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Abstract. For all positive integers t exceeding one, a matroid has the
cyclic (t − 1, t)-property if its ground set has a cyclic ordering σ such
that every set of t − 1 consecutive elements in σ is contained in a t-
element circuit and t-element cocircuit. We show that if M has the
cyclic (t − 1, t)-property and |E(M)| is sufficiently large, then these t-
element circuits and t-element cocircuits are arranged in a prescribed
way in σ, which, for odd t, is analogous to how 3-element circuits and
cocircuits appear in wheels and whirls, and, for even t, is analogous to
how 4-element circuits and cocircuits appear in swirls. Furthermore, we
show that any appropriate concatenation Φ of σ is a flower. If t is odd,
then Φ is a daisy, but if t is even, then, depending on M , it is possible
for Φ to be either an anemone or a daisy.

1. Introduction

Wheels and whirls are matroids with the property that every element is
in a 3-element circuit and a 3-element cocircuit. As a consequence of this
property, no single-element deletion or single-element contraction of a wheel
or whirl with rank at least three is 3-connected, and Tutte’s Wheels-and-
Whirls Theorem establishes that these are the only 3-connected matroids
for which this holds [7].

In fact, wheels and whirls have a stronger property concerning 3-element
circuits and 3-element cocircuits. Let M be a rank-r wheel or rank-r whirl,
where r ≥ 2. Then there is a cyclic ordering (e1, e2, . . . , e2r) on the elements
of M such that, for all odd i ∈ {1, 2, . . . , 2r}, we have that {ei, ei+1, ei+2}
is a 3-element circuit and {ei+1, ei+2, ei+3} is a 3-element cocircuit, where
subscripts are interpreted modulo 2r. In particular, M has the property
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Figure 1. Geometric representations of (i) a rank-5 spike
and (ii) a rank-5 swirl.

that there is a cyclic ordering of E(M) such that every consecutive pair of
elements in this ordering is contained in a 3-element circuit and a 3-element
cocircuit. In this paper, we investigate generalisations of this property.

Let t be a positive integer exceeding one. A matroid M has the cyclic
(t−1, t)-property if there is a cyclic ordering σ of E(M) such that every t−1
consecutive elements of σ is contained in a t-element circuit and a t-element
cocircuit, in which case, σ is a cyclic (t− 1, t)-ordering of M .

Wheels and whirls have the cyclic (2, 3)-property. Two classes of matroids
that have the cyclic (3, 4)-property are the familiar classes of spikes and
swirls. For all r ≥ 3, a rank-r spike is a matroid M on 2r elements whose
ground set can be partitioned (L1, L2, . . . , Lr) into pairs such that, for all
distinct i, j ∈ {1, 2, . . . , r}, the union Li ∪ Lj is a 4-element circuit and a
4-element cocircuit. Therefore, if σ is a cyclic ordering of E(M) such that,
for all i, the two elements in Li are consecutive in σ, then σ is a cyclic (3, 4)-
ordering of M . For all r ≥ 3, a rank-r swirl is a matroid M on 2r elements
obtained by taking a simple matroid whose ground set is the disjoint union of
a basis B = {b1, b2, . . . , br} and 2-element sets L1, L2, . . . , Lr such that Li ⊆
cl({bi, bi+1}) for all i ∈ [r], where subscripts are interpreted modulo r, and
then deleting B. Now let σ = (e1, f1, e2, f2, . . . , er, fr), where Li = {ei, fi}
for all i. Then Li ∪Li+1 is a 4-element circuit and a 4-element cocircuit for
all i, so σ is a cyclic (3, 4)-ordering of M . To illustrate, a rank-5 spike and
a rank-5 swirl are shown in Fig. 1, where a cyclic (3, 4)-ordering for both
matroids is (e1, f1, e2, f2, . . . , e5, f5).

If a matroid M has the cyclic (1, 2)-property, then it is easily checked that
M is obtained by taking direct sums of copies of U1,2. However, if t ≥ 3,
then matroids with the cyclic (t− 1, t)-property are highly structured. For
example, suppose t = 3, and let (e1, e2, . . . , e2r) be a cyclic (2, 3)-ordering
of the rank-r wheel, where r ≥ 4. Then, for all i ∈ {1, 2, . . . , 2r}, there
is a unique 3-element circuit and a unique 3-element cocircuit containing
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Figure 2. A geometric representation ofM(K4). Both σ1 =
(e1, e2, e3, e4, e5, e6) and σ2 = (e4, e2, e6, e1, e3, e5) are cyclic
(2, 3)-orderings.

{ei, ei+1}. Up to parity, the circuit is {ei, ei+1, ei+2} and the cocircuit is
{ei−1, ei, ei+1}. The first main result of the paper, Theorem 1.1, extends
this to all positive integers t.

Theorem 1.1. Let M be a matroid and suppose that σ = (e1, e2, . . . , en) is
a cyclic (t − 1, t)-ordering of E(M), where n ≥ 6t − 10 and t ≥ 3. Then n
is even and, for all i ∈ [n], there is a unique t-element circuit and a unique
t-element cocircuit containing {ei, ei+1, . . . , ei+t−2}. Moreover,

(I) If t is odd, then the following hold:
(i) For all i ∈ [n], the subset {ei, ei+1, . . . , ei+t−1} is either a t-

element circuit or a t-element cocircuit, but not both.
(ii) For all i ∈ [n], the subset {ei, ei+1, . . . , ei+t−1} is a t-element

circuit if and only if {ei+1, ei+2, . . . , ei+t} is a t-element cocircuit.
(iii) For all j ≡ i mod 2, if {ei, ei+1, . . . , ei+t−1} is a t-element cir-

cuit, then {ej , ej+1, . . . , ej+t−1} is a t-element circuit.
(II) If t is even, then the following hold:

(i) For all i ∈ [n], exactly one of {ei, ei+1, . . . , ei+t−1} and
{ei+1, ei+2, . . . , ei+t} is a t-element circuit.

(ii) For all i ∈ [n], the subset {ei, ei+1, . . . , ei+t−1} is a t-element
circuit if and only if it is a t-element cocircuit.

(iii) For all j ≡ i mod 2, if {ei, ei+1, . . . , ei+t−1} is a t-element cir-
cuit, then {ej , ej+1, . . . , ej+t−1} is a t-element circuit.

Noting that n must be even, the inequality n ≥ 6t − 10 for the size of the
ground set of M in Theorem 1.1 is tight for t = 3. To see this, consider
the cycle matroid M(K4) of K4 for which a geometric representation is
shown in Fig. 2. Here, σ1 = (e1, e2, e3, e4, e5, e6) is a cyclic (2, 3)-ordering
of M(K4) satisfying Theorem 1.1. However, it is easily checked that σ2 =
(e4, e2, e6, e1, e3, e5) is also a cyclic (2, 3)-ordering of M(K4), but σ2 does not
satisfy Theorem 1.1. For example, {e6, e1, e3} is a set of three consecutive
elements in σ2 which is neither a circuit nor a cocircuit. However, for all
t ≥ 4, we suspect the inequality n ≥ 6t− 10 in Theorem 1.1 is not tight and
leave it as an open problem to determine, for all t ≥ 4, tight lower bounds



4 NICK BRETTELL, DEBORAH CHUN, TARA FIFE, AND CHARLES SEMPLE

on the size of the ground set of a matroid having a cyclic (t− 1, t)-ordering
and satisfying Theorem 1.1.

