(A) is a descendant of v. If the latter holds, then there are paths
from c1 to ℓ1 and from c2 to ℓ2, each of which traverses lsa(A). This implies
that there is a path from c1 to ℓ2 via lsa(A), contradicting (iii). Hence v is
a descendant of lsa(A), and so v is a vertex of GA.

We complete the proof of the lemma by showing that v is not suppressed
in the process of obtaining NA from GA. If v is suppressed, then at some
stage in the process, v has one incoming arc and one outgoing arc, (v, w)
say. By Lemma 2.1, every path in GA from v to a leaf in A traverses w
which, in turn, implies by Lemma 2.2 that every path in N from v to a leaf
in A traverses w. In particular, every path in N from c1 to ℓ1 and from c2
to ℓ2 traverses w, in which case, there is a path in N from c1 to ℓ2 via w,
contradicting (iii). It follows that v is a vertex of NA. □

Lemma 2.4. Let N be a phylogenetic network on X, and let A ⊆ X. Let v
be a reticulation of N . If a parent of v is a vertex of NA, then v is a vertex
of NA.

TRINETS ENCODE ORCHARD PHYLOGENETIC NETWORKS 11

Proof. Let p and q denote the parents of v in N , and suppose that p is a
vertex of NA. We begin by showing that v, as well as p and q, is a vertex
of the path graph GA of N on A. Now p lies on a path of N from lsa(A)
to a leaf in A. If p is a reticulation of N , then v also lies on this path.
Furthermore, if p is a tree vertex of N , then, as p is a vertex of NA, both
children of p must also lie on such a path; otherwise, p has in-degree one
and out-degree one in GA. Thus v is a vertex of GA, and so both parents of
v are also vertices of GA.

It remains to show that v is not suppressed in the process of obtaining
NA from GA. If v is suppressed in this process, then, as p is a vertex of NA,
at subsequent stages in the process of obtaining NA from GA, the vertex q
is suppressed, and v has two distinct incoming arcs in parallel, one of which
is (p, v). Since p is a vertex of NA, this in turn implies that the other arc
in parallel also connects p and v. But then p is a tree vertex of N and so,
once one of these parallel arcs is deleted, p has in-degree one and out-degree
one, a contradiction as p is a vertex of NA. Hence v is not suppressed in
obtaining NA from GA, and so v is a vertex of NA. □

Lemma 2.5. Let N be a phylogenetic network on X, and let A ⊆ X. Let
v be a tree vertex of N that is a descendant of lsa(A). If A contains every
leaf of N that is a descendant of v, then every descendant vertex of v in N
is a vertex of NA.

Proof. First observe that every vertex that is a descendant of v is a vertex
of the path graph GA of N on A. Furthermore, as A contains every leaf
that is a descendant of v, it follows that no vertex that is a descendant of
v has in-degree one and out-degree one in GA. Suppose that at some stage
of the process of obtaining NA from GA a descendant of v, say w, has in-
degree one and out-degree one. Without loss of generality, choose w such
that no descendant of v has in-degree one and out-degree one prior to w in
this process. If w is a tree vertex of N , then w has two distinct children and
so, for w to have in-degree one and out-degree one, one if its children needs
to have in-degree one and out-degree one prior to this happening. As both
children of w are descendants of v, this contradicts the choice of w. Thus
we may assume that w is a reticulation of N .

At least one parent, p say, of w is a descendant of v in N . Since w is
suppressed in the process of obtaining NA from GA, it follows by the choice
of w that, in this process prior to w having in-degree one and out-degree one,
the parent of w that is not p, say q, is suppressed and w has two distinct
incoming arcs in parallel, one of which is (p, w). By Lemma 2.1(i), this
implies that q is a descendant of v in GA, and so q is a descendant of v in N ,
contradicting the choice of w. This completes the proof of the lemma. □

12 CHARLES SEMPLE AND GERRY TOFT

Lemma 2.6. Let N be a phylogenetic network on X, and let A ⊆ B ⊆ X.
Then NA is the phylogenetic network exhibited by NB on A.

Proof. Let GA and GB be the path graphs of N on A and B, respectively.
Since A ⊆ B, the vertex lsa(A) is a descendant of lsa(B), and so lsa(A) is
a vertex of GB. In turn, this implies that GA is a subgraph of GB. If v is
a vertex of GA, then the in-degree of v in GA is at most the in-degree of
v in GB, and the out-degree of v in GA is at most the out-degree of v in
GB. Therefore, every vertex of GA that is not a vertex of NB is also not
a vertex of NA. Thus the directed graph G′

A, the path graph of NB on A,
can be obtained from GA by repeated applications of suppressing vertices of
in-degree one and out-degree one, and deleting exactly one arc of any pair
of arcs in parallel. Note that we need not take the full simplification of GA

to get G′
A. Since NA is the full simplification of G′

A, it follows that NA is
the phylogenetic network exhibited by NB on A. □

The last lemma of this section uses each of Lemmas 2.3–2.6 in its proof.

