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Abstract. The breadth of a tangle T in a matroid is the size
of the largest spanning uniform submatroid of the tangle matroid
of T . The matroid M is weakly 4-connected if it is 3-connected
and whenever (X,Y ) is a partition of E(M) with |X|, |Y | > 4,
then λ(X) ≥ 3. We prove that if T is a tangle of order k ≥ 4 and
breadth l in a matroid M , then M has a weakly 4-connected minor
N with a tangle TN of order k, breadth l and has the property that
T is the tangle in M induced by TN .

A set Z of elements of a matroid M is 4-connected if λ(A) ≥
min{|A ∩ Z|, |Z − A|, 3} for all A ⊆ E(M). As a corollary of our
theorems on tangles we prove that if M contains an n-element
4-connected set where n ≥ 7, then M has a weakly 4-connected
minor that contains an n-element 4-connected set.

1. Introduction

This introduction assumes some familiarity with matroid tangles.
Definitions and basic properties are given in Section 3.

The unavoidable minors of large 3-connected matroids are studied
in [4]. It is natural to seek analogous results for 4-connected matroids
and we are currently engaged in a project with that as a goal. But
while there is general agreement as to what a 3-connected matroid
is, 4-connectivity is somewhat more vexed. Tutte 4-connectivity is a
stringent condition that fails, for example, for all projective geome-
tries of rank at least three. In practise, various weaker notions of 4-
connectivity have been considered; these include vertical 4-connectivity,
cyclic 4-connectivity, internal 4-connectivity, sequential 4-connectivity
and weak 4-connectivity. Which connectivity should we begin with in
our search for unavoidable minors? It is surely a truism in mathematics
that one should select the weakest hypotheses for which one expects
the theorem to hold. With that in mind, our weakest beginning in our
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search for unavoidable minors is to start with a matroid with a “large”
tangle of order 4 and our initial goal is to find the strongest version of
4-connectivity that such a tangle guarantees in a minor.

Tangles were introduced by Robertson and Seymour [13] to capture
highly connected regions of a graph and they noted [13, p.190] that
tangles extend to matroids. A tangle of order k in a matroid can be
thought of as capturing a “k-connected region” of the matroid. A
matroid with such a tangle may bear little relation to a matroid that
is “k-connected” in some more concrete sense. But it is natural to
expect that a tangle of order k guarantees a minor that possesses a
more concrete connectivity property.

For k ∈ {2, 3} the relationship between k-tangles and existing no-
tions of connectivity is clear. We discuss the precise connection in
Section 3. This paper considers the case k = 4. It turns out that
“weak 4-connectivity” is the connectivity that we can guarantee in a
minor of a matroid with a 4-tangle. A matroid M is weakly 4-connected
if it is 3-connected and whenever (X, Y ) is a partition of E(M) with
|X|, |Y | > 4, then λ(X) ≥ 3. We prove that a matroid M with a tangle
T of order k ≥ 4 has a weakly 4-connected minor N with a tangle TN
of order k.

All well and good, but we need more for a satisfactory answer. We
need guarantees that the information in T is not significantly eroded
in TN . To obtain that guarantee we would like to have the property
that the “size” of T is preserved in TN . It is also desirable that T and
TN are related in a meaningful way.

To deal with the issue of size we define the breadth of a tangle T to
be the number of elements in a largest spanning uniform submatroid
of the tangle matroid MT . This generalises cardinality in the sense
that, if M is Tutte k-connected, then the breadth of its unique tangle
of order k is |E(M)|.

We relate the structure of TN to that of T as follows. Recall that
a tangle is a collection T of subsets of E(M) that act as pointers to
our k-connected region. The k-tangle T generates a tangle TN in the
minor N if TN is the unique tangle of order k in N that contains the
collection of intersections of the members of T with E(N).

With these two notions in hand we can state our main theorem.

Theorem 1.1. Let T be a tangle of order k ≥ 4 in a matroid M . Then
M has a weakly 4-connected minor N with a tangle T ′ of order k such
that T generates T ′ in N and such that the breadth of T ′ is equal to
that of T .
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The results of this paper also have a connection with k-connected
sets. Let M be a matroid and k ≥ 2 be an integer. A subset Z of
E(M) is k-connected if λ(A) ≥ min{|A ∩ Z|, |Z − A|, k − 1} for all
A ⊆ E. We show that if Z is a k-connected set of size at least 3k − 5,
then there is a tangle T of order k in M such that MT |Z ∼= Uk−1,|Z|.
We note that the relationship between k-connected sets and uniform
submatroids of tangle matroids is further motivation for our definition
of breadth. Via this connection we obtain the following theorem.

Theorem 1.2. Let Z be an n-element k-connected set in the matroid
M where n ≥ 3k − 5 and k ≥ 4. Then M has a weakly 4-connected
minor N that contains an n-element k-connected set.

The upshot is that choosing a matroid having a large 4-connected
set as our beginning in a search for unavoidable minors is equivalent
to choosing a matroid with a 4-tangle of large breadth. In either case
we can quickly reduce to a weakly 4-connected minor.

The paper is structured as follows. Section 2 deals with technical
preliminaries. Section 3 introduces tangles and the tangle matroid.
We give the formal definition of breadth and discuss the relationship
between k-connected sets and breadth. Section 4 considers tangles
generated in minors. In Section 5 we find sufficient conditions to be
able to move to a proper minor without damaging the breadth of a given
tangle. Section 6 considers the structure of flats in tangle matroids of
low rank. Finally, in Section 7 we are able to prove that, given a tangle
of order at least 4 in a matroid M , we can move to a weakly 4-connected
minor with an associated tangle whose breadth is equal to that of the
original tangle. Section 8 discusses the special case of tangles of order
exactly 4. In Section 9 we give an example to show that our main
results are, in a sense, best possible. In Section 10 we give the short
proof of Theorem 1.2. Finally we consider some open problems and
conjectures in Section 11.

We were in the final stages of writing this paper when we became
aware of a recent paper of Carmesin and Kurkofka [1]. There are dif-
ferences in approach between their paper and ours, but they study
essentially the same problem for 4-tangles in graphs as we do for ma-
troids. Their outcome is to find an internally 4-connected minor. This
is a stronger property than weak 4-connectivity. Examples are given
in Section 9 that show that we cannot improve on weak 4-connectivity,
even for the highly structured class of graphic matroids. This is due to
our requirement of preserving breadth.
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2. Preliminaries

We follow Oxley [11] for any unexplained matroid terminology or
notation. Note that when we refer to a partition of a set, we do not
require that each subset in the partition is nonempty. For a matroid
M , the connectivity function λM is defined, for all subsets A of E(M),
by λM(A) = rM(A) + rM(E(M) − A) − r(M). We say that the set A
and the partition (A,E(M)−A) are k-separating if λ(A) < k; they are
exactly k-separating if λ(A) = k − 1.

The coclosure operator of M , denoted cl∗M or just cl∗, is defined, for
all subsets A of E(M), by cl∗(A) = clM∗(A). It is easily seen that
x ∈ cl∗(A) if and only if x is a coloop of M |(E(M) − A). The next
result is well known (see, for example, [11, Proposition 2.1.12]). When
we say by orthogonality, we shall mean by an application of this lemma.

Lemma 2.1. Let M be a matroid and (A, {x}, B) a partition of E(M).
Then x ∈ cl∗(A) if and only if x /∈ cl(B).

A set A is coclosed if cl∗(A) = A. It is fully closed if it is both closed
and coclosed. Fully closed sets play an important role in this paper.
We make frequent use of the next elementary fact.

Lemma 2.2. Let A be a fully closed set in a matroid M and let N be
a minor of M whose ground set contains E(M)− A. Then A ∩ E(N)
is fully closed in N .

We make free use in proofs of the next result (see, for example, [11,
Proposition 8.2.14]).

Lemma 2.3. Let A be a set of elements in a matroid M . Then the
following hold for each x in E(M)− A.

(i) λ(A∪ {x}) = λ(A)− 1 if and only if x ∈ cl(A) and x ∈ cl∗(A).
(ii) λ(A ∪ {x}) = λ(A) if and only if x belongs to exactly one of

cl(A) and cl∗(A).
(iii) λ(A ∪ {x}) = λ(A) + 1 if and only if x /∈ cl(A) and x /∈ cl∗(A).