Motivated by Theorem 1.1 and, in particular, the way consecutive ele-
ments in a cyclic (t − 1, t)-ordering of a matroid are arranged as t-element
circuits and t-element cocircuits, we next consider the following class of ma-
troids. Let M be a matroid with n = |E(M)| and let t be a positive integer
such that n ≥ t + 1. We call M t-cyclic if there exists a cyclic ordering
σ = (e1, e2, . . . , en) of E(M) such that, for all odd i ∈ {1, 2, . . . , n}, either

(i) {ei, ei+1, . . . , ei+t−1} is a t-element circuit and {ei+1, ei+2, . . . , ei+t} is
a t-element cocircuit, or

(ii) {ei, ei+1, . . . , ei+t−1} is a t-element circuit and t-element cocircuit.

If σ is such an ordering of E(M), then σ is a t-cyclic ordering of M , in which
case σ is odd if it satisfies (i) and even if it satisfies (ii).

It is easily seen that wheels and whirls are 3-cyclic. The (3, 4)-cyclic
orderings of spikes and swirls stated earlier are also 4-cyclic orderings, so
spikes and swirls are 4-cyclic. Moreover, it follows from Theorem 1.1 that
if a matroid M has the cyclic (t− 1, t)-property for some positive integer t
exceeding one, then M is t-cyclic provided |E(M)| ≥ 6t− 10.

In the second half of the paper, we establish properties of t-cyclic ma-
troids. As well as showing basic properties such as the rank and corank of
a t-cyclic matroid are equal for all t, we prove the next two theorems which
show that t-cyclic matroids naturally give rise to flowers. For the reader
unfamiliar with flowers, the notation and terminology relevant to these the-
orems are given in Section 2.

The parity of t impacts the structure of a t-cyclic matroid. We first
consider the case where t is odd.

Theorem 1.2. Let t be a positive odd integer exceeding one, and let M
be a matroid. Suppose that σ is an odd t-cyclic ordering of M . If Φ =
(P1, P2, . . . , Pm) is a concatenation of σ with |Pi| ≥ t − 1 for all i ∈ [m],
then Φ is a t-daisy. Moreover, for all i ∈ [m], we have u(Pi, Pi+1) = 1

2(t−1)

and, for all non-consecutive petals Pi and Pj, we have u(Pi, Pj) ≤ 1
2(t− 3).

Note that if M is a 1-cyclic matroid with n elements, then it is easily seen
that M is the (disjoint) union of n

2 loops and n
2 coloops. Therefore, any

cyclic ordering of E(M), where every two consecutive elements consists of
a loop and a coloop, is a 1-cyclic ordering of M . Furthermore, if σ is such
an ordering and Φ is a concatenation of σ into non-empty sets, then Φ is a
1-anemone.
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We obtain the following when t is even.

Theorem 1.3. Let t be a positive even integer and let M be a matroid. Let
σ = (e1, e2, . . . , en) be an even t-cyclic ordering of E(M), and suppose that
Φ = (P1, P2, . . . , Pm) is a concatenation of σ such that, for all i ∈ [m], if

Pi = {ej+1, ej+2, . . . , ej+k},
then |Pi| ≥ t− 2, |Pi| is even, and j + 1 is odd. Then Φ is a (t− 1)-flower.
Moreover, for all i ∈ [n], we have u(Pi, Pi+1) = 1

2(t− 2).

In reference to Theorem 1.3, observe that we have not specified whether Φ
is a (t − 1)-anemone or a (t − 1)-daisy. If t = 2, then Φ is a 1-anemone.
However, for all even t ≥ 4, there exist t-cyclic matroids giving rise to (t−1)-
anemones and t-cyclic matroids giving rise to (t − 1)-daisies. This follows
from a construction that obtains, for all t ≥ 2, a (t+2)-cyclic matroid from a
t-cyclic matroid. Indeed, we conjecture that for all even t ≥ 4, every t-cyclic
matroid can be constructed from a 4-cyclic matroid that is either a spike or
a swirl by a generalisation of this construction. A more precise statement
of this conjecture is given at the end of the paper.

Matroids with the property that every t-element subset of the ground
set is contained in both an `-element circuit and an `-element cocircuit
have recently been studied [2], continuing similar investigations in [3, 5]. In
particular, there exists a function f such that matroids M with |E(M)| ≥
f(t) and the property that every t-element set is contained in a 2t-element
circuit and 2t-element cocircuit have a partition into pairs such that the
union of any t pairs is a circuit and a cocircuit. For such matroids, there
is an obvious cyclic ordering of the ground set that demonstrates these are
2t-cyclic matroids.

The paper is organised as follows. The next section consists of some
preliminaries, while Section 3 consists of the proof of Theorem 1.1. Basic
properties of t-cyclic matroids are established in Section 4, and the proofs
of Theorems 1.2 and 1.3 are given in Section 5. Lastly, in Section 6, we
detail, for all t ≥ 2, a construction that produces a (t + 2)-cyclic matroid
from a t-cyclic matroid. We will use this construction to show that, for all
even t ≥ 4, there are t-cyclic matroids that give rise to (t − 1)-anemones,
and t-cyclic matroids that give rise to (t− 1)-daisies.

2. Preliminaries

Notation and terminology follows Oxley [4], and the phrase “by orthog-
onality” refers to the fact that a circuit and cocircuit of a matroid cannot
intersect in exactly one element. We use [n] to denote the set {1, 2, . . . , n}.
When i ≤ j, we use [i, j] to denote the set {i, i + 1, i + 2, . . . , j}; whereas
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when i > j, we use [i, j] to denote [i, n] ∪ [1, j]. If σ = (e1, e2, . . . , en) is a
cyclic ordering of {ei : i ∈ [n]}, then all subscripts are interpreted modulo n.
Furthermore, we say that (P1, P2, . . . , Pm) is a concatenation of σ if there
are indices

1 ≤ k1 < k2 < · · · < km ≤ n

such that Pi =
{
ej : j ∈ [ki−1, ki − 1]

}
for all i ∈ [m]. The following

well-known lemma is used throughout the paper.

Lemma 2.1. Let e be an element of a matroid M , and let X and Y be
disjoint sets that partition E(M) − e. Then e ∈ cl(X) if and only if e 6∈
cl∗(Y ).

Connectivity. Let M be a matroid with ground set E. The connectivity
function λ of M is defined, for all subsets X of E, by

λ(X) = r(X) + r(E −X)− r(M).