Lemma 2.7. Let N be a phylogenetic network on X, where |X| ≥ 3, and
let (a, b) be a reticulated cherry of N . Let pb denote the parent of b, and let
A ⊆ X such that A = {b, x, y}. Then pb is a vertex of NA if and only if pb
is a vertex of at least one of N{b,x} and N{b,y}.

Proof. First suppose that pb is a vertex of NA. Let v be a tree vertex
(possibly the root) of NA with the property that there is a path P from v
to pb such that every vertex on this path (except v itself) is a reticulation.
Note that such a vertex can be found by starting at pb and moving along
reticulation arcs towards the root of NA. If neither x nor y is a descendant
of v, then, by Lemmas 2.5 and 2.6, pb is a vertex of both N{b,x} and N{b,y}.
Therefore, without loss of generality, we may assume x is descendant of v
in NA. Let w denote the first reticulation along P , and note that w could
be pb. Since the only leaf descendant of w is b, it follows by Lemma 2.3
that v is a vertex of N{b,x}. By repeated applications of Lemma 2.4 to the
reticulations along P , we deduce that pb is also a vertex of N{b,x}.

Now suppose that pb is a vertex of N{b,z}, where z ∈ {x, y}. By
Lemma 2.6, the phylogenetic network N{b,z} is the phylogenetic network
exhibited by NA on {b, z}, and so pb is a vertex of NA. □

3. Cherry and Reticulated-Cherry Lemmas

The lemmas in this section are more aligned with orchard networks. We
begin by showing that orchard networks are recoverable.

TRINETS ENCODE ORCHARD PHYLOGENETIC NETWORKS 13

Lemma 3.1. Let N be an orchard network on X. Then N is recoverable.

Proof. Let ρ denote the root of N . The proof is by induction on the sum
of the number n = |X| of leaves and the number r of reticulations of N . If
n+r = 1, then N has exactly one leaf and no reticulations. Thus N consists
of the single vertex in X, and so the lemma holds. If n+ r = 2, then, as N
is orchard, N consists of two leaves adjoined to ρ. Again, the lemma holds.

Now suppose that n + r ≥ 3, and that every orchard network in which
the sum of the number of leaves and the number of reticulations is at most
n + r − 1 is recoverable. Let N ′ be a phylogenetic network on X ′ that is
obtained from N by picking either a cherry {a, b} or a reticulated cherry
(a, b). Note that the roots of N and N ′ coincide as N does not consist of
two leaves adjoined to the root. By Lemma 1.1, N ′ is orchard. Therefore,
as the sum of the number of leaves and number of reticulations of N ′ is
n + r − 1, it follows by the induction assumption that N ′ is recoverable.
That is, the root of N ′ is the unique stable ancestor of X ′ in N ′. As the
roots of N and N ′ coincide, up to traversing pa and pb (the parents of a and
b, respectively, in N), every path in N ′ from the root to a leaf x in X ′ is
also a path in N from ρ to x. It follows that ρ is the unique stable ancestor
of X in N , and so N is recoverable. □

Lemma 3.2. Let N be a (arbitrary) recoverable phylogenetic network, and
suppose that N ′ is obtained from N by picking either a cherry or a reticulated
cherry. Then N ′ is recoverable.

Proof. Let X ′ denote the leaf set of N ′, and let {a, b} or (a, b) be the cherry
or reticulated cherry of N that is picked to obtain N ′. Observe that we may
assume the roots of N and N ′ coincide; otherwise, N ′ consists of a single
vertex and the lemma holds. Suppose that N ′ is not recoverable. Then there
is a non-root vertex v′ of N ′ that is a stable ancestor of X ′. Consider v′ in
N . Since N is recoverable, there must be a path P from the root of N to a
leaf that does not traverse v′. As N ′ is obtained from N by picking either
{a, b} or (a, b), this path P must end at b. It follows that N ′ is obtained
from N by picking (a, b) and P traverses (pa, pb). But this implies there is a
path in N ′ from the root of N ′ to a that does not traverse v′, contradicting
that v′ is a stable ancestor of X ′. Hence N ′ is recoverable. □

Let N be a phylogenetic network on X, and let {a, b} ⊆ X. If {a, b} is
a cherry of N , we refer to pa as the tree vertex of {a, b}, while if (a, b) is a
reticulated cherry, we refer to pa as the tree vertex of (a, b).

Lemma 3.3. Let N be a phylogenetic network on X, where |X| ≥ 3, and
let {a, b} ⊆ X. Then

14 CHARLES SEMPLE AND GERRY TOFT

(i) {a, b} is a cherry of N if and only if, for all A with {a, b} ⊆ A ⊆ X
and |A| = 3, we have that {a, b} is a cherry of NA, and

(ii) (a, b) is a reticulated cherry of N if and only if, for all A with {a, b} ⊆
A ⊆ X and |A| = 3, we have that (a, b) is a reticulated cherry of NA.