For a set X in a matroid M , the guts of X, denoted guts(X), is
the set cl(X) ∩ cl(E(M)−X); the coguts of X, denoted coguts(X), is
the set cl∗(X) ∩ cl∗(E(M) −X). If X is fully closed, then guts(X) =
cl(E(M)−X)∩X and coguts(X) = cl∗(E(M)−X)∩X. Clearly, both
these sets are contained in X. The set X − (guts(X) ∪ coguts(X)) is
the interior of X, denoted int(X).

Lemma 2.4. Let F be a 3-separating set in a 3-connected matroid M
where F is fully closed and has at least three elements. Then guts(F )∩
coguts(F ) = ∅.
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Proof. Say x ∈ guts(F ) ∩ coguts(F ). Then |E(M)| ≥ 4, so the 3-
connected matroid M is simple and cosimple. Hence |E(M)− F | ≥ 3.
By Lemma 2.3(i), λ((E(M)− F ) ∪ {x}) < 2, that is, λ(F − {x}) < 2.
But |F − {x}| ≥ 2 and we have contradicted the assumption that M
is 3-connected. �

Lemma 2.5. Let (F,G) be a 3-separating partition in a 3-connected
matroid M where F is fully closed and has at least three elements. If
the guts of F and the coguts of F are both nonempty, then | guts(F )| =
| coguts(F )| = 1.

Proof. Assume that | coguts(F )| ≥ 2; say x, y ∈ coguts(F ). Then
λM\{x,y}(F − {x, y}) = 0. Take z in guts(F ). Then, by Lemma 2.4,
z /∈ {x, y}. Hence z ∈ F − {x, y} and z ∈ clM\x,y(G). Thus G and
G ∪ {z} are 1-separating in M\{x, y}, so z is a coloop of M\{x, y},
contradicting the fact that z ∈ cl(G). �

Lemma 2.6. Let (F,G) be a 3-separating partition in a 3-connected
matroid M where F is fully closed and |F | ≥ 3. Then one of the
following holds.

(i) M has F as a line, guts(F ) = F , and coguts(F ) = int(F ) = ∅.
(ii) M∗ has F as a line, coguts(F ) = F , and guts(F ) = int(F ) = ∅.

(iii) F is a 4-element fan, | guts(F )| = | coguts(F )| = 1, and
| int(F )| = 2.

(iv) | int(F )| ≥ 3.

Proof. Since (F,G) is a 3-separating partition of M ,

r(guts(F )) = r(F ∩ cl(G)) ≤ r(F ) + r(G)− r(M) ≤ 2.

Assume that coguts(F ) = ∅. Let F ′ = F − guts(F ). If F ′ = ∅, then
(i) holds. Next assume that |F ′| ∈ {1, 2}. Then, as F ′ 6⊆ cl(G), we see
that F ′ 6⊆ cl(E(M)−F ′). Hence r(E(M)−F ′) ≤ r(M)− 1. Thus the
3-connected matroid M , which has at least six elements, has a cocircuit
with at most two elements, a contradiction.

We now know that if coguts(F ) = ∅, then (i) or (iv) holds. Dually,
if guts(F ) = ∅, then (ii) or (iv) holds. By Lemma 2.5, the remaining
case is when | guts(F )| = | coguts(F )| = 1. In this case, if |F | > 4,
then (iv) holds; if |F | = 4, then | int(F )| = 2, so int(F ) ∪ guts(F ) is a
triangle, while int(F ) ∪ coguts(F ) is a triad. Thus (iii) holds. �

In view of the following result [5, p.11], the rest of the paper will
focus on tangles of order at least two.

Lemma 2.7. Let M be a nonempty matroid. Then the empty set is
the unique tangle of order 1 on M .
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The following well-known consequence of the submodularity of the
connectivity function will be useful.

Lemma 2.8. Let M be a matroid and let A and B be subsets of E(M).
Then

λ(A) + λ(B) ≥ λ(A−B) + λ(B − A).

Proof. Let A′ = E(M)−A and B′ = E(M)−B. Then A−B = A∩B′
and B − A = A′ ∩B. By symmetry, λ(A′ ∪B) = λ(A ∩B′). We have

λ(A) + λ(B) = λ(A′) + λ(B)

≥ λ(A′ ∩B) + λ(A′ ∪B)

= λ(A′ ∩B) + λ(A ∩B′)
= λ(B − A) + λ(A−B).

�

3. Tangles

Let M be a matroid and k be an integer exceeding one. A tangle
of order k in M is a collection T of subsets of E(M) such that the
following hold.

(T1) If A ∈ T , then λM(A) < k − 1.
(T2) If A ⊆ E(M) and λM(A) < k− 1, then A or E(M)−A is in T .
(T3) If A,B,C ∈ T , then A ∪B ∪ C 6= E(M).
(T4) If e ∈ E(M), then E(M)− {e} /∈ T .

It is proved in [7, Lemma 3.1] that, to verify that T is a tangle, we
may replace (T3) by the following pair of conditions.

(T3a) For B ∈ T and A ⊆ B, if λM(A) < k − 1, then A ∈ T .
(T3b) If (A1, A2, A3) is a partition of E(M), then T does not contain

all three of A1, A2 and A3.

Note that our definition of the order of a tangle accords with that
used in [6, 7] but differs from that used in [5, 8], where what we have
called a tangle of order k is called a tangle of order k − 1. If T is a
tangle of order k in M , then we say that a (k − 1)-separating subset
A of E(M) is T -small if A ∈ T ; otherwise A is T -large. A subset W
of E(M) is T -weak if it is contained in a T -small set; otherwise it is
T -strong. We also say that T is a k-tangle.

Tangles were introduced by Robertson and Seymour [13] and they
noted [13, p.190] that tangles extend to matroids. This was later done
[3, 6, 7]. In a matroid M , it is easily seen that a tangle T of order 2
corresponds to a connected component X of M that has at least two
elements. For such a tangle, we only have to consider subsets A of
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E(M) with λ(A) = 0. Such a set A is in T if and only if X ∩ A = ∅,
that is, if and only if A is a union of components of M\X.

It is a little more subtle but also not difficult to show that a tangle
of order 3 corresponds to a 3-connected part of the canonical 2-sum
decomposition of M . Here something is lost. Each 3-connected part of
the 2-sum decomposition is determined up to isomorphism, but these
parts are minors of the original matroid and the ground sets of these
minors are never uniquely determined. Apart from that quibble, there
is a perfectly satisfactory relationship between the 3-tangles of a ma-
troid and the parts of the canonical 2-sum decomposition.

As noted in the introduction, the problem is immediately more vexed
for 4-connectivity. The various weaker notions of 4-connectivity that
have been considered, for example vertical 4-connectivity, cyclic 4-
connectivity, internal 4-connectivity, and sequential 4-connectivity, all
have the property that, apart from degenerately small examples, a ma-
troid with any of the above types of 4-connectivity will have a unique
tangle of order 4. What about the converse? Given a tangle of order
4 in a matroid M , is there a version of 4-connectivity such that M is
guaranteed to have a minor N with this type of 4-connectivity? This
poorly posed question clearly needs refinement. In fact, we want the
minor N to have more than just a connectivity property; we want the
information in the minor to relate to that of the tangle in a significant
way. Returning to the trivial example of 2-tangles, we want to iden-
tify the particular component associated with the tangle, not just any
component. Furthermore, we want to guarantee that information in
the tangle has not been lost. Specifically, we want to know precisely
the component captured by the 2-tangle rather than just some proper
minor of this component.

One issue that occurs with tangles is measuring their “size”. It is
natural to view the “size” of a 2-tangle in a matroid M as the cardinal-
ity of the ground set of the component of M that it captures, and an
analogous comment clearly applies to 3-tangles. For tangles of higher
order, things become a little more complicated.

Let T be a tangle of order k in the matroid M . A T -small subset
is maximal if it is not properly contained in any other T -small subset.
It follows from (T4) that, unless T has order 2, the set E(M) can
be covered by T -small sets. We define the cover-size of T to be the
minimum number of T -small sets whose union is E(M). Cover size
is generally not well defined for tangles of order 2, but, for tangles of
order at least 3, each singleton is T -small, so the ground set can be
covered by T -small sets. It is easily seen that, for tangles of order 3,
the cover-size of T is equal to the size of the ground set of a member
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of the isomorphism class of 3-connected minors that it captures. While
cover size is a natural measure, we were led to an alternative measure
that relates well both to ground-set cardinality for highly connected
matroids and to k-connected sets. That version relies on the tangle
matroid and we turn to this topic now.

Tangle matroids and breadth. Tangle matroids were introduced in
[7]. The next theorem is [7, Lemma 4.3].