Equivalently, for all subsets X of E, we have λ(X) = r(X) + r∗(X) − |X|.
A set X or a partition (X,E−X) is k-separating if λ(X) < k. Additionally,
if λ(X) = k − 1, then the k-separating set X or k-separating partition
(X,E −X) is exact.

For all subsets X and Y of E, the local connectivity between X and Y ,
denoted u(X,Y ), is defined by

u(X,Y ) = r(X) + r(Y )− r(X ∪ Y ).

Note that u(X,Y ) = u(Y,X). Also, if (X,Y ) is a partition of E, then
u(X,Y ) = λ(X).

Flowers. Flowers naturally describe crossing separations in a matroid.
Originally defined for 3-separations in 3-connected matroids [6], flowers were
later generalised in order to describe crossing k-separations in a matroid,
without any connectedness condition [1].

For a matroid M and an integer m > 1, a partition Φ = (P1, P2, . . . , Pm)
of E(M) into non-empty sets is a k-flower with petals P1, P2, . . . , Pm if
each Pi is exactly k-separating and, when m ≥ 3, each Pi ∪ Pi+1 is ex-
actly k-separating, where all subscripts are interpreted modulo m. It is
also convenient to view (E(M)) as k-flower with a single petal. Suppose
Φ = (P1, P2, . . . , Pm) is a k-flower of M . Then Φ is a k-anemone if

⋃
i∈I Pi

is exactly k-separating for all proper subsets I of [m]. Furthermore, Φ is a
k-daisy if

⋃
i∈I Pi is exactly k-separating for precisely the proper subsets I of

[m] whose members form a consecutive set in the cyclic order (1, 2, . . . ,m).
Aikin and Oxley [1, Theorem 1.1] showed that every k-flower of M is either
a k-daisy or a k-anemone.
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Suppose that Φ = (P1, P2, . . . , Pm) is a k-flower of a matroid M , where
m ≥ 4 and u(Pi, Pi+1) = c for all i ∈ [m]. To show that M is a k-daisy,
it suffices, by [1, Lemma 4.3], to show that u(Pi, Pj) 6= c for some distinct
i, j ∈ [m].

3. Proof of Theorem 1.1

Throughout this section, let M be a matroid and let σ = (e1, e2, . . . , en)
be a cyclic (t−1, t)-ordering of E(M), where t ≥ 3. For all distinct i, j ∈ [n],
let σ[i, j] denote the set of elements {ei, ei+1, . . . , ej} and let Xi = σ[i, i+t−2].
Furthermore, let Ci (resp. C∗i ) be an arbitrarily chosen t-element circuit
(resp. cocircuit) of M containing Xi, and denote the unique element in
Ci−Xi (resp. C∗i −Xi) by ci (resp. c∗i ). We will eventually show in Lemma 3.4
that, for all i, there is a unique choice for Ci and for C∗i if n ≥ 6t− 10. The
proof of Theorem 1.1 is essentially partitioned into a sequence of lemmas.

Lemma 3.1. Let n ≥ 4t− 6. For all i ∈ [n],

(i) either Ci ⊆ σ[i, i+3t−6] or Ci+2t−4 ⊆ σ[i, i+3t−6], and
(ii) either C∗i ⊆ σ[i, i+3t−6] or C∗i+2t−4 ⊆ σ[i, i+3t−6].

Proof. We will prove (i). The proof of (ii) is the same except the roles of
the circuits and cocircuits are interchanged. Suppose there is some i ∈ [n]
for which (i) does not hold. Then ci 6∈ σ[i, i+3t−6] and ci+2t−4 6∈ σ[i, i+3t−6].
If c∗i+t−2 ∈ σ[i, i+3t−6], then C∗i+t−2 intersects either Ci or Ci+2t−4 in exactly
one element, contradicting orthogonality. So c∗i+t−2 6∈ σ[i, i+3t−6]. Therefore,
as C∗i+t−2 intersects each of the disjoint sets Xi and Xi+2t−4 in exactly one
element, it follows by orthogonality that

ci = c∗i+t−2 = ci+2t−4.

Now, as n ≥ 4t − 6, there exists an element j ∈ [n] − [i, i + 3t − 6] such
that ci ∈ Xj and Xj ∩ σ[i, i+3t−6] = ∅. By orthogonality again, this implies
that any cocircuit C∗j containing Xj has the property that |C∗j ∩ Xi| 6= ∅
and |C∗j ∩Xi+2t−4| 6= ∅. Thus c∗j ∈ Xi ∩Xi+2t−4. But this is not possible as
Xi and Xi+2t−4 are disjoint. This contradiction completes the proof of the
lemma. �

The next lemma is the base case for the inductive proof of Lemma 3.3.

Lemma 3.2. Let n ≥ 4t− 6. For all i ∈ [n],

Ci, C
∗
i ⊆ σ[i−(2t−4), i+3t−6].

Proof. Let i ∈ [n]. If Ci ⊆ σ[i, i+3t−6], then Ci ⊆ σ[i−(2t−4), i+3t−6].
Therefore assume that Ci 6⊆ σ[i, i+3t−6]. By Lemma 3.1, this implies that
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Ci+2t−4 ⊆ σ[i, i+3t−6], in which case, ci+2t−4 ∈ σ[i, i+2t−5]. By Lemma 3.1
again, as ci+2t−4 ∈ σ[i, i+2t−5], we have Ci+4t−8 ⊆ σ[i+2t−4, i+5t−10], in which
case, ci+4t−8 ∈ σ[i+2t−4, i+4t−9]. By next considering Ci+6t−12, applying
Lemma 3.1, and continuing in this way, we deduce that, for all positive
integers j,

ci+j(2t−4) ∈ σ[i+(j−1)(2t−4), i+j(2t−4)−1].

In particular, choosing j = n, we have i ≡ i+ n(2t− 4) mod n, and so

ci ∈ σ[i−(2t−4), i−1].

Hence Ci ⊆ σ[i−(2t−4), i+t−2], that is,

Ci ⊆ σ[i−(2t−4), i+3t−6].

The proof for C∗i ⊆ σ[i−(2t−4), i+3t−6] is the same but with the roles of the
circuits and cocircuits interchanged. �

Lemma 3.3. Let n ≥ 6t− 10. For all i ∈ [n],

Ci, C
∗
i ⊆ σ[i−1, i+t−1].

Proof. We establish the lemma using induction by showing that, for all
1 ≤ j ≤ 2t− 4,

Ci, C
∗
i ⊆ σ[i−j, i+(t−2)+j].

If j = 2t− 4, then, by Lemma 3.2,

Ci, C
∗
i ⊆ σ[i−(2t−4), i+(t−2)+(2t−4)]

for all i ∈ [n]. Now suppose that, for all i ∈ [n],

Ci, C
∗
i ⊆ σ[i−(j+1), i+(t−2)+(j+1)],

where 1 ≤ j ≤ 2t − 5. We next show that Ci ⊆ σ[i−j, i+(t−2)+j]. The proof
that C∗i ⊆ σ[i−j, i+(t−2)+j] is the same except the roles of the circuits and
cocircuits are interchanged.