Proof. We will prove (ii). The proof of (i) closely follows the proof of (ii)
and is omitted. Let A ⊆ X such that {a, b} ⊆ A and |A| = 3. If (a, b) is a
reticulated cherry of N , then pa satisfies the conditions of Lemma 2.5. Thus
a, b, pa, and pb are all vertices of NA, and so (a, b) is a reticulated cherry of
NA.

For the converse of (ii), suppose that (a, b) is not a reticulated cherry of
N . We will show that there is a trinet exhibited byN whose leaf set contains
a and b, but (a, b) is not a reticulated cherry of this trinet. If there is no
trinet exhibited by N in which (a, b) is a reticulated cherry, then the desired
outcome holds. So we may assume that there exists a trinet NA exhibited
by N in which (a, b) is a reticulated cherry. Let u be the tree vertex of (a, b)
of NA. In N , the vertex u is a tree vertex of which a is a descendant. Since
u is stable ancestor of a in NA, it follows by Lemma 2.2 that every path
from the root of N to a traverses u. Thus, if (a, b) is a reticulated cherry
of another trinet exhibited by N and u′ is the tree vertex of (a, b) of this
trinet, then u is either an ancestor or a descendant of u′ in N . It now follows
that there is a path P in N from the root of N to a containing every vertex
that is the tree vertex of (a, b) of a trinet exhibited by N in which (a, b) is
a reticulated cherry.

Let v denote the last such tree vertex along P . If a and b are the only leaf
descendants of v in N , then, by Lemma 2.5, for any choice of A containing
a and b, all descendant vertices of v in N are vertices of the trinet exhibited
by N on A. But (a, b) is not a reticulated cherry of N , so v is not the tree
vertex of any trinet exhibited by N in which (a, b) is a reticulated cherry,
a contradiction. Therefore, in N , the vertex v has a leaf descendant, say
ℓ, other than a and b. Consider the trinet exhibited by N on {a, b, ℓ}. If
v is not a vertex of the path graph of N on {a, b, ℓ}, then lsa({a, b, ℓ}) is a
descendant of v in N , and so, by the choice of v, the ordered pair (a, b) is
not a reticulated cherry of N{a,b,ℓ}, and we have the desired outcome. Thus
we may assume that v is a vertex of the path graph of N on {a, b, ℓ}. If
v is a vertex of N{a,b,ℓ}, then a, b, and ℓ are descendants of v in N{a,b,ℓ}.
Therefore, if (a, b) is a reticulated cherry of N{a,b,ℓ}, then v is not its tree
vertex. But every other possible such tree vertex is an ancestor of v in
N . Hence, (a, b) is not a reticulated cherry of N{a,b,ℓ}. The final case to
consider is when v is suppressed in the process of obtaining N{a,b,ℓ} from the
path graph of N on {a, b, ℓ}. Then the unique child of v in this step of the
process or a descendant of this child is a vertex of N{a,b,ℓ} and has a, b, and
ℓ as descendants. But every vertex which is a tree vertex of (a, b) in some

TRINETS ENCODE ORCHARD PHYLOGENETIC NETWORKS 15

trinet exhibited by N is an ancestor of this descendant of v, so (a, b) is not
a reticulated cherry of N{a,b,ℓ}. This completes the proof of the converse of
(ii), and thus the lemma. □

Lemma 3.4. Let N be a phylogenetic network on X, and let {a, b} be a
cherry of N . Let N ′ be the phylogenetic network obtained from N by reduc-
ing b, and suppose that A ⊆ X − {b}. Then NA = N ′

A.

Proof. First observe that lsa(A) of N is also lsa(A) of N ′. Clearly the lemma
holds if |A| = 1, so we may assume that |A| ≥ 2. Let GA be the path graph
of N on A, and let G′

A be the path graph of N ′ on A. Let ℓ ∈ A, where
ℓ ̸= a. Then every path in N from lsa(A) to ℓ is a path in N ′ from lsa(A)
to ℓ. Therefore, if a ̸∈ A, the path graph G′

A is identical to GA, and so
NA = N ′

A. On the other hand, if a ∈ A, then every path in N from lsa(A)
to a traverses pa, and so suppressing pa in such a path produces a path
in N ′ from lsa(A) to a. Moreover, all paths in N ′ from lsa(A) to a can
be obtained in this way. Thus, in GA, the vertex pa has in-degree one and
out-degree one, and so G′

A is obtained from GA by suppressing pa. It follows
that NA = N ′

A. □

Lemma 3.5. Let N be a phylogenetic network on X, and let (a, b) be a
reticulated cherry of N . Let pa and pb denote the parents of a and b, respec-
tively, in N . Let N ′ be the phylogenetic network obtained from N by cutting
(a, b), and suppose that A ⊆ X. Then each of the following holds:

(i) If b ̸∈ A, then NA = N ′
A.

(ii) If a, b ∈ A, then N ′
A is obtained from NA by deleting (pa, pb) and

suppressing pa and pb.
(iii) If a ̸∈ A, b ∈ A, and pb is not a vertex of NA, then NA = N ′

A.
(iv) If a ̸∈ A, b ∈ A, and pb is a vertex of NA, then N ′

A is obtained from
NA by

(I) deleting the arc (u, pb), where u is a vertex such that there is a
path in N from u to pb traversing pa, and every non-terminal
vertex along this path is not a vertex of NA,

(II) repeatedly deleting non-leaf vertices of out-degree zero until there
are no such vertices, and

(III) taking the full simplification of the resulting directed graph.