Theorem 3.1. Let T be a tangle of order k in a matroid M and let
H be the collection of maximal T -small sets. Then H is the collection
of hyperplanes of a rank-(k − 1) matroid on E(M).

The matroid defined by Theorem 3.1 is the tangle matroid of T and
is denoted MT . Hall [8] proved the following characterisation of tangle
matroids.

Theorem 3.2. A matroid M other than U1,1 is a tangle matroid if and
only if M has no three hyperplanes whose union is E(M).

The next lemma summarises some basic properties of the tangle
matroid. Note that, since tangles depend only on the connectivity
function of M , the collection T is a tangle in M if and only if T is a
tangle in M∗.

Lemma 3.3. Let T be a tangle of order k in a matroid M . Then the
following hold for MT and all subsets A of E(M).

(i) If A is T -strong, then rMT (A) = k − 1; otherwise, rMT (A) =
min{λM(B) : B ⊇ A and B is T -small}.

(ii) A is a basis of MT if and only if A is T -strong and |A| = k−1.
(iii) If |A| < k − 1, then A is independent in MT if and only if A

is T -small and there is no T -small set B containing A with
λ(B) < |A|.

We use the tangle matroid to obtain our alternative measure of size.
Let T be a tangle of order k in a matroid M . Then the breadth of T is
the cardinality of a largest spanning uniform restriction of MT .

Consider a trivial example. In a matroid M , let C be a connected
component with at least two elements, and let T be the tangle of order 2
defined as follows. A set Z with λ(Z) = 0 is T -large if C ⊆ Z; otherwise
it is T -small. Evidently, r(MT ) = 1. Moreover, MT |C ∼= U1,|C| and all
elements of E(MT )− C are loops. Thus the breadth of T is |C|.

For a slightly less trivial example, let T be a tangle of order 3 in
M . We may assume that M is connected as the presence of other
components simply adds loops to the tangle matroid. We have r(MT ) =
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2, and the breadth of T is the number of parallel classes in MT . Note
that each parallel class identifies a maximal T -small set. Each such
T -small set contains an element of the 3-connected minor N of M
that T captures. Hence the breadth of T is equal to the cardinality
of this minor. Note that a 3-connected matroid M with at least four
elements has a unique tangle T of order 3 and the breadth of T is equal
to |E(M)|. This correspondence works more generally. We omit the
straightforward proof of the next result.

Lemma 3.4. Let M be a k-connected matroid other than U1,1 where
k ≥ 2 and |E(M)| > 3(k − 2). Then M has a unique tangle T of
order k. In particular, T = {A ⊆ E(M) : |A| ≤ k − 2}. Moreover,
MT ∼= Uk−1,|E(M)| and the breadth of T is equal to |E(M)|.

Breadth and k-connected sets. We defined the breadth of a tangle
using uniform submatroids of the tangle matroid. Such submatroids
also give rise to k-connected sets.

Lemma 3.5. Let T be a tangle of order k in the matroid M and
assume that Z ⊆ E(M) has the property that |Z| ≥ k − 1 and that
MT |Z ∼= Uk−1,|Z|. Then Z is a k-connected set in M .

Proof. Assume that Z satisfies the hypotheses of the lemma, but that
Z is not a k-connected set. Then, up to symmetry, there is a partition
(A,B) of E(M) such that either (i) |A∩Z| < k− 1, |B ∩Z| ≥ |A∩Z|
and λ(A) < |A∩Z|, or (ii) |A∩Z|, |B ∩Z| ≥ k− 1, and λ(A) < k− 1.
Consider (i). If A is T -small, then rMT (A∩Z) ≤ λ(A) < |A∩Z| < k−1.
This implies that A∩Z contains a circuit of MT of size at most k− 2,
contradicting the fact that MT |Z ∼= Uk−1,|Z|. We obtain the same
contradiction in the case that B is T -small. For (ii) we may assume
that A is T -small. In this case we obtain the contradiction that A∩Z
contains a circuit of MT of size at most k−1. Hence Z is a k-connected
set of M . �

On the other hand sufficiently large k-connected sets give rise to
tangles.

Lemma 3.6. Let k ≥ 3 be an integer and let Z be a k-connected set
in the matroid M such that |Z| ≥ 3k − 5. Let TZ be the collection of
subsets of E(M) where A ∈ TZ if λ(A) ≤ k − 2 and |Z ∩ A| ≤ k − 2.
Then the following hold.

(i) TZ is a tangle of order k in M .
(ii) MTZ |Z ∼= Uk−1,|Z|.
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Proof. It follows from the definition of TZ that (T1) holds. Say (A,B)
is a partition of E(M) with λ(A) ≤ k − 2. By the definition of k-
connected set, either |A ∩ Z| ≤ k − 2 or |B ∩ Z| ≤ k − 2. Hence
either A or B is in TZ so that (T2) holds. If A,B,C ∈ TZ , then
|A∩Z|, |B ∩Z|, |C ∩Z| ≤ k− 2. Hence |(A∪B ∪C)∩Z| ≤ 3k− 6 <
3k − 5 ≤ |Z|. Hence A ∪B ∪ C 6= E(M) so that (T3) holds.

Say e ∈ E(M). Then λ({e}) ≤ 1 ≤ k−2, and |{e}∩Z| ≤ 1 ≤ k−2.
Hence {e} ∈ T so that, by (T3), E(M) − {e} /∈ TZ and (T4) holds.
This proves (i). Part (ii) is routine. �

If Z satisfies the hypotheses of Lemma 3.6, then we say that the
tangle TZ is the tangle in M generated by Z. All up we have

Lemma 3.7. Let T be a tangle in the matroid M of order k and
breadth t. Then M contains a t-element k-connected set Z such that
MT |Z ∼= Uk−1,|Z|. Moreover, if t ≥ 3k − 5, then T is generated by Z.

The connection between uniform submatroids of the tangle matroid
and k-connected sets outlined above clearly justifies the use of breadth
as a parameter to measure the “size” of a tangle.

More basic facts on tangle matroids. Let T be a tangle in a
matroid M . Recall that a subset A of E(M) is T -weak if A is contained
in a T -small set. Note that T -weak sets can have arbitrarily high
connectivity, so T -weak sets are not necessarily T -small. The next
lemma follows immediately from the definitions. By Theorem 3.1 if T
is a tangle of order k, then r(MT ) = k − 1.

Lemma 3.8. Let T be a tangle of order k in a matroid M and suppose
A ⊆ E(M). Then

(i) A is T -weak if and only if rMT (A) < k − 1; and
(ii) if A is a proper flat of MT , then A is T -small and rMT (A) =

λM(A).

Note that the converse of Lemma 3.8(ii) does not hold. Hall [8,
Theorem 4.1, Corollary 4.2] proved the following result.

Lemma 3.9. Let T be a tangle in a matroid M . If X ⊆ E(M), then
clM(X) ⊆ clMT (X). Moreover, MT is a quotient of M .

The next result is an immediate consequence of this lemma.

Corollary 3.10. Let T be a tangle in a matroid M and let A be a flat
of MT . Then A is fully closed in M .

A matroid M is round if its ground set cannot be covered by two
hyperplanes. Equivalently, M is round if, whenever (A,B) is a partition
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of E(M), either A or B is spanning. The fact that the tangle matroid
is round is an immediate consequence of Theorem 3.2.

Corollary 3.11. Let T be a tangle in a matroid M . Then MT is
round.

Lemma 3.12. Let T be a tangle of order at least 3 in a 3-connected
matroid M . Then MT is 3-connected.

Proof. Since T has order at least 3, we have r(MT ) ≥ 2. By Corol-
lary 3.11, MT is round. Hence si(MT ) is 3-connected. Thus si(MT ) has
at least three elements. Assume that MT has a set X that is a loop or
a nontrivial parallel class. Then M has at least four elements. Thus, as
M is 3-connected, it is simple. Then, since rMT (X) ∈ {0, 1}, we have
λM(B) ∈ {0, 1} for some B in T such that X ⊆ B. As B ∈ T , we see
that |E(M)−B| ≥ 2, so M is not 3-connected, a contradiction. �

A set X in a matroid M is solid if there is no partition {A,B} of X
with λ(A), λ(B) < λ(X). Note that an exactly 3-separating set X in
a 3-connected matroid is solid if and only if |X| ≥ 3. The next lemma
works for any 3-connected matroid, but it is the application for tangle
matroids that we need.