If, for some i ∈ [n], we have

Ci 6⊆ σ[i−j, i+(t−2)+j],

then, up to reversing the cyclic ordering, we may assume by the induction
assumption that Ci = Xi ∪ ei+(t−2)+(j+1). Since t ≥ 3, each of Xi+(t−2)+j

and Xi+(t−2)+(j+1) contains ei+(t−2)+(j+1). But, as n ≥ 6t − 10, each of
Xi+(t−2)+j and Xi+(t−2)+(j+1) has an empty intersection with Xi, it follows
by orthogonality that

{c∗i+(t−2)+j , c
∗
i+(t−2)+(j+1)} ⊆ Xi.

By the induction assumption, c∗i+(t−2)+(j+1) = ei+(t−2) and c∗i+(t−2)+j ∈
{ei+(t−3), ei+(t−2)}. The first of these outcomes implies that C∗i+(t−2)+(j+1) =
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Xi+(t−2)+(j+1) ∪ ei+(t−2). Thus, as ei+(2t−4)+(j+1) ∈ C∗i+(t−2)+(j+1) and n ≥
6t− 10, it follows by orthogonality and the induction assumption,

ci+(2t−4)+(j+1) ∈ Xi+(t−2)+(j+1) − ei+(2t−4)+(j+1).

Now Xi+(t−2)+(j+1) − ei+(2t−4)+(j+1) ⊆ C∗i+(t−2)+j , and so ci+(2t−4)+(j+1) ∈
C∗i+(t−2)+j . But then, as c∗i+(t−2)+j ∈ {ei+(t−3), ei+(t−2)} and n ≥ 6t − 10,

we have

|C∗i+(t−2)+j ∩ Ci+(2t−4)+(j+1)| = 1,

contradicting orthogonality. Hence, for all i ∈ [n],

Ci ⊆ σ[i−j, i+(t−2)+j],

thereby completing the proof of the lemma. �

The next lemma shows that, for all i ∈ [n], there is a unique t-element
circuit containing Xi and a unique t-element cocircuit containing Xi.

Lemma 3.4. Let n ≥ 6t− 10. Then, for all i ∈ [n]:

(i) If Di is a t-element circuit containing Xi, then Di = Ci.
(ii) If D∗i is a t-element cocircuit containing Xi, then D∗i = C∗i .

Proof. To prove (i), suppose that Di 6= Ci. Then, by Lemma 3.3 and since
Ci was chosen arbitrarily, we may assume without loss of generality that
Di = Xi∪ei−1 and Ci = Xi∪ei+t−1. Since Xi−(t−1)∩Di = {ei−1}, it follows
by orthogonality that c∗i−(t−1) ∈ Di−ei−1= Xi. But then |C∗i−(t−1)∩Ci| = 1,

contradicting orthogonality. Hence Di = Ci. The proof of (ii) is the same
but with the roles of the circuits and cocircuits interchanged. �

Lemma 3.5. Let n ≥ 6t− 10.

(i) For some i ∈ [n], suppose that Ci = σ[i, i+t−1]. If j ≡ i mod 2, then
Cj = σ[j, j+t−1] and Cj+1 = σ[j, j+t−1].

(ii) For some i ∈ [n], suppose that C∗i = σ[i, i+t−1]. If j ≡ i mod 2, then
C∗j = σ[j, j+t−1] and C∗j+1 = σ[j, j+t−1].

Proof. We will prove (i), as the proof of (ii) is the same except the roles of
the circuits and cocircuits are interchanged. Since Xi+1 ⊆ Ci, it follows by
Lemma 3.4 that Ci+1 = σ[i, i+t−1]. Thus, by Lemma 3.3, Ci+2 = σ[i+2, i+t+1],
and so Ci+3 = σ[i+2, i+t+1]. Continuing in this way establishes (i). �

Proof of Theorem 1.1. It immediately follows from Lemmas 3.4 and 3.5 that
n is even and, for all i ∈ [n], there is a unique t-element circuit and a unique
t-element cocircuit containing Xi. We next establish (I) and (II).
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Up to reversing the ordering of σ, we may assume, by Lemmas 3.3 and 3.4,
that Ci = Xi ∪ ei+t−1. First suppose t is odd. Now, we show that

C∗i = σ[i−1, i+t−2].(1)

If (1) does not hold, then, by Lemma 3.3, C∗i = σ[i, i+t−1]. By Lemma 3.5,
Ci+t−1 = σ[i+t−1, i+2t−2]. But then |C∗i ∩ Ci+(t−1)| = 1; a contradiction.
Thus (1) holds. Part (I) now follows from Lemma 3.5.

Now suppose t is even. Here we show that

C∗i = σ[i, i+t−1].(2)

If (2) does not hold, then, by Lemma 3.3, C∗i = σ[i−1, i+t−2]. By Lemma 3.5,
Ci+t−2 = σ[i+t−2, i+2t−3]. But then

|C∗i ∩ Ci+t−2| = 1,

contradicting orthogonality. Therefore, (2) holds. Part (II) immediately
follows from Lemma 3.5. �

4. t-Cyclic Matroids

Let M be a matroid with n = |E(M)|, and let t be a positive integer such
that n ≥ t + 1. Recall that M is t-cyclic if there exists a cyclic ordering
σ = (e1, e2, . . . , en) of E(M) such that, for all odd i ∈ [n], either

(i) {ei, ei+1, . . . , ei+t−1} is a t-element circuit and {ei+1, ei+2, . . . , ei+t} is
a t-element cocircuit, or

(ii) {ei, ei+1, . . . , ei+t−1} is both a t-element circuit and a t-element cocir-
cuit.

If σ is such an ordering of E(M), then σ is called a t-cyclic ordering of M .
Moreover, σ is odd if it satisfies (i) and even if it satisfies (ii). It will follow
from Proposition 4.1 and Theorem 1.1 that, if n ≥ 6t − 10, then t is odd
when σ is odd and t is even when σ is even.

Wheels and whirls with at least four elements are 3-cyclic matroids. Fur-
thermore, if M is t-cyclic for some integer t ≥ 2, then M has the cyclic
(t− 1, t)-property. In fact, if t = 2, or t ≥ 3 and |E(M)| ≥ 6t− 10, then the
converse also holds.

Proposition 4.1. Let M be a matroid with n = |E(M)|, and suppose that
t = 2, or t ≥ 3 and n ≥ 6t− 10. Then M is t-cyclic if and only if it has the
cyclic (t− 1, t)-property.