Proof. Let A ⊆ X. Let GA be the path graph of N on A, and let G′
A be the

path graph of N ′ on A. If a, b ̸∈ A, then GA = G′
A, so NA = N ′

A. If a ∈ A
and b ̸∈ A, then, up to suppressing pa, we have GA = G′

A. Thus NA = N ′
A.

Therefore (i) holds and so, for the remainder of the proof, we may assume
that b ∈ A, in which case (pa, pb) is an arc of GA.

Let G0
A = GA, and let H0

A be the directed graph obtained from GA by
deleting (pa, pb). Note that if a ∈ A, then G′

A can be obtained from H0
A

16 CHARLES SEMPLE AND GERRY TOFT

by suppressing pa and pb. Furthermore, if a ̸∈ A, then G′
A can be obtained

from H0
A by suppressing pb and repeatedly deleting non-leaf vertices with

out-degree zero.

Suppose that u0 is a vertex of G0
A with in-degree one and out-degree

one, but u0 ̸= pa. Note that u0 ̸= pb. In constructing H0
A from G0

A, the
only vertices whose degrees changed were pa and pb. Therefore, u0 also has
in-degree one and out-degree one in H0

A. Construct G1
A and H1

A from G0
A

and H0
A, respectively, by suppressing u0 and deleting exactly one arc of any

resulting pair of parallel arcs. Observe that if an arc in parallel is deleted,
then it is not incident with pa or pb. Furthermore, H1

A can be obtained
from G1

A by deleting (pa, pb), and that N ′
A can be obtained from H1

A by
repeatedly deleting any non-leaf vertices with out-degree zero until there
are no such vertices, and then taking the full simplification of the resulting
directed graph.

Now iteratively repeat this process. That is, for i ≥ 1, suppose that ui is a
vertex of Gi

A with in-degree one and out-degree one, but ui ̸= pa. Construct

Gi+1
A andH i+1

A fromGi
A andH i

A, respectively, by suppressing ui and deleting

exactly one arc of any resulting pair of parallel arcs. In general, H i
A can be

obtained from Gi
A by deleting (pa, pb), and N ′

A can be obtained from H i
A

by repeatedly deleting any non-leaf vertices with out-degree zero until there
are no such vertices, and then taking the full simplification of the resulting
directed graph. Eventually, after, say k, iterations, we construct Gk

A and

Hk
A where, except possibility pa, there is no vertex of Gk

A with in-degree one
and out-degree one.

If a ∈ A, then pa does not have in-degree one and out-degree one in Gk
A,

so Gk
A has no vertices of in-degree one and out-degree one (and thus, no pair

of parallel arcs). Therefore Gk
A = NA. Thus, as Hk

A is obtained from Gk
A

by deleting (pa, pb) and a ∈ A, it follows that N ′
A is obtained from NA by

deleting (pa, pb) and suppressing pa and pb. Hence (ii) holds. Therefore we
may now assume a ̸∈ A.

Since a ̸∈ A, the vertex pa has in-degree one and out-degree one in Gk
A,

and pa has out-degree zero inHk
A. Let p be the parent of pa in Gk

A. Construct

Gk+1
A from Gk

A by suppressing pa, and construct Hk+1
A from Hk

A by deleting

pa. Observe that Hk+1
A can be obtained from Gk+1

A by deleting (p, pb). If

Gk+1
A = NA, then pb is a vertex of Gk+1

A , and Hk+1
A can be obtained from

NA by deleting (p, pb). Therefore, N ′
A can be obtained from NA by deleting

(p, pb), repeatedly deleting non-leaf vertices of out-degree zero until there
are no such vertices, and then taking the full simplification of the resulting
directed graph. Thus (iv) holds.

TRINETS ENCODE ORCHARD PHYLOGENETIC NETWORKS 17

If Gk+1
A ̸= NA, then Gk+1

A has either a vertex of in-degree one and out-

degree one, or a pair of parallel arcs. By the construction of Gk+1
A , the only

possibility is that p has a pair of outgoing parallel arcs to pb. In this case,
NA is obtained from Gk+1

A by deleting one of these arcs to pb and suppressing

p and pb. Since Hk+1
A is obtained from Gk+1

A by deleting (p, pb), it follows

that NA is obtained from Hk+1
A by suppressing p and pb. Hence NA = N ′

A,
thereby establishing (iii) and completing the proof of the lemma. □

4. Proof of Theorem 1.3

This section consists of the proof of Theorem 1.3. We begin by first
establishing Theorem 1.3(i).