Lemma 3.13. Let T be a tangle of order at least 4 in a 3-connected
matroid M . Let F be a solid proper flat of MT of rank at least two,
and let L be a solid rank-2 flat of MT that is not contained in F . Then
|F ∩ L| ≤ 1. Moreover, if a ∈ F ∩ L, then a ∈ clM(F − {a}) and
a ∈ clM(L− {a}).

Proof. By Lemma 3.3(iii), MT is simple. Hence, as L 6⊆ F , we see that
|F∩L| ≤ 1. By Lemma 3.9, both F and L are flats of M . For a ∈ F∩L,
since L is solid flat of MT , it follows that |L| ≥ 3, so a ∈ clM(L−{a}).
Thus a ∈ clM(E(M) − F ), so a ∈ clM(F − {a}) otherwise F is not
solid. �

4. Tangles Generated in Minors

Let N be a minor of a matroid M and let TN be a tangle of order
k in N . Now let TM be the collection of all sets A of E(M) such
that λM(A) < k − 1, and A ∩ E(N) ∈ TN . The next lemma follows
immediately from the definitions [6, Lemma 5.1].

Lemma 4.1. TM is a tangle of order k in M .

We say that TM is the tangle in M induced by TN . In the other
direction, things are not as smooth. If TM is a tangle of order k in M ,
then it may be that there is more than one tangle of order k in N that
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induces TM , or there may be no tangle of order k in N that induces
TM . In what follows, we freely use the next elementary result (see, for
example, [11, Corollary 8.2.5]).

Lemma 4.2. Let N be a minor of a matroid M and A ⊆ E(M). Then
λN(A ∩ E(N)) ≤ λM(A).

Let S be a collection of (k − 1)-separating subsets of a matroid M .
We say S generates a tangle T in M if T is the unique tangle of order
k for which S ⊆ T . Let N be a minor of a matroid M , let TM be a
tangle in M of order k, and let TN be a tangle in N . We say that TM
generates the tangle TN in N if TN is the unique tangle of order k in
N that contains {A ∩ E(N) : A ∈ TM}. The next lemma follows from
the definitions.

Lemma 4.3. Let TM be a tangle of order k in a matroid M , and let N
be a minor of M . If TM generates the tangle TN in N , then TN induces
TM in M .

The next lemma enables us to focus on minors that arise from delet-
ing or contracting a single element.

Lemma 4.4. Let N be a minor of a matroid M , and let P be a minor
of N . Let TM , TN , and TP be tangles in M , N , and P , respectively. If
TM generates TN in N , and TN generates TP in P , then TM generates
TP in P .

Proof. Let SM,N = {A∩E(N) : A ∈ TM}, let SM,P = {A∩E(P ) : A ∈
TM}, and let SN,P = {A ∩ E(P ) : A ∈ TN}.

4.4.1. SM,P ⊆ SN,P .

Proof. Say Z ∈ SM,P . Then Z = A ∩ E(P ) for some A ∈ TM . Now
A ∩ E(N) ∈ SM,N . Hence A ∩ E(N) ∈ TN . Thus A ∩ E(P ) ∈ SN,P ,
that is, Z ∈ SN,P . �

Since SM,P ⊆ SN,P we know that every member of SM,P is TP -small.
If TP is the only tangle of order k in P with this property, then SM,P

generates TP , that is, TM generates TP in P , as required.
Assume otherwise. Then there is a tangle T ′ of order k in P such

that T ′ 6= TP and such that every member of SM,P is T ′-small. If
every member of SN,P is T ′-small, then we contradict the fact that
SN,P generates TP . Hence there is a member A′ of SN,P such that A′ is
not T ′-small. Now A′ = A1∩E(P ) for some A1 in TN . By Lemma 4.3,
TN induces TM , so A1 = A0 ∩ E(N) for some A0 in TM . Thus A′ =
A0 ∩ E(P ), so A′ ∈ SM,P . Hence A′ is T ′-small, a contradiction. �
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Recall that, for a tangle T , a set W is T -weak if W ⊆ A for some
set A in T .

Lemma 4.5. Let TM be a tangle of order k in a matroid M and let
N be a minor of M . Then TM generates the tangle TN in N if and
only if the collection W defined by W = {W ⊆ E(N) : λN(W ) ≤
k − 2; W is TM -weak in M} generates TN .

Proof. Observe that W contains {A ∩ E(N) : A ∈ TM}. Now let T
be a tangle in N that contains {A ∩ E(N) : A ∈ TM}. Say W ∈ W .
Then W is TM -weak, so there exists A ∈ TM such that W ⊆ A. Now
A ∩ E(N) ∈ T and W ⊆ A ∩ E(N). Therefore W ∈ T .

We deduce that every tangle inN that contains {A∩E(N) : A ∈ TM}
also contains W . Thus if W generates TN , then TM generates TN and
conversely. �

Let T be a tangle of order k in a matroid M and let N be a minor of
M . We are hoping that T will generate a tangle of order k in N . The
orientation of many (k − 1)-separating sets in N will be determined
by Lemma 4.5 but there will typically be plenty of others. In the case
that N is a single-element removal of M , we can be precise about what
these undetermined sets are.

Lemma 4.6. Let T be a tangle of order k in a matroid M and let
a ∈ E(M). Let (X, Y ) be a partition of E(M/a) such that λM/a(X) ≤
k − 2. Then the following hold.

(i) At most one of X and Y is T -weak.
(ii) If neither X nor Y is T -weak, then λM(X) = λM(Y ) = k − 1,

and a ∈ clM(X) ∩ clM(Y ).

Proof. Assume that both X and Y are T -weak. Then there are T -
small sets X ′ and Y ′ containing X and Y , respectively. Now, provided
k ≥ 3, we see that {X ′, Y ′, {a}} is a cover of E(M) by T -small sets, a
contradiction. If k = 2, then {X ′, Y ′} is a cover of E(M) by T -small
sets unless X ′ = X and Y ′ = Y . In the exceptional case, each of X
and Y is a union of components of M . Hence {a} is a component of
M and, again, {X ′, Y ′, {a}} is a cover of E(M) by T -small sets.

Assume that neither X nor Y is T -weak. Say λM(X) ≤ k− 2. Then
either X or Y ∪ {a} is T -small, so one of X or Y is T -weak. Hence
λM(X), λM(Y ) ≥ k − 1. Since λM/a(X) = k − 2, we have λM(X) =
λM(Y ) = k−1. If a /∈ clM(X)∩ clM(Y ), then λM/a(X) = k−1. Hence
a ∈ clM(X) ∩ clM(Y ), as required. �

Partitions satisfying (ii) of Lemma 4.6 are the ones we have to focus
on if we are seeking a tangle generated by T in M/a. The next lemma



14 N. BRETTELL, S. JOWETT, J. OXLEY, C. SEMPLE, AND G. WHITTLE

gives sufficient conditions that enable us to canonically orient all of the
(k − 1)-separations of M/a. Such an orientation may fail to deliver a
tangle, but, if it succeeds, that tangle will be generated by T in M/a.

Lemma 4.7. Let T be a tangle of order k in a matroid M , let F be
a flat of MT of rank t ≤ k − 2, and let a be an element of F such
that F − {a} is solid in M/a and λM/a(F − {a}) = t. Let (X, Y ) be a
partition of E(M/a) such that λM/a(X) = k− 2, and such that neither
X nor Y is T -weak. Then, up to switching the labels of X and Y , the
following hold where G = E(M)− F .

(i) λM(X), λM(Y ) = k − 1 and a ∈ clM(X) ∩ clM(Y );
(ii) λM/a(F ∩X) ≥ t and λM/a(F ∩ Y ) < t;
(iii) λM/a(G ∩X) > k − 2 and λM/a(G ∩ Y ) ≤ k − 2; and
(iv) G ∩ Y is T -small.

Moreover, k ≥ 3 and if T ′ is a tangle in M/a that induces T , then Y
is T ′-small.

Proof. Part (i) follows from Lemma 4.6. As F−{a} is solid in M/a and
λM/a(F −{a}) = t, we may assume up to labels that λM/a(F ∩X) ≥ t.
By the symmetry of the connectivity function, λM/a((F −{a})∪X) =
λM/a(G ∩ Y ). Thus, by submodularity, we have

λM/a(G ∩ Y ) ≤ λM/a(F − {a}) + λM/a(X)− λM/a(F ∩X)

≤ t+ (k − 2)− t.