Proof. Evidently, if M is t-cyclic, then M has the cyclic (t− 1, t)-property.
For the converse, if t = 2 and M has the cyclic (1, 2)-property, then M is
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the direct sum of copies of U1,2, and so a cyclic ordering of E(M) in which
the two elements in each copy of U1,2 are consecutive is a 2-cyclic ordering
of M . Furthermore, if t ≥ 3 and M has the cyclic (t− 1, t)-property, then,
as n ≥ 6t− 10, it follows by Theorem 1.1 that M is t-cyclic. �

We next establish several basic properties of t-cyclic matroids. First note
that, by definition, if M is a t-cyclic matroid for some t ≥ 1, then M∗ is
also t-cyclic.

Lemma 4.2. Let t ≥ 1 and let M be a t-cyclic matroid. Then

(i) |E(M)| ≥ 2t− 2, and
(ii) |E(M)| is even.

Proof. Let n = |E(M)|. We first establish (i). Since M is t-cyclic and
n ≥ t+1, it follows that M has a t-element circuit and a t-element cocircuit.
That is, M has an (n − t)-element cohyperplane and an (n − t)-element
hyperplane, and so r∗(M)− 1 ≤ n− t and r(M)− 1 ≤ n− t. Therefore

n = r∗(M) + r(M) ≤ 2n− 2t+ 2.

In particular, n ≥ 2t− 2.

To prove (ii), suppose n is odd. Then, regardless of whether σ is odd or
even, {e1, e2, . . . , et} is a t-element circuit C and {en−(t−2), en−(t−3), . . . , e1}
is a t-element cocircuit C∗. By (i), n ≥ 2t−2 and so, as n is odd, n ≥ 2t−1.
In turn, this implies that |C∩C∗| = 1, contradicting orthogonality. It follows
that n is even. �

Lemma 4.3. Let t ≥ 1, and let M be a t-cyclic matroid. Then

r(M) = r∗(M) = 1
2 |E(M)|.

Proof. Let n = |E(M)| and let σ = (e1, e2, . . . , en) be a t-cyclic ordering of
M . By Lemma 4.2, n ≥ 2t − 2 and n is even. First suppose n = 2t − 2.
Then, as {et−1, et, . . . , e2t−2} is a cocircuit, it follows that {e1, e2, . . . , et−1}
spans M as its complement contains no cocircuit. Similarly, {e2, e3, . . . , et}
cospans M . Thus r(M) ≤ t−1 and r∗(M) ≤ t−1, that is r(M) = r∗(M) =
n
2 .

Now suppose that n ≥ 2t. Since {en−(t−1), en−(t−2), . . . , en} is a t-
element cocircuit, Y = {e1, e2, . . . , en−t} is a hyperplane of M . Moreover,
as {ei, ei+1, . . . , ei+t−1} is a t-element circuit for all odd i ∈ [n], it is easily
checked that

X = {e1, e2, . . . , et−1, et+2, et+4, . . . , en−t}
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spans Y . Therefore

r(M)− 1 = r(Y ) ≤ |X| = n

2
− 1,

and so r(M) ≤ n
2 . If t is even, then {en−(t−1), en−(t−2), . . . , en} is also a

t-element circuit, and so an analogous argument shows that Y is a cohyper-
plane and X cospans Y . Thus r∗(M) ≤ n

2 , and so r(M) = r∗(M) = n
2 .

Now assume t is odd. Then {en−t, en−(t−1), . . . , en−1} is a circuit of M ,
and so

Y ′ = {en, e1, e2, . . . , en−(t+1)}
is a cohyperplane of M . Now let

X ′ = {en, e1, e2, . . . , et−2, et+1, et+3, . . . , en−(t+1)}.
Since {ei+1, ei+2, . . . , ei+t} is a t-element cocircuit for all odd i ∈ [n], it is
easily checked that X ′ cospans Y ′. Thus

r∗(M)− 1 = r∗(Y ′) ≤ |X ′| = n

2
− 1,

and therefore r∗(M) ≤ n
2 . Hence, if t is odd, then r(M) = r∗(M) = n

2 . This
completes the proof of the lemma. �

5. Flowers

In this section we establish Theorems 1.2 and 1.3. We would have liked to
prove these theorems simultaneously. However, apart from the first lemma,
the cases of when t is odd or even are treated separately to avoid any am-
biguity.

Regardless of whether t is even or odd, if σ = (e1, e2, . . . , en) is a t-
cyclic ordering of a matroid M , then, for all j ∈ [n], the (t − 1)-element
set {ej+1, ej+2, . . . , ej+(t−1)} is both coindependent and independent. This
is because it is properly contained in a t-element cocircuit and a t-element
circuit. The next lemma extends this observation for when n ≥ 2t.

Lemma 5.1. Let M be a matroid, and let σ = (e1, e2, . . . , en) be a t-cyclic
ordering of E(M) for some positive integer t, and suppose that n ≥ 2t.

(i) If t is odd, then, for all odd i ∈ [n], we have {ei, ei+1, . . . , ei+t−1} is
coindependent and {ei+1, ei+2, . . . , ei+t} is independent.

(ii) If t is even, then, for all odd i ∈ [n], we have {ei+1, ei+2, . . . , ei+t} is
both independent and coindependent.

Proof. To prove (i), suppose t is odd and first assume, for some odd i ∈
[n], that X = {ei, ei+1, . . . , ei+t−1} is codependent. Then X contains a
cocircuit C. Now {ei−(t−1), ei−(t−2), . . . , ei} and {ei+t−1, ei+t, . . . , ei+2t−2}
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are t-element circuits and so, as n ≥ 2t, it follows by orthogonality that
ei 6∈ C and ei+t−1 6∈ C. That is,

C ⊆ {ei+1, ei+2, . . . , ei+t−2}.

But then C is properly contained in the t-element cocircuit
{ei+1, ei+2, . . . , ei+t−1}; a contradiction. Thus, for all odd i ∈ [n],
the set {ei, ei+1, . . . , ei+t−1} is coindependent. The proof, for all odd i ∈ [n],
that {ei+1, ei+2, . . . , ei+t} is independent as well as the proof of (ii) is
similar and omitted. �

We now work towards proving Theorem 1.2, which applies when t is an
odd integer exceeding one. As remarked in the introduction, if M is a 1-
cyclic matroid and σ is a 1-cyclic ordering of M , then any concatenation Φ
of σ into non-empty sets is a 1-anemone.

Lemma 5.2. Let M be a matroid and let σ = (e1, e2, . . . , en) be an odd
t-cyclic ordering of E(M) for some odd integer t. Then, for all i ∈ [n] and
1 ≤ j ≤ n

2 ,

λ({ei+1, ei+2, . . . , ei+j}) =

{
j, if j < t− 1; and

t− 1, if j ≥ t− 1.

Proof. Fixing i ∈ [n], let X = {ei+1, ei+2, . . . , ei+j}, where 1 ≤ j ≤ n
2 . Note

that |X| = j. We argue by induction that, for all j, we have λ(X) = j if
j < t− 1 and λ(X) = t− 1 otherwise.

If 1 ≤ j ≤ t− 1, then, X is both independent and coindependent, so

λ(X) = r(X) + r∗(X)− |X| = j + j − j = j.