Proof of Theorem 1.3(i). Let N be an orchard network on X, where |X| ≥
3, and let N0 be a recoverable phylogenetic network on X such that, up to
isomorphism, Tn(N0) = Tn(N). The proof is by induction on the sum of
the number n of leaves and the number r of reticulations of N . If r = 0, then
N is a phylogenetic tree and Tn(N) consists of all rooted triples exhibited
by N . Thus, by [19, Theorem 6.4.1], Theorem 1.3(i) holds. Furthermore, if
n = 3, then N exhibits exactly one trinet. By Lemma 3.1, orchard networks
are recoverable, and so lsa(X) is the root of N . Therefore this trinet is N
itself. Since, up to isomorphism, Tn(N) = Tn(N0) and N0 is recoverable,
it follows that N ∼= N0.

Now suppose that n ≥ 4 and r ≥ 1, so n + r ≥ 5, and that the theorem
holds for all orchard networks in which the sum of the number of leaves
and the number of reticulations is at most n + r − 1. Since N is orchard,
N has either a cherry, say {a, b}, or a reticulated cherry, say (a, b). Up
to isomorphism, Tn(N) = Tn(N0) and so, by Lemma 3.3, either {a, b} is
a cherry or (a, b) is a reticulated cherry of N0, respectively. Let N ′ and
N ′

0 be the phylogenetic networks obtained from N and N0, respectively,
by reducing b or cutting (a, b). By Lemma 1.1, N ′ is orchard and, by
Lemma 3.2, N ′

0 is recoverable.

First suppose that {a, b} is a cherry of N and N0. By Lemma 3.4, Tn(N ′)
and Tn(N ′

0) are obtained from Tn(N) and Tn(N0), respectively, by exclud-
ing those trinets whose leaf set contains b. Therefore, up to isomorphism,
as Tn(N) = Tn(N0), we have Tn(N ′) = Tn(N ′

0). Thus, by the induction
assumption, N ′ ∼= N ′

0. Since {a, b} is a cherry of N and N0, we deduce that
N ∼= N0.

Now suppose that (a, b) is a reticulated cherry of N and N0. We will
use Lemma 3.5 to show that the trinets exhibited by N ′ can be determined
from the trinets exhibited by N . The same argument will also show that

18 CHARLES SEMPLE AND GERRY TOFT

the trinets exhibited by N ′
0 can be determined from the trinets exhibited

by N0 in the same way. Noting that the leaf set of N ′ is X, let A ⊆ X,
where |A| = 3. If b ̸∈ A or a, b ∈ A, then we can construct N ′

A from NA as
described by Lemma 3.5(i) and (ii), respectively. Thus we may assume that
b ∈ A, but a ̸∈ A. Say A = {b, x, y}, where a ̸∈ {x, y}. Let pa and pb denote
the parents of a and b, respectively, in N . We next use the trinets exhibited
by N to determine whether or not pb is a vertex of NA.

Consider N{a,b,x}. By Lemma 3.3, (a, b) is a reticulated cherry of N{a,b,x},
and so pb is a vertex of N{a,b,x}. By Lemma 2.6, the phylogenetic network ex-
hibited by N on {b, x} is also the phylogenetic network exhibited by N{a,b,x}
on {b, x}. Thus we can construct N{b,x} from N{a,b,x}. In particular, we can
decide whether or not pb is a vertex of N{b,x} from N{a,b,x}. Similarly, we
can decide whether or not pb is a vertex of N{b,y} from N{a,b,y}. If pb is a
vertex of neither N{b,x} nor N{b,y}, then, by Lemma 2.7, pb is not a vertex
of NA, and so, by Lemma 3.5(iii), N ′

A = NA. Therefore, we may assume
there exists z ∈ {x, y} such that pb is a vertex of N{b,z}, in which case, by
Lemma 2.7, pb is a vertex of NA. Let p1 and p2 be the parents of pb in NA.
Recalling that N ′ is obtained from N by cutting (a, b), to construct N ′

A, we
need to determine which of the arcs (p1, pb) and (p2, pb) to delete from NA.

Construct N{b,z} from N{a,b,z} in the usual way but with the following
modification. Initially mark pa in N{a,b,z}. When suppressing a marked
vertex, mark its parent. The end result is N{b,z} with one of the parents of
pb marked. The arc from the marked parent to pb corresponds to a path in
N{a,b,z} from the marked parent to pb through pa, and thus the arc we want to
delete. On the other hand, we can also construct N{b,z} as the phylogenetic
network exhibited by NA={b,x,y} on {b, z}. In doing this, mark the vertex
p1. If a marked vertex is suppressed, mark its parent. We again get N{b,z}
with a parent of pb marked, and can compare our two marked parents. By
Lemma 3.5(iv), if they are the same vertex, N ′

A is constructed from NA

by deleting the arc (p1, pb), repeatedly deleting vertices of out-degree zero,
and taking the full simplification of the resulting directed graph. Otherwise,
by Lemma 3.5(iv) again, N ′

A is constructed from NA by deleting the arc
(p2, pb), repeatedly deleting vertices of out-degree zero, and taking the full
simplification of the resulting directed graph.