Hence λM/a(G ∩ Y ) ≤ k − 2.
Since F is a rank-t flat of MT , it follows that F is T -small and

λM(F ) = t. Thus λM(F ) = λM/a(F − {a}), so a /∈ clM(G). Hence
a /∈ clM(G ∩ Y ) and λM(G ∩ Y ) = λM/a(G ∩ Y ) = k − 2. If G ∩ Y
is T -large, then F ∪ X is T -small. This implies that X is T -weak, a
contradiction. Hence G ∩ Y is T -small.

By symmetry, the argument above proves that if λM/a(G∩X) ≤ k−2,
then G∩X is T -small. This implies that {F,G∩X,G∩Y } is a cover of
E(M) by T -small sets contradicting the definition of a tangle. Hence
λM/a(G ∩X) > k − 2.

If λM/a(F ∩ Y ) ≥ t then, via the argument at the start of the proof,
we deduce that λM/a(G ∩X) ≤ k − 2. Hence λM/a(F ∩ Y ) < t. Thus
k ≥ 3.

Now assume that T ′ is a tangle in M/a that induces T . The set
F − {a} is T -weak, and λM/a(F − {a}) = t ≤ k− 2. Hence F − {a} is
T ′-small. Moreover, G ∩ Y is T -small and is therefore T ′-small. If X
is T ′-small, then we can cover E(M/a) by three T ′-small sets. Hence
X is T ′-large, so Y is T ′-small. �
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Let T be a tangle of order k in a matroid M , let F be a rank-t
flat of MT where t ≤ k − 2, and let G = E(M) − F . Assume that
a is an element of F for which λM/a(F − {a}) = λM(F ) = t, and
F − {a} is solid in M/a. Let (U, V ) be a partition of E(M/a) such
that λM/a(U) ≤ k − 2. The (k − 1)-separating partition (U, V ) is of
Type I if U or V is T -weak; it is of Type II if neither U nor V is T -weak.
By Lemma 4.6, when (U, V ) is of Type I, exactly one of U and V is
T -weak.

We now construct a set T ′ of sets in M/a that are determined by T
in M/a as follows. If (U, V ) is a Type I (k − 1)-separating partition
of E(M/a), then the member of {U, V } that is T -weak is in T ′. If
(U, V ) is a Type II (k − 1)-separating partition of E(M/a), then, by
Lemma 4.7, there is a unique Y in {U, V } such that λM/a(Y ∩ F ) < t
and λM/a(Y ∩ G) ≤ k − 2. This member Y is in T ′ and we have that
λM(Y ) = k − 1 and a ∈ clM(Y ). We say that a member Z of T ′ is of
Type I or Type II if it comes from a Type I or Type II (k−1)-separating
partition of E(M/a).

Corollary 4.8. Let T be a tangle of order k in a matroid M , let F be
a proper flat of MT . Assume that a ∈ F is such that λM/a(F −{a}) =
λM(F ) and F − {a} is solid in M/a. Let T ′ be the collection of sets
determined by T in M/a. Then the following hold.

(i) If (A,B) is a partition of E(M/a) with λM/a(A) ≤ k − 2, then
exactly one of A and B belongs to T ′.

(ii) If A ∈ T ′ and B ⊆ A such that λM/a(B) ≤ k− 2, then B ∈ T ′.
(iii) If e ∈ E(M/a), then {e} ∈ T ′.
(iv) If T generates a tangle TM/a in M/a, then TM/a = T ′.

Proof. Part (i) follows immediately from the definition of the members
of T ′. For (ii), we have A ∈ T ′ and B ⊆ A such that λM/a(B) ≤ k− 2.
Suppose A is of Type I. Then A is T -weak. As B ⊆ A, it follows that
B is T -weak. As λM/a(B) ≤ k − 2, we deduce that B is a Type I
member of T ′. We may now assume that A is not of Type I. Then,
with A′ = E(M/a)− A, neither A nor A′ is T -weak. Thus A of Type
II, and A and A′ are T -strong. Assume that B 6∈ T ′. Then B is not
T -weak. Let B′ = E(M/a) − B. Assume B′ is not T -weak. Then,
by Lemma 4.7, λM(B) = λM(B′) = k − 1 and either B is a Type II
set, a contradiction; or λM/a(B

′ ∩ F ) < t and λM/a(B
′ ∩ G) ≤ k − 2.

Since we also know that λM/a(A∩F ) < t, it follows by Lemma 2.8 that
λM/a((A−B′) ∩ F ) < t or λM/a((B

′ −A) ∩ F ) < t. Now, in M/a, one
of the partitions {(A−B′) ∩ F,B′ ∩ F} and {(B′ −A) ∩ F,A ∩ F} of
F − {a} violates the fact that this set is solid. We conclude that B′ is
T -weak. As B′ ⊇ A′, we deduce that A′ is T -weak, a contradiction.
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For (iii), note that, as F is a proper flat of MT , it follows that F ∈ T .
Thus rMT ({e}) ≤ rMT (F ) ≤ k − 2. By Lemma 3.8(ii), {e} is T -weak.
As k ≥ 3, it follows that λM/a({e}) ≤ k − 2. Hence {e} is a Type I
member of T ′.

For (iv), assume that T generates a tangle TM/a in M/a. Let (U, V )
be a partition of E(M/a) for which λM/a(U) ≤ k − 2. If U or V is T -
weak, then (U, V ) is a Type I (k − 1)-separating partition of E(M/a)
and the T -weak member of {U, V } is in T ′. Say U ∈ T ′. Then U ⊆ U0

where U0 ∈ T . Thus λM(U0) ≤ k − 2, so λM/a(U0 − {a}) ≤ k − 2.
Hence U0 − {a} ∈ TM/a. As λM/a(U) ≤ k − 2 and U0 − {a} ∈ TM/a, so
U ∈ TM/a. Thus if U is a Type I member of T ′, then U ∈ TM/a

Now suppose that U is a Type II member of T ′. By the last part
of Lemma 4.7, U ∈ TM/a. We deduce that T ′ ⊆ TM/a. By (i)–(iii), T ′
is a tangle provided there are no three members of T ′ whose union is
E(M/a). But this holds because TM/a is a tangle. Since TM/a is the
unique tangle of order k in M/a that contains {A−{a} : A ∈ T }, and
T ′ is a tangle of order k in M/a that contains {A− {a} : A ∈ T }, we
conclude that T ′ = TM/a. �

The upshot of Corollary 4.8 is that to prove that T generates a
tangle in M/a, it suffices to prove that E(M/a) is not covered by
three members of T ′. One way to guarantee this is to strengthen the
condition on F − {a} in M/a. A subset A of E(M) is titanic if there
is no partition {X, Y, Z} of A such that λ(X), λ(Y ), λ(Z) < λ(A). We
can replace the condition in the definition of titanic by an apparently
weaker one. An immediate consequence of the next result is that if A
is titanic, then it is solid.

Lemma 4.9. Let M be a matroid and A ⊆ E(M). Then A is titanic
if and only there are no sets X, Y, Z ⊆ A such that X ∪Y ∪Z = A and
λ(X), λ(Y ), λ(Z) < λ(A).

Proof. Assume that X∪Y ∪Z = A and that λ(X), λ(Y ), λ(Z) < λ(A).
By Lemma 2.8, we may assume, up to labels that λ(X − Y ) < λ(A).
Replacing X by X−Y and continuing this process produces a partition
that proves that A is titanic. The converse is immediate. �

Lemma 4.10. Let T be a tangle of order k in a matroid M , let F
be a rank-t flat of MT where t ≤ k − 2. Assume that a ∈ F , that
λM/a(F −{a}) = λM(F ), and that F −{a} is titanic in M/a. Then T
generates a tangle of order k in M/a.

Proof. Let G = E(M) − F . Let T ′ be the collection of sets that are
determined by T in M/a. Assume that T ′ does not generate a tangle
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in M/a. Then there are sets X1, X2, X3 in T ′ such that X1∪X2∪X3 =
E(M/a). Every member of T ′ is either of Type I, that is, it is contained
in a T -small set, or it is of Type II.

4.10.1. If Xi is of Type I, then there is a T -small subset X ′i of E(M)
that contains Xi such that λM(X ′i ∩ F ) < t or F ⊆ X ′i.