Thus we may now assume that n ≥ 2t. If j = t, then, by Lemma 5.1,
X is either a coindependent circuit or an independent cocircuit. In both
instances,

λ(X) = |X| − 1 = t− 1.

Thus the lemma holds if 1 ≤ j ≤ t.

Now suppose t+ 1 ≤ j ≤ n
2 and λ(X − ei+j) = t− 1. If i+ j is odd, then

{ei+j−(t−1), ei+j−(t−2), . . . , ei+j}

is a circuit and so ei+j ∈ cl(X − ei+j). Now

Y = {ei+j , ei+j+1, . . . , ei+j+(t−1)}

is also a circuit, so ei+j ∈ cl(Y −ei+j). Since j ≤ n
2 and n ≥ 2t, we also have

|Y ∩ (X−ei+j)| = 0, and so, by Lemma 2.1, ei+j 6∈ cl∗(X−ei+j). Therefore,
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by the induction assumption,

λ(X) = r(X) + r∗(X)− |X|
= r(X − ei+j) + r∗(X − ei+j) + 1− (|X − ei+j |+ 1)

= λ(X − ei+j) = t− 1

The argument for when i + j is even is the same but with the roles of the
circuits and cocircuits interchanged. The lemma now follows by induction.

�

Lemma 5.3. Let t be an odd integer exceeding one and let M be a matroid.
Suppose that σ = (e1, e2, . . . , en) is an odd t-cyclic ordering of M . If P =
{ei+1, ei+2, . . . , ei+k}, where |P | ≥ t− 1 and |E(M)− P | ≥ t− 1, then

r(P ) =


1
2 (|P |+ t− 1) , if |P | is even;
1
2 (|P |+ t− 2) , if i+ 1 is odd and |P | is odd; and
1
2 (|P |+ t) , if i+ 1 is even and |P | is odd.

Proof. We prove the lemma for when i+1 is even and |P | is even. The proof
for when i + 1 is odd and |P | is even as well as the other two instances is
similar and omitted.

Suppose i + 1 and |P | are both even. If |P | = t − 1, then r(P ) = t − 1,
so we may assume |P | ≥ t + 1 and, therefore, n ≥ 2t. Then, by
Lemma 5.1, {ei+1, ei+2, . . . ei+t} is independent. Now let j ∈ {t + 1, t +
2, . . . , k}. If j is even, then ei+j ∈ cl({ei+j−(t−1), ei+j−(t−2), . . . , ei+j−1})
as {ei+j−(t−1), ei+j−(t−2), . . . , ei+j} is a t-element circuit. On the other
hand, if j is odd, then ei+j ∈ cl∗({ei+j+1, ei+j+2, . . . , ei+j+t−1}) as
{ei+j , ei+j+1, . . . , ei+j+t−1} is a t-element cocircuit, and so, as |E(M)−P | ≥
t − 1, it follows by Lemma 2.1 that ei+j 6∈ cl({ei+1, ei+2, . . . , ei+j−1}). By
considering each of the elements ei+t+1, ei+t+2, . . . , ei+k in turn, we deduce
that

X = {ei+1, ei+2, . . . , ei+t, ei+t+2, ei+t+4, . . . , ei+k−1}
is a basis of M |P . As

|X| = t− 1 + 1
2(|P | − (t− 1)) = 1

2(|P |+ t− 1),

the lemma holds when i+ 1 is even and |P | is even. �

We now prove Theorem 1.2.

Proof of Theorem 1.2. Let σ = (e1, e2, . . . , en), and let Φ = (P1, P2, . . . , Pm)
be a concatenation of σ with |Pi| ≥ t−1 for all i ∈ [m]. Since λ is symmetric,
it follows by Lemma 5.2 that Φ is a t-flower. To establish that Φ is a t-daisy
with the desired local connectivities, it suffices, by [1, Lemma 4.3], to show
that u(P1, P2) = 1

2(t− 1) if m ≥ 3 and u(P1, P3) ≤ 1
2(t− 3) if m ≥ 4.
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Let P1 = {ei+1, ei+2, . . . , ei+k}, and suppose m ≥ 3. We begin by showing
that u(P1, P2) = 1

2(t − 1). First assume that i + 1 is odd, |P1| is odd, and
|P2| is odd. Then, by Lemma 5.3,

u(P1, P2) = r(P1) + r(P2)− r(P1 ∪ P2)

= 1
2(|P1|+ t− 2) + 1

2(|P2|+ t)− 1
2(|P1 ∪ P2|+ t− 1)

= 1
2(t− 1).

The remaining cases, which depend on whether i+ 1 is odd or even, |P1| is
odd or even, and |P2| is odd or even, are also routine and omitted. Hence
u(P1, P2) = 1

2(t− 1).

Now let P3 = {ej+1, ej+2, . . . , ej+`}, and suppose m ≥ 4. To show that

u(P1, P3) ≤ 1
2(t− 3), we first establish that

r(P1 ∪ P3) ≥


r(P1) + 1

2(|P3|+ 1), if j + 1 odd;

r(P1) + 1
2(|P3|+ 2), if j + 1 even and |P3| is even;

r(P1) + 1
2(|P3|+ 3), if j + 1 is even and |P3| is odd.

(3)

We prove the inequality for when j+1 is even. The result for when j+1 is odd
is similar, but slightly more straightforward, and is omitted. If j+1 is even,
then ej+2 ∈ cl∗({ej+1, ej+3, . . . , ej+t}) and so, as |P4| ≥ t−1, by Lemma 2.1,
ej+2 6∈ cl(P1). Thus P1 ∪ ej+2 is independent. Furthermore, since ej+1 ∈
cl∗({ej−(t−2), ej−(t−3), . . . , ej}) and |P2| ≥ t−1, it follows by Lemma 2.1 that
ej+1 6∈ cl(P1∪ej+2). Therefore P1∪{ej+1, ej+2} is independent. Repeatedly
using Lemma 2.1 and the fact that P1 and P3 are non-consecutive and
|P4| ≥ t− 1, it is easily seen that

P1 ∪ {ej+1, ej+2, ej+3, ej+5, . . . , ej+`−2, ej+`}
is independent if |P3| is odd and

P1 ∪ {ej+1, ej+2, ej+3, ej+5, . . . , ej+`−3, ej+`−1}
is independent if |P3| is even. Since

|{ej+1, ej+2, ej+3, ej+5, . . . , ej+`−2, ej+`}| = 1
2(|P3|+ 3)

and
|{ej+1, ej+2, ej+3, ej+5, . . . , ej+`−3, ej+`−1}| = 1

2(|P3|+ 2),

we have r(P1 ∪ P3) ≥ r(P1) + 1
2(|P3| + 3) if |P3| is odd and r(P1 ∪ P3) ≥

r(P1) + 1
2(|P3|+ 2) if |P3| is even. It follows that (3) holds.