We conclude that the trinets exhibited byN ′ (resp.N ′
0) can be determined

from the trinets exhibited by N (resp. N0). Since, up to isomorphism,
Tn(N) = Tn(N0) and there is no difference in the way Tn(N ′) and Tn(N ′

0)
are determined from Tn(N) and Tn(N0), respectively, it follows that, up to
isomorphism, Tn(N ′

0) = Tn(N ′). Therefore, by the induction assumption,
N ′ ∼= N ′

0. To construct N and N0 from N ′ and N ′
0, respectively, we need

to realise (a, b) as a reticulated cherry. The only way this can be done for
N ′ (and similarly for N ′

0) is by subdividing the arcs into a and b with new

TRINETS ENCODE ORCHARD PHYLOGENETIC NETWORKS 19

vertices pa and pb, and then adding an arc from pa to pb. Hence N ∼= N0,
and this completes the proof of Theorem 1.3(i). □

4.1. Algorithm. Let N be an orchard network on X, where |X| ≥ 3. The
inductive proof of Theorem 1.3 implies a recursive algorithm that takes X
and Tn(N) as its input and returns an orchard network N0 isomorphic to
N . Called Construct Orchard, we next describe this algorithm and give
its running time. The correctness of Construct Orchard is essentially
established in the proof of Theorem 1.3(i), and so it is omitted.

1. If Tn(N) consists of a single trinet, and so |X| = 3, then return this
trinet.

2. Else Tn(N) contains at least two trinets, and so |X| ≥ 4. Find elements
a, b ∈ X such that either {a, b} is a cherry of every trinet in Tn(N) whose
leaf set contains both a and b, or (a, b) is a reticulated cherry of every
trinet in Tn(N) whose leaf set contains both a and b.

3. If {a, b} is a cherry of every trinet in Tn(N) whose leaf set contains both
a and b, do the following:
3.1 Let Tn′(N) denote the set of trinets obtained from Tn(N) by remov-

ing every trinet whose leaf set contains b.
3.2 Apply Construct Orchard to input X ′ = X − {b} and Tn′(N),

and construct N0 from the returned orchard network N ′
0 by subdi-

viding the arc directed into a with a new vertex pa, and adjoining a
new leaf b to pa via a new arc (pa, b).

3.3 Return N0.
4. Else (a, b) is a reticulated cherry of every trinet in Tn(N) whose leaf set

contains both a and b.
4.1 Let Tn′(N) denote the set of trinets obtained from Tn(N) by re-

placing each trinet NA ∈ Tn(N) in which b ∈ A with the trinet N ′
A

constructed as follows:
4.1.1 If a ∈ A, construct N ′

A from NA by deleting the reticulation arc
of (a, b) and suppressing the two resulting vertices of in-degree
one and out-degree one.

4.1.2 Else A = {b, x, y} for some distinct x, y ∈ X − {a, b}. Set px
(resp. py) to be the parent of a in N{a,b,x} (resp. N{a,b,y}), and
set p′x (resp. p′y) to be the parent of b in N{a,b,x} (resp. N{a,b,y}).
Create a new directed graph Gx (resp. Gy) from N{a,b,x} (resp.
N{a,b,y}) by deleting a and taking the full simplification. Each
time px (resp. py) is suppressed during this process, set px (resp.
py) to be the parent of the suppressed vertex instead.
4.1.2.1 If neither p′x nor p′y is a vertex of Gx and Gy, respec-

tively, then choose N ′
A to be NA.

4.1.2.2 Else there is an element z ∈ {x, y} such that p′z is a
vertex of Gz. Let {z, z′} = {x, y}. Denote the parent

20 CHARLES SEMPLE AND GERRY TOFT

of b in NA by pb, and let p1 and p2 be the parents of
pb in NA. Create a new directed graph G′

z from NA by
deleting every vertex of NA whose only leaf descendant
is z′ and taking the full simplification. Each time p1 is
suppressed during this process, set p1 to be the parent
of the suppressed vertex instead.

4.1.2.3 Compare pz and p1 in the isomorphic directed graphs
Gz and G′

z. If pz and p1 are the same vertex, then
construct N ′

A from NA by deleting (p1, pb), repeatedly
deleting vertices of out-degree zero, and then taking the
full simplification. Else construct N ′

A from NA by delet-
ing (p2, pb), repeatedly deleting vertices of out-degree
zero, and then taking the full simplification.

4.2 Apply Construct Orchard to inputX and Tn′(N), and construct
N0 from N ′

0 by subdividing the arcs directed into a and b with new
vertices pa and pb, respectively, and adjoining pa and pb via a new
arc (pa, pb).

4.3 Return N0.

We now consider the running time of Construct Orchard.