Proof. Since Xi is of Type I, there is a T -small subset X ′i of E(M) that
contains Xi. Say λM(X ′i∩F ) ≥ t. Now λM(F ) = t and λM(X ′i) ≤ k−2.
Thus, as

λM(X ′i ∩ F ) + λM(X ′i ∪ F ) ≤ λM(X ′i) + λM(F ),

it follows that λM(X ′i ∪ F ) ≤ k − 2. Assume that X ′i ∪ F is T -large.
Then {E(M) − (X ′i ∪ F ), F,X ′i} is a cover of E(M) by T -small sets,
a contradiction. Therefore X ′i ∪ F is T -small. In this case, relabelling
X ′i∪F as X ′i establishes that the second outcome of (4.10.1) occurs. �

4.10.2. At least one member of {X1, X2, X3} is of Type I.

Proof. Suppose this fails. Then Xi has Type II for all i in {1, 2, 3}. But
then λM/a(Xi∩F ) < t for all i in {1, 2, 3}, contradicting the assumption
that F − {a} is titanic in M/a. �

By (4.10.2), we may assume that X1 is of Type 1. By (4.10.1),
there is a T -small subset X ′1 of E(M) that contains X1 such that
λM(Xi ∩ F ) < t or F ⊆ X ′i.

4.10.3. λM(X ′1 ∩ F ) < t.

Proof. Assume otherwise. Then, by the choice of X ′1, we see that
F ⊆ X ′1. For each i in {2, 3}, if Xi is of Type I, let X ′i be a T -small
set containing Xi; and, if Xi is of Type II, let X ′i = Xi ∩ G. Using
Lemma 4.7(iv), we deduce that, in each case, X ′i is T -small. Then
{X ′1, X ′2, X ′3} is a cover of E(M) by T -small sets, a contradiction. �

Let X ′′1 = X ′1 − {a}. Since X ′1 is T -small, X ′′1 ∈ T ′. Since λM(X ′1 ∩
F ) < t, we have λM/a(X

′′
1 ∩ (F −{a})) < t. Say i ∈ {2, 3}. Suppose Xi

has Type I. Then, by (4.10.1), there is a T -small subset X ′i of E(M)
containing Xi such that λM/a(X

′
i ∩ (F − {a}) < t or F ⊆ X ′i. Assume

the latter occurs. Then, for {j} = {2, 3}−{i}, when Xj is of Type I, we
take X ′j to be a T -small set containing Xj; and, when Xj is of Type II,
we take X ′j = Xi∩G. As above, {X ′1, X ′2, X ′3} is a cover of E(M) by T -
small sets, a contradiction. We conclude that λM/a(X

′
i ∩ (F −{a}) < t.

Suppose Xi has Type II. Then, by Lemma 4.7, λM/a(Xi∩(F−{a})) < t.
Thus, both when Xi has Type I and when Xi has Type II, we have
λM/a(Xi ∩ (F − {a})) < t. We let X ′′i be Xi.
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Now the sets X ′′1 ∩ (F − {a}), X ′′2 ∩ (F − {a}), and X ′′3 ∩ (F − {a})
cover F − {a}. As λM/a(Z) < t for each such set Z, these sets provide
a contradiction to the assumption that F − {a} is titanic in M/a. �

5. Preserving Breadth

Until further notice, T is a tangle of order k ≥ 2 in a matroid M ,
the set F is a flat of MT with rM(F ) = t ≤ k − 2, and a ∈ F has the
properties that λM/a(F −{a}) = t and that F −{a} is titanic in M/a.
By Lemma 4.10, T generates a tangle Ta in M/a.

Let M1 and M2 be matroids on a common ground set E. We say that
M1 is freer than M2 if r(M1) = r(M2) and every set that is independent
in M2 is independent in M1. Equivalently, the identity map on E
is a rank-preserving weak map from M1 to M2. The next lemma is
elementary and can be derived, for example, by combining Proposition
7.3.11 and Corollary 7.3.13 of [11].

Lemma 5.1. The matroid M1 is freer than M2 if r(M1) = r(M2) and
every hyperplane of M1 is contained in a hyperplane of M2.

We are interested in the relationship between MT \a and MTa . Note
that, because a tangle in M is a tangle in M∗, the matroids MT and
(M∗)T are equal. Thus MT \a = (M∗)T \a. This may cause confusion
because of the familiar identity that M∗\a = (M/a)∗.

Lemma 5.2. The matroid MT \a is freer than MTa.

Proof. By Corollary 3.11, MT is round, so a is not a coloop of MT .
Hence r(MT \a) = k − 1. By definition, r(MTa) = k − 1. Let H
be a hyperplane of MT \a. Then rMT (H) < r(MT ), so H is T -weak.
Moreover, either H is a hyperplane of MT , or H ∪ {a} is a hyperplane
of MT and a ∈ clMT (H). It follows that either λM(H) = k − 2, or
λM(H ∪ {a}) = k − 2 and H ∪ {a} is T -small. Both cases imply that
λM/a(H) ≤ k − 2 and that H is contained in a Ta-weak set. Hence H
has rank at most k − 2 in MTa . We deduce that H is contained in a
hyperplane of MTa and the lemma follows from Lemma 5.1. �

It would be very surprising if the breadth went up.

Lemma 5.3. For MT and MTa,

breadth(MTa) ≤ breadth(MT ).

Proof. By Lemma 5.2, MT \a is freer than MTa , so any uniform restric-
tion of MTa is also uniform in MT \a. �
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The real difference between MT \a and MTa is that elements of F −
{a} are potentially occupying more specialised positions in MTa but
otherwise sets are unperturbed. In particular, we have the following
where G = E(M)− F .

Lemma 5.4. Suppose X ⊆ E(M)− {a}.
(i) If F − {a} ⊆ X, then X has the same rank in both MT \a and

MTa.
(ii) If X ⊆ G, then X has the same rank in both MT \a and MTa.

Proof. Assume that X has different ranks in MTa and MT \a. Since
MT \a is freer than MTa ,

5.4.1. rMTa (X) < rMT \a(X).

If X is spanning in MT , then X is spanning in both MT \a and
MTa . Hence we may assume that rMT (X) = s, where s ≤ k − 2. Let
X ′ = clMTa (X).

Now rMTa (X ′) = rMTa (X) and rMT \a(X
′) ≥ rMT \a(X). Thus

5.4.2. rMTa (X ′) = s− 1 and rMT \a(X) = rMT (X) = s.

By Corollary 3.10, X ′ is a fully closed set in M/a with λM/a(X
′) =

s − 1. Since λM(X ′) = s ≤ k − 2, the set X ′ is either T -small or
T -large. If the latter holds, X is spanning in MTa , so X is spanning in
MT , a contradiction. Hence X ′ is T -small.

By Corollary 3.10, X ′ is a fully closed set in M/a with λM/a(X
′) = s.

5.4.3. a ∈ clM(X ′) and a ∈ clM(E(M)− (X ′ ∪ {a})).

Proof. Assume this fails. Then λM/a(X
′) = λM(X ′) = s, a contradic-

tion. �

Since λM/a(F − {a}) = λM(F ),

5.4.4. a /∈ clM(G).

Let Y ′ = E(M)− (X ′ ∪ {a}). By (5.4.3) and (5.4.4), neither X ′ nor
Y ′ is contained in G. Hence neither X ′ ∩ (F −{a}) nor Y ′ ∩ (F −{a})
is empty. Thus F − {a} 6⊆ X ′, so F − {a} 6⊆ X. We deduce that (i)
holds.

To prove (ii), assume that X ⊆ G. We know that X ′ 6⊆ G. Moreover,
by (5.4.3), a ∈ clM(X ′) ∩ clM(Y ′).

5.4.5. λM(X ′ ∩ F ) < t and λM(Y ′ ∩ F ) ≥ t.

Proof. Say λM(X ′∩F ) ≥ t. Then λM(X ′∪F ) ≤ s. But X ′∪F cannot
be T -large, as otherwise we can cover E(M) by three T -small sets.
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Hence X ′∪F is T -small with λM(X ′∪F ) ≤ λM(X ′). This means that
X ′ is not a flat of MT \a. But X ′ is a flat of MTa . This contradicts the
assumption that MT \a is freer than MTa . Hence λM(X ′ ∩ F ) < t.

As λM(X ′ ∩ F ) < t, we see that λM/a(X
′ ∩ F ) < t. As F − {a} is

titanic in M/a, we see that λM/a(Y
′∩F ) ≥ t. Thus λM(Y ′∩F ) ≥ t. �

5.4.6. λM(X ′ ∩G) < s.