Next consider u(P1, P3). If j+1 is odd and |P3| is odd, then, by Lemma 5.3
and (3),

u(P1, P3) = r(P1) + r(P3)− r(P1 ∪ P3)

≤ r(P1) + 1
2(|P3|+ t− 2)−

(
r(P1) + 1

2(|P3|+ 1)
)

= 1
2(t− 3).
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The remaining three cases are similarly checked. This completes the proof
of the theorem. �

The proof of Theorem 1.3 takes the same approach as the proof of Theo-
rem 1.2.

Lemma 5.4. Let M be a matroid and let σ = (e1, e2, . . . , en) be an even
t-cyclic ordering of E(M) for some even integer t. Then, for all i ∈ [n] and
1 ≤ j ≤ n

2 ,

λ({ei+1, ei+2, . . . , ei+j}) =


j, if j ≤ t− 1;

t− 2, if j > t− 1, j is even, i is even;

t− 1, if j > t− 1, j is odd;

t, if j > t− 1, j is even, i is odd.

Proof. Fixing i ∈ [n], let X = {ei+1, ei+2, . . . , ei+j}, where 1 ≤ j ≤ n
2 . Note

that |X| = j. We establish the proof by showing that λ(X) has the desired
value for all 1 ≤ j ≤ n

2 using induction on j. If 1 ≤ j ≤ t − 1, then X is
both independent and coindependent, so

λ(X) = r(X) + r∗(X)− |X| = j + j − j = j.

Hence the lemma holds if 1 ≤ j ≤ t− 1.

Now suppose that t ≤ j ≤ n
2 , in which case n ≥ 2t, and

λ({ei+1, ei+2, . . . , ei+j−1}) has the desired value. First, assume both i and j
are even. Then

{ei+j−(t−1), ei+j−(t−2), . . . , ei+j}
is both a circuit and a cocircuit, and so ei+j ∈ cl(X − ei+j) and ei+j ∈
cl∗(X − ei+j). By the induction assumption, λ(X − ei+j) = t− 1 as j − 1 is
odd. Note that λ(X − ei+j) = t− 1 if j = t. So

λ(X) = r(X) + r∗(X)− |X|
= r(X − ei+j) + r∗(X − ei+j)− (|X| − 1)− 1

= λ(X − ei+j)− 1 = t− 2.

Second, assume j is odd. If i is odd, then {ei+j−(t−1), ei+j−(t−2), . . . , ei+j}
is both a circuit and a cocircuit. Therefore, ei+j ∈ cl(X − ei+j) and ei+j ∈
cl∗(X−ei+j). By the induction assumption, λ(X−ei+j) = t as j−1 is even
and i is odd, and j 6= t. So

λ(X) = r(X) + r∗(X)− |X|
= r(X − ei+j) + r∗(X − ei+j)− (|X| − 1)− 1

= λ(X − ei+j)− 1 = t− 1.
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If i is even, then {ei+j , ei+j+1, . . . , ei+j+t−1} is both a circuit and a co-
circuit. Therefore ei+j ∈ cl({ei+j+1, ei+j+2, . . . , ei+j+t−1}) and ei+j ∈
cl∗({ei+j+1, ei+j+2, . . . , ei+j+t−1}). Since j ≤ n

2 and n ≥ 2t, the set
{ei+j+1, ei+j+2, . . . , ei+j+t−1} has an empty intersection with X − ei+j , and
so, by Lemma 2.1, ei+j 6∈ cl∗(X − ei+j) and ei+j 6∈ cl(X − ei+j). By the
induction assumption, λ(X − ei+j) = t − 2, as i is even, j − 1 is even, and
j 6= t. Therefore

λ(X) = r(X) + r∗(X)− |X|
= r(X − ei+j) + 1 + r∗(X − ei+j) + 1− (|X| − 1)− 1

= λ(X − ei+j) + 1 = t− 1.

Lastly, assume j is even and i is odd. Then Y =
{ei+j , ei+j+1, . . . , ei+j+t−1} is a circuit and a cocircuit, and so
ei+j ∈ cl(Y − ei+j) and ei+j ∈ cl∗(Y − ei+j). Since j ≤ n

2 and
n ≥ 2t, the set Y −ei+j has an empty intersection with X−ei+j . Therefore,
by Lemma 2.1, ei+j 6∈ cl∗(X − ei+j) and ei+j 6∈ cl(X − ei+j). By the
induction assumption, λ(X − ei+j) = t− 1 as j − 1 is odd. Again note that
λ(X − ei+j) = t− 1 if j = t. Thus

λ(X) = r(X) + r∗(X)− |X|
= r(X − ei+j) + 1 + r∗(X − ei+j) + 1− (|X| − 1)− 1

= λ(X − ei+j) + 1 = t.

The lemma now follows. �

Lemma 5.5. Let t be an even positive integer, let M be a matroid, and
suppose that σ = (e1, e2, . . . , en) is an even t-cyclic ordering of M . If P =
{ei+1, ei+2, . . . , ei+k}, where i + 1 is odd, |P | is even, |P | ≥ t − 2, and
|E(M)− P | ≥ t− 2, then

r(P ) = 1
2(|P |+ t− 2).

Proof. If |P | = t − 2 or |P | = t, then r(P ) = t − 2 or r(P ) = t − 1,
respectively. Thus we may assume that |P | ≥ t + 2, and so n ≥ 2t. Then,
by Lemma 5.1, {ei+2, ei+3, . . . , ei+t+1} is independent. Observe that ei+1 ∈
cl({ei+2, ei+3, . . . , ei+t}). Now let j ∈ {t+ 2, t+ 3, . . . , k}. If j is even, then
ei+j ∈ cl({ei+j−(t−1), ei+j−(t−2), . . . , ei+j−1}). On the other hand, if j is odd,
then

ei+j ∈ cl∗({ei+j+1, ei+j+2, . . . , ei+j+t−1})
as {ei+j , ei+j+1, . . . , ei+j+t−1} is a t-element cocircuit. Since j is odd and |P |
is even, ei+j+1 ∈ P and so, as |E(M)− P | ≥ t− 2, it follows by Lemma 2.1
that ei+j 6∈ cl({ei+1, ei+2, . . . , ei+j−1}). Considering each of the elements
ei+t+2, ei+t+3, . . . , ei+k in turn, we deduce that

X = {ei+2, ei+3, . . . , ei+t+1, ei+t+3, ei+t+5, . . . , ei+k−1}
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is a basis of M |P . Since |X| = 1
2(|P |+ t− 2), the lemma holds. �

We now prove Theorem 1.3.

Proof of Theorem 1.3. Suppose that Φ = (P1, P2, . . . , Pm) is a concatena-
tion of σ as described in the statement of the theorem. Since λ is symmetric,
it follows by Lemma 5.4 that Φ is a (t−1)-flower. To see u(P1, P2) = 1

2(t−2)
if m ≥ 3, observe that, by Lemma 5.5,

u(P1, P2) = r(P1) + r(P2)− r(P1 ∪ P2)

= 1
2(|P1|+ t− 2) + 1

2(|P2|+ t− 2)− 1
2(|P1|+ |P2|+ t− 2)

= 1
2(t− 2).