Proof of Theorem 1.3(ii). The algorithm takes as input a set X and the
set Tn(N) of trinets of an orchard network N on X. If Tn(N) consists
of a single trinet, then Construct Orchard runs in constant time. If
Tn(N) contains at least two trinets, and so |X| ≥ 4, the algorithm begins
by finding a 2-element subset {a, b} of X such that either {a, b} is a cherry
of every trinet in Tn(N) whose leaf set contains both a and b, or (a, b) is a
reticulated cherry of every trinet in Tn(N) whose leaf set contains both a
and b. There at most |X|2 choices for a 2-element subset of X. Since there
are O(|X|3) trinets and deciding if {a, b} is a cherry, or (a, b) or (b, a) is a
reticulated cherry of a trinet takes constant time, the running time of Step 2
of Construct Orchard takes O(|X|5) time. Once such a 2-element subset
is found, the algorithm constructs a new set Tn′(N) of trinets from Tn(N).
In the worst possible instance, the longest running part of this process is
when, (a, b) say, is a reticulated cherry of every trinet of Tn(N) whose leaf
set contains both a and b, and Step 4.1 is invoked.

Let V denote the vertex set of N . Now, Tn′(N) is obtained from Tn(N)
by modifying the trinets NA of Tn(N) whose leaf set contains b. Thus
there are at most |X|2 such trinets to consider. In terms of running time,
the longest part of Step 4.1 is when A = {b, x, y}, where a ̸∈ {x, y}, and
Step 4.1.2 is invoked. The directed graphs Gx and Gy take O(|V |2) time to
construct from N{a,b,x} and N{a,b,y}, respectively. After that, Step 4.1.2.1
takes constant time. If Step 4.1.2.2 is called, determining z takes constant

TRINETS ENCODE ORCHARD PHYLOGENETIC NETWORKS 21

time and constructing G′
z from NA, where z ∈ {x, y}, takes O(|V |2) time. In

Step 4.1.2.3, the directed graphs Gz and G′
z are compared to decide whether

pz and p1 are the same vertex. This comparison takes O(|V |2) time and,
regardless of the decision, the resulting construction of N ′

A takes O(|V |2)
time. Hence the running time to complete Step 4.1 is O(|X|2|V |2).

With Step 4.1 completed, Steps 4.2 and 4.3 each take constant time. It
follows that each iteration takes O(|X|5 + |X|2|V |2) time. When recursing,
the input to the recursive call is either a set X ′ = X−{b} and a set Tn′(N)
of trinets of an orchard network on |X| − 1 leaves and r reticulations, or a
set X and a set Tn′(N) of trinets of an orchard network on |X| leaves and
r − 1 reticulations, where r is the number of reticulations of N . Therefore
the total number of iterations is O(|X|+ r). Since |V | = 2(|X|+ r)− 1 [18],
it follows that the total number of iterations is O(|V |). Hence Construct
Orchard completes in

O(|V |(|X|5 + |X|2|V |2))

time, that is, in O(|V |6) time as |X| ≤ |V |. This completes the proof of
Theorem 1.3(ii). □

5. An Example

In this section, we show that the largest value of k such that all recoverable
level-k phylogenetic networks N are encoded by Tn(N) is at most 3. Con-
sider the two level-4 phylogenetic networks N1 and N2 on {x1, x2, x3, x4, x5}
shown in Fig. 3. Both N1 and N2 are recoverable, but N1 is not isomorphic
to N2 as the vertex which is an ancestor of x1 and x2, and no other leaves,
is a descendant of the parent of x5 in N1, but is not a descendant of the
parent of x5 in N2.

Consider the path graphs of N1 and N2 on {x1, x2, x3, x4}. In each of
these graphs, the parent of x5 has in-degree one and out-degree one, and
so this vertex will be suppressed in every trinet of Tn(N1) and Tn(N2) not
containing x5. Since the two graphs obtained after suppressing the parent
of x5 from the path graphs of N1 and N2 on {x1, x2, x3, x4} are isomorphic,
it follows that any trinet of Tn(N1) and Tn(N2) on the same leaf set not
containing x5 are isomorphic. Furthermore, every other trinet of N1 and N2

is isomorphic to the trinet shown in Fig. 4(i) and (ii), respectively, where
{i, j} ⊆ {1, 2, 3, 4}. Since the trinets in this figure are isomorphic, it follows
that N1 is not encoded by Tn(N1).

22 CHARLES SEMPLE AND GERRY TOFT

x5

xi xj

(i) Trinet exhibited by N1 on {xi, xj , x5}
for all {i, j} ⊆ {1, 2, 3, 4}.

x5

xi xj

(ii) Trinet exhibited by N2 on
{xi, xj , x5} for all {i, j} ⊆ {1, 2, 3, 4}.

Figure 4. The phylogenetic networks N1 and N2 as shown
in Fig. 3 exhibit, up to isomorphism, the same trinets on
{xi, xj , x5}, where {i, j} ⊆ {1, 2, 3, 4}.

6. Discussion

For a non-negative integer k, a phylogenetic network N is level-k if each
biconnected component of N has at most k reticulations. It is shown in [13]
that all recoverable (binary) level-2 networks are encoded by their sets of
trinets. The authors comment that the approach taken to establish this
uniqueness result does not extend to level-k networks, where k ≥ 4. Curi-
ously, the counterexample consists of two level-4 networks. This raises the
question of whether a recoverable level-3 network is encoded by the set of
trinets it exhibits.