Proof. Assume that λM(X ′ ∩ G) ≥ s. By (5.4.4), λM/a(X
′ ∩ G) =

λM(X ′ ∩ G). Thus, by submodularity, we have λM(X ′ ∪ G) ≤ t, so
λM/a(X

′ ∪ G) ≤ t. In other words, λM((Y ′ ∩ F ) ∪ {a}) ≤ t and
λM(Y ′ ∩F ) = λM(G∪X ′ ∪{a}) = λM(G∪X ′) ≤ t. If λM(Y ′ ∩F ) < t
or λM((Y ′ ∩ F ) ∪ {a}) < t, then λM/a(Y

′ ∩ F ) < t contradicting the
fact that F −{a} is titanic in M/a. Thus λM(Y ′ ∩F ) = t = λM((Y ′ ∩
F ) ∪ {a}) = t.

We deduce that either a ∈ cl∗M(Y ′ ∩ F ) or a ∈ clM(Y ′ ∩ F ). By
(5.4.3), a ∈ clM(X ′), so, by orthogonality, a /∈ cl∗(Y ′ ∩ F ). Therefore
a ∈ clM(Y ′∩F ), so λM/a(Y

′∩F ) < λM(Y ′∩F ). Since λM(Y ′∩F ) = t,
we have λM/a(Y

′ ∩ F ) < t contradicting the assumption that F − {a}
is solid in M/a. �

Since λM(X ′ ∩ G) < s and X ⊆ X ′ ∩ G, we have rMT (X) < s, so
rMT \a(X) < s. But λM/a(X

′) = λM(X ′)−1 = s−1, so rMTa (X) = s−1.
Hence rMT \a(X) ≤ rMTa (X). This contradiction to (5.4.1) implies that
(ii) holds. �

6. Low-Rank Flats of the Tangle Matroid

The earlier results apply in general with no assumption having been
made about the rank of the flat F of the tangle matroid. For this
paper, we need to consider the cases when F has rank at most 2 and
that is the focus of this section.

Note that Lemmas 4.6, 4.7, 4.8, 4.10, 5.2, 5.3 and 5.4 all concern
tangles in a minor obtained by contracting an element of a matroid.
The reason for the focus on contraction was that it facilitated more
natural geometric arguments in proofs. Since the tangles in matroids
are invariant under duality, each of the above mentioned lemmas has
an obvious dual which concerns tangles in a minor obtained by deleting
an element of the matroid. In what follows we apply the dual version
of the lemmas.

Rank-0 flats of the tangle matroid.
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Lemma 6.1. Let T be a tangle of order k ≥ 2 in a matroid M . If
a is a loop of MT , then T generates a tangle Ta of order k in M\a.
Moreover, breadth(Ta) = breadth(T ).

Proof. Let F be the unique rank-0 flat of MT , that is, F is the set of
loops of MT . Observe that F−{a} is titanic in M\a, even when F−{a}
is empty as there are no sets in a matroid whose rank is less than zero.
Suppose first that k = 2. Then M has a connected component X
with at least two elements such that T = {A ⊆ E(M) : A ∩X = ∅}.
Moreover, F = E(M) − X. Then {A ⊆ E(M\a) : A ∩ X = ∅} is a
tangle Ta of order 2 in M\a that is generated by T . On the other hand,
when k ≥ 2, Lemma 4.10 gives that T generates a tangle Ta in M\a.
For arbitrary k ≥ 2, let U be the ground set of a maximal spanning
uniform submatroid of MT . Then U ⊆ E(M)− F . By Lemma 5.4(ii),
MT |U = MTa|U . Hence breadth(Ta) = breadth(T ). �

Lemma 6.2. Let T be a tangle of order k ≥ 2 in a matroid M and let
F be the set of loops of MT . Then MT \F is connected. Moreover, T
generates a tangle T ′ in M\F for which breadth(T ′) = breadth(T ).

Proof. If MT \F is not connected, then MT is not round, a contradic-
tion to Corollary 3.11. Thus MT \F is indeed connected. The remain-
der of the lemma follows by repeated application of Lemma 6.1 and
Lemma 4.4. �

A tangle T of order k in a matroid M is breadth-critical if, whenever
N is a proper minor of M and T generates a tangle T ′ of order k in N ,
we have breadth(T ′) < breadth(T ). The next corollary is immediate.

Corollary 6.3. If T is a breadth-critical tangle in a matroid M , then
M is connected.

Rank-1 flats of the tangle matroid. If T is a tangle in a connected
matroid M , then MT is loopless. It follows that rank-1 flats of MT are
parallel classes. Put in other words, the parallel classes of MT are the
maximal T -small 2-separating sets of M . The next lemma is clear.

Lemma 6.4. Let F be a 2-separating set of a connected matroid M .
Then F is titanic.

Lemma 6.5. Let T be a tangle of order at least 3 in a connected
matroid M and let F be a T -small 2-separating set of M with |F | ≥ 2.
Assume that a ∈ F and M\a is connected. Then T generates a tangle
Ta in M\a. Moreover, MT \a = MTa and breadth(Ta) = breadth(T ).

Proof. We may assume that F is a maximal T -small 2-separating set
in M . Then F is a rank-1 flat of MT . Since M is connected, MT is
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loopless. Hence F is a parallel class of MT . By Lemma 6.4, F − {a}
is titanic in M\a. Hence, by Lemma 4.10, T generates a tangle Ta in
M\a. Since M\a is connected, MTa is loopless. By Lemma 5.2, MT \a
is freer than MTa , so F − {a} is a set of parallel elements in MTa .

Say X ⊆ E(M)−{a}. By Lemma 5.4, X has the same rank in both
MT \a and MTa unless both X ∩ F and F − (X ∪ {a}) are nonempty.
In the exceptional case, since F − {a} is a set of parallel elements in
each of MT \a and MTa , we see that rMTa (X) = rMTa (X ∪ (F −{a})) =
rMT \a(X ∪ (F − {a})) = rMT \a(X). We deduce that MT \a = MTa .

Since a is a member of a non-trivial parallel class of MT , there is a
maximal spanning uniform restriction U of MT that avoids a. Since
MT \a = MTa , we see that U is a maximal spanning uniform restriction
of MTa . Hence breadth(Ta) = breadth(T ). �

Corollary 6.6. Let T be a tangle of order k ≥ 3 in a matroid M . If
M is not 3-connected, then M has an element a such that, for some
N in {M\a,M/a}, the tangle T generates a k-tangle T ′ in N with
breadth(T ′) = breadth(T ).

Proof. Assume that M is not 3-connected. Then, for some t in {0, 1},
there is a partition (X, Y ) of E(M) with λ(X) = t and |X|, |Y | >
t. By the definition of a tangle, we may assume that X ∈ T . If
t = 0, then rMT (X) = 0 and taking a in X, the result follows by
Lemma 6.1. Thus we may assume that t = 1, so M is connected.
Then, for a in X, by a well-known result of Tutte [14], either M\a
or M/a is connected. We lose no generality in assuming that M\a is
connected. By Lemma 6.5, T generates a tangle Ta in M\a such that
breadth(Ta) = breadth(T ). �

Rank-2 flats of the tangle matroid. Let T be a tangle of order
at least 4 in a matroid M . Assume that T is breadth-critical. Then,
by Corollaries 6.3 and 6.6, M is 3-connected. By Corollary 3.11 and
Lemma 3.12, MT is 3-connected and round. Our goal is to bound the
size of a rank-2 flat of MT . Say that F is such a flat. Then F is a
maximal T -small 3-separating set. By Corollary 3.10, F is fully closed
in M . We first note an obvious lemma.

Lemma 6.7. Let F be an exactly 3-separating set in a 3-connected
matroid M . Then F is titanic if and only if |F | ≥ 4.

Proof. Say A ⊆ F and λ(A) < λ(F ). Then, since M is 3-connected,
|A| ≤ 1. The lemma follows from this observation. �

The next lemma relies on some more definitions. LetM be a matroid.
Elements x and y of M are clones if the function that interchanges x
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and y and fixes every element of E(M) − {x, y} is an automorphism
of M . An element z of M is fixed in M if there is no single-element
extension M ′ of M by an element z′ with the property that z and z′

are clones in M ′ and {z, z′} is independent in M ′. Say Z ⊆ E(M).
Then an element z ∈ Z is freely placed on Z if z ∈ cl(Z − {z}) and,
whenever C is a circuit of M containing z, the closure of C contains Z.

Our interest is in a special case of rank-2 flats in 3-connected matroid,
and we focus on that. We omit the straightforward proof of the next
result.