This completes the proof of the theorem. �

6. Construction

In this section we describe a construction which, for all positive integers t
exceeding one, takes a t-cyclic matroid and produces a (t+2)-cyclic matroid
having the same ground set. Let M be a t-cyclic matroid with n = |E(M)|,
where t ≥ 2 and n ≥ 2(t + 2) − 2, and let σ = (e1, e2, . . . , en) be a t-cyclic
ordering of M . We require that n ≥ 2(t+ 2)− 2, as a (t+ 2)-cyclic matroid
has at least 2(t+ 2)− 2 elements, by Lemma 4.2. Let M ′ be the truncation
of M . That is, M ′ is obtained by freely adding an element, f say, to M
to get M1 and then contracting f from M1 to get M ′. For all j ∈ [n], if
{ej+1, ej+2, . . . , ej+t} and {ej+3, ej+4, . . . , ej+t+2} are t-element cocircuits of
M , then {ej+1, ej+2, . . . , ej+t+2} is a (t+ 2)-element cocircuit of M ′. To see
this, it is easily checked that

(E(M)− {ej+1, ej+2, . . . , ej+t+2}) ∪ {f}

is a hyperplane of M1, so E(M) − {ej+1, ej+2, . . . , ej+t+2} is a hyperplane
of M ′. In other words, {ej+1.ej+2, . . . , ej+t+2} is a cocircuit of M ′. Next,
we let N be the Higgs lift of M ′. That is, let M ′1 be the matroid ob-
tained by freely coextending M ′ by an element, g say. Observe that (M ′1)

∗

is the free extension of (M ′)∗. Let N be the matroid obtained from M ′1
by deleting g. Then, dually, for all j ∈ [n], if {ej+1, ej+2, . . . , ej+t} and
{ej+3, ej+4, . . . , ej+t+2} are t-element circuits of M , and therefore of M ′,
then {ej+1, ej+2, . . . , ej+t+2} is a (t + 2)-element circuit of N . Hence, N is
a (t + 2)-cyclic matroid. Observe that σ is a (t + 2)-cyclic ordering of N .
To illustrate the construction, suppose we start with the rank-5 whirl W5,
which is 3-cyclic. A geometric representation of the rank-5 matroid obtained
by applying a truncation and a Higgs lift to W5 is shown in Fig. 3. Observe
that, for all odd i ∈ [10], the set {ei, ei+1, . . . , ei+4} is a 5-element circuit
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Figure 3. A geometric representation of the 5-cyclic, rank-5
matroid obtained from the rank-5 whirl by applying a trun-
cation and then a Higgs lift.

and the set {ei+1, ei+2, . . . , ei+5} is a 5-element cocircuit, and so the matroid
resulting from the construction is 5-cyclic.

Let t be an even positive integer exceeding two. We next use this con-
struction to show that, for all t ≥ 4, there exist t-cyclic matroids giving rise
to (t− 1)-anemones and t-cyclic matroids giving rise to (t− 1)-daisies. Let
M be a t-cyclic matroid, and suppose that σ = (e1, e2, . . . , en) is an even
t-cyclic ordering of E(M). We call a concatenation Φ = (P1, P2, . . . , Pm)
of σ even if, for all i ∈ [m], the set Pi = {ej+1, ej+2, . . . , ej+k} satisfies
|Pi| ≥ t− 2, |Pi| is even, and j + 1 is odd.

Now let M be a rank-r spike, where r ≥ 3, and let (L1, L2, . . . , Lr) be a
partition of the ground set of M into pairs such that, for all distinct i, j ∈
{1, 2, . . . , r}, the union Li∪Lj is a 4-element circuit and 4-element cocircuit.
Then the cyclic ordering σ of E(M) in which, for all i, the two elements in
Li are consecutive in σ is a 4-cyclic ordering of M . Thus M is 4-cyclic.
Furthermore, by Theorem 1.3, any even concatenation Φ = (P1, P2, . . . , Pm)
of σ is a 3-flower and, as u(P1, P3) = 1, it follows that Φ is a 3-anemone.

For a 4-cyclic matroid giving rise to a 3-daisy, let M a rank-r swirl, where
r ≥ 3, and let (L1, L2, . . . , Lr) be a partition of the ground set ofM into pairs
such that Li ∪Li+1 is a 4-element circuit and a 4-element cocircuit for all i.
By choosing σ to be a cyclic ordering of E(M) such that (L1, L2, . . . , Lr) is a
concatenation of σ, it follows that σ is a 4-cyclic ordering of E(M), and so M
is 4-cyclic. By Theorem 1.3, any even concatenation Φ = (P1, P2, . . . , Pm)
of such a σ is a 3-flower. To see that Φ is a 3-daisy if m ≥ 4, observe that
u(P1, P3) = 0.

Now suppose that M is a t-cyclic matroid with at least 2(t+2)−2 elements
and let σ be a t-cyclic ordering of E(M). Let N be the matroid obtained
from M by the construction detailed at the beginning of this section. Then
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N is a (t + 2)-cyclic matroid and σ is a (t + 2)-cyclic ordering of N . Let
Φ = (P1, P2, . . . , Pm) be an even concatenation of σ, where |Pi| ≥ t for all
i ∈ [m]. By Theorem 1.3, Φ is a (t− 1)-flower of M and (t+ 1)-flower of N .
Assume m ≥ 4, and let Pi and Pj be petals of Φ. Since |Pi|, |Pj | ≥ t and so
rM (Pi ∪ Pj) 6= r(M), it follows by construction that rN (Pi) = rM (Pi) + 1
and rN (Pi ∪ Pj) = rM (Pi ∪ Pj) + 1. Hence if Φ is a (t − 1)-anemone or a
(t − 1)-daisy of M , then Φ is a (t + 1)-anemone or a (t + 1)-daisy of N ,
respectively. The obvious induction gives the desired outcome.

The described construction is a specific example of an operation by which
we can obtain a (t+ 2)-cyclic matroid from a t-cyclic matroid. More gener-
ally, we can replace the truncation with any elementary quotient such that
none of the t-element cocircuits corresponding to consecutive elements in
the cyclic ordering are preserved; and we can replace the Higgs lift with
any elementary lift such that none of the t-element circuits corresponding
to consecutive elements in the cyclic ordering are preserved. For a t-cyclic
matroid M with |E(M)| ≥ 2t+ 2, we say that N is an inflation of M if we
can obtain N , starting from M , by such an elementary quotient, followed
by such an elementary lift. We conjecture the following:

Conjecture 6.1. Let t be an integer exceeding two, and let M be a t-cyclic
matroid.

(i) If t is even, then M can be obtained from a spike or a swirl by a
sequence of inflations.

(ii) If t is odd, then M can be obtained from a wheel or whirl by a sequence
of inflations.
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