The algorithm, Construct Orchard, described in Section 4.1 takes
as input the set of trinets of an orchard network, and outputs, up to iso-
morphism, the unique orchard network which exhibits the trinets in the
input. However, the algorithm does not extend to decide whether an ar-
bitrary inputted set of trinets is exhibited by an orchard network. For
example, consider the set of trinets shown in Fig. 5(i). In this example,
X = {x1, x2, x3, x4} and we have exactly one trinet for each subset of X of
size three. Applying Construct Orchard to this set, we initially identify
x1 and x2 as the leaves of a cherry, and discard every trinet containing x2.
After this, there is only one trinet remaining, so the leaf x2 is reattached to
this trinet to output the phylogenetic network shown in Fig. 5(ii). However,
this network does not contain any reticulations, and so it does not exhibit
the trinet on {x1, x2, x3}. It remains an open problem to find a polynomial-
time algorithm which, given a set of trinets, can determine whether or not
there is an orchard network that exhibits those trinets.

TRINETS ENCODE ORCHARD PHYLOGENETIC NETWORKS 23

x1 x3x2 x1 x4x2 x1 x4x3 x2 x4x3

(i) A set of trinets which are not exhibited by an orchard network.

x1 x2 x3 x4

(ii) The network produced when Construct Orchard is applied to the set of
trinets in (i).

Figure 5. Applying Construct Orchard to the set of
trinets shown in (i) outputs a phylogenetic network which
does not exhibit all of the trinets.

Acknowledgments

We thank the referees for their comments.

References

[1] Aho AV, Sagiv Y, Szymanski TG, Ullman JD (1981) Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions.
SIAM Journal on Computing 10:405–421

[2] van Bemmelen J (2020) Reconstructing tree-child networks from their exhibited
trinets. MSc thesis, Vrije Universiteit Amsterdam

[3] Bininda-Emonds ORP (2004) The evolution of supertrees. Trends in Ecology and
Evolution 19:315–322

[4] Cardona G, Rosselló F, Valiente G (2009) Comparison of tree-child phylogenetic
networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics
6:552–569

[5] Erdős PL, Semple C, Steel M (2019) A class of phylogenetic networks reconstructable
from ancestral profiles. Mathematical Biosciences 313:33–40

[6] Felsenstein J (2004) Inferring Phylogenies, Sinauer Associates, Sunderland, MA
[7] Gambette P, Huber KT (2012) On encodings of phylogenetic networks of bounded

level. Journal of Mathematical Biology 65:157–180
[8] Huber KT, Moulton V (2013) Encoding and constructing 1-nested phylogenetic net-

works with trinets. Algorithmica 66:714–738
[9] Huber KT, van Iersel L, Moulton V, Wu T (2015) How much information is needed

to infer reticulate evolutionary histories? Systematic Biology 64:102–111

24 CHARLES SEMPLE AND GERRY TOFT

[10] Huber KT, van Iersel L, Moulton V, Scornavacca C, Wu T (2017) Reconstructing phy-
logenetic level-1 networks from nondense binet and trinet sets. Algorithmica 77:173–
200

[11] Huson DH, Rupp R, Scornavacca C (2010) Phylogenetic Networks: Concepts, Algo-
rithms and Applications, Cambridge University Press, London

[12] van Iersel L, Kelk S (2011) Constructing the simplest possible phylogenetic network
from triplets. Algorithmica 60:207–235

[13] van Iersel L, Moulton M (2014) Trinets encode tree-child and level-2 phylogenetic
networks. Journal of Mathematical Biology 68:1707–1729

[14] Janssen R, Murakami Y (2020) On cherry picking and network containment.
arXiv:1812.08065v2

[15] Jansson J, Nguyen NB, Sung WK (2006) Algorithms for combining rooted triplets
into a galled phylogenetic network. SIAM Journal on Computing 35:1098–1121

[16] Jansson J, Sung WK (2006) Inferring a level-1 phylogenetic network from a dense set
of rooted triplets. Theoretical Computer Science 363:60–68

[17] Linz S, Semple C (2020) Caterpillars on three and four leaves are sufficient to recon-
struct binary normal networks. Journal of Mathematical Biology 81:961–980

[18] McDiarmid C, Semple C, Welsh D (2015) Counting phylogenetic networks. Annals of
Combinatorics 19:205–224

[19] Semple C, Steel M (2003) Phylogenetics, Oxford University Press, New York
[20] Willson SJ (2010) Properties of normal phylogenetic networks. Bulletin of Mathe-

matical Biology 72:340–358
[21] Willson SJ (2011) Regular networks can be uniquely constructed from their trees.

IEEE/ACM Transactions on Computational Biology and Bioinformatics 8:785–796

School of Mathematics and Statistics, University of Canterbury,
Christchurch, New Zealand

Email address: charles.semple@canterbury.ac.nz

School of Mathematics and Statistics, University of Canterbury,
Christchurch, New Zealand

Email address: gerry.toft@pg.canterbury.ac.nz