Lemma 6.8. Let F be a rank-2 flat of a 3-connected matroid M where
|F | ≥ 3.

(i) If a ∈ F , then a is freely placed on F if and only if a is not
fixed in M .

(ii) If a ∈ F , then a is fixed in M if and only if M has a flat A
containing a such that a ∈ cl(A− {a}) and F ∩ A = {a}.

(iii) If a and b are distinct elements of F , then a and b are clones
in M if and only if both a and b are freely placed on F .

Recall that, in a matroid M , the interior, intM(X), of a set X is
X − (clM(E(M)−X) ∪ cl∗M(E(M)−X)).

Lemma 6.9. Let T be a tangle of order at least 4 in a 3-connected
matroid M , and let F be a maximal T -small 3-separating set of M
with at least three elements. If a ∈ intM(F ), then a is freely placed on
the rank-2 flat F in MT .

Proof. Certainly F is a rank-2 flat of MT . Assume that a is not freely
placed on F in MT . By Lemma 6.8(ii), MT has a flat A of MT such
that a ∈ clMT (A−{a}) and A∩F = {a}. Say rMT (A) = t. The set A is
a maximal T -small set in M . Moreover, λM(A) = rMT (A) = t. We also
have that rMT (A− {a}) = t. Hence λM(A− {a}) ≥ λM(A). It follows
that either a ∈ clM(A − {a}), in which case, a ∈ clM(E(M) − F ); or
a ∈ cl∗M(A−{a}), in which case, a ∈ cl∗(E(M)−F ). Both cases imply
that a /∈ intM(F ). �

Let T be a tangle in the matroid M . We say that a subset U of
E(M) is a witness for breadth(T ) if MT |U is a maximal spanning
uniform restriction of MT .

Lemma 6.10. Let T be a tangle of order at least four in a 3-connected
matroid M and let F be a rank-2 flat of MT with at least three elements.
Let U be a witness for breadth(T ). Then

(i) |U ∩ F | ≤ 2.
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(ii) For a ∈ U ∩F and b ∈ F −U , if b is freely placed on F in MT ,
then (U − {a}) ∪ {b} is also a witness for breadth(T ).

Proof. Since T has order at least four, the rank of MT is at least three,
so r(U) ≥ 3. A uniform matroid of rank at least three cannot contain
a triangle. Hence |U ∩ F | ≤ 2.

Say a ∈ U ∩ F and b ∈ F − {a} where b is freely placed on F in
MT . Let U ′ = (U − {a}) ∪ {b}. Assume that U ′ is not a witness for
breadth(T ). Then MT |U ′ is not a uniform matroid, so it contains a
non-spanning circuit C that must contain b. But b is freely placed on
F , so F ⊆ clMT (C−{b}). Hence a ∈ clMT (C−{b}), so (C−{b})∪{a}
contains a circuit C ′. But C ′ ⊆ U and C ′ does not span U . This
contradicts the assumption that MT |U is a uniform matroid. �

We are now able to prove lemmas that provide sufficient conditions
for an element to be removed from our rank-2 flat F while preserving
the breadth of a tangle.

Lemma 6.11. Let T be a tangle of order k ≥ 4 in a 3-connected
matroid M , let F be a maximal T -small 3-separating set of M , and
say a ∈ F . Assume that the following hold.

(i) M\a is 3-connected.
(ii) λM(F ) = λM\a(F − {a}).
(iii) |F | ≥ 5.
(iv) intM\a(F − {a}) 6= ∅.

Then T generates a tangle Ta of order k in M\a. Moreover,
breadth(Ta) = breadth(T ).

Proof. Since M\a is 3-connected and |F − {a}| ≥ 4, by Lemma 6.7,
F − {a} is titanic in M\a. It now follows from Lemma 4.10 that T
generates a tangle Ta in M\a.

Since intM\a(F − {a}) is nonempty and |F − {a}| ≥ 4, it follows by
orthogonality that there are distinct elements b and c in intM\a(F −
{a}). Hence b, c ∈ intM(F ).

6.11.1. There is a witness U for breadth(T ) with the property that
U ∩ F ⊆ {b, c}.

Proof. By Lemma 6.9, b and c are freely placed on F in MT . Let U be
a witness for breadth(T ). Then, by Lemma 6.10(ii), we may assume
that a 6∈ U and b ∈ U . The assertion holds if |U ∩ F | = 1, or if
U ∩F = {b, c} so we may assume that U ∩F = {b, d} for d 6= c. Then,
by Lemma 6.10(ii) again, (U − {d}) ∪ {c} is a witness for breadth(T )
that contains {b, c}. Thus the assertion holds. �
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By Lemma 5.3, breadth(T ) ≥ breadth(Ta). Suppose the lemma fails.
Then MTa |U 6= MT |U . Since MT \a is freer than MTa , we deduce that
that MT |U is freer than MTa|U . Hence there is a circuit C of MTa
such that C ⊆ U and C is independent in MT \a. By Lemma 5.4(ii),
C ∩ F 6= ∅.

Let C ′ denote the closure of C in MTa . Assume that F − {a} ⊆ C ′.
Then, by Lemma 5.4(i) rMT \a(C

′) = rMTa (C ′). But this implies that
C ′ is dependent in MT . Hence F − {a} is not contained in C ′.

We now know that C contains exactly one element of F −{a}. Since
U ∩F ⊆ {b, c}, we may assume that b ∈ C. Then, by Lemma 6.8(ii), b
is fixed in F − {a} in MTa . But b ∈ intM\a(F − {a}). This contradicts
Lemma 6.9. �

No doubt the next lemma is well known.

Lemma 6.12. Let M be a 3-connected matroid and F be a fully closed
set with λ(F ) = 2 and |F | ≥ 4. If x ∈ guts(F ), then M\x is 3-
connected.

Proof. Assume that the lemma fails. Let G = E(M) − F . Since F is
fully closed, |G| ≥ 3. Since x ∈ guts(F ), we see that (G,F − {x}) is a
2-separation of M/x. But |G|, |F − {x}| ≥ 3, so, by Bixby’s Lemma,
M\x is 3-connected up to series pairs. Thus x is in a triad of M . Let
T be such a triad.

Since F is fully closed and x ∈ guts(F ), we have that x ∈ F ∩ cl(G).
Thus, by orthogonality, T 6⊆ F . Moreover, as F is fully closed, |T ∩
G| 6= 1. We deduce that |T ∩ G| = 2, so x ∈ cl∗(G). As x ∈ cl(G),
Lemma 2.3(i) implies that λ(G ∪ {x}) < λ(G), contradicting the fact
that M is 3-connected. �

Lemma 6.13. Let T be a tangle of order k ≥ 4 in a 3-connected
matroid M and let F be a maximal T -small 3-separating set of M .
Assume that |F | ≥ 5 and that | guts(F )| ≥ 3. Then the following hold.

(i) If x ∈ guts(F ), then T generates a tangle Tx of order k in M\x.
(ii) If x ∈ guts(F ), then MTx = MT \x.
(iii) In guts(F ), there is an element a such that breadth(Ta) =

breadth(T ) where Ta is the tangle of order k in M\a gener-
ated by T .

Proof. Say x ∈ guts(F ). By Lemma 6.12, M\x is 3-connected. Since
|F | ≥ 5 and M\x is 3-connected, F − {x} is titanic in M\x. Thus,
by Lemma 4.10, T generates a tangle Tx of order k in M\x. Thus (i)
holds.
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Now M\x is 3-connected, so, by Lemma 3.12 MTx is 3-connected.
From this and the fact that F − {x} has rank 2 in both MT \x and
MTx , we deduce that

6.13.1. MT |(F − {x}) = MTx |(F − {x}).

Assume that MT \x 6= MTx . By Lemma 5.2, MT \x is freer than MTx ,
so there is a circuit C of MTx that is independent in MT \x. By (6.13.1)
and Lemma 5.4(i), C meets both E(M) − F and F − {x}. Let C ′ =
clMTx (C). If F−{x} ⊆ C ′, then, by Lemma 5.4(i), C ′ has the same rank
in both MT \x and MTx . Hence F − {x} 6⊆ C ′. As rMT (F − {x}) = 2,
we see that |C ′ ∩ (F − {x})| < 2. But |C ∩ (F − {x})| ≥ 1, so there is
a unique element c in C ′ ∩ (F − {x}). Thus C − {c} ⊆ C ′ − {c} ⊆ G.
Hence, by Lemma 5.4(ii),

6.13.2. rMT \x(C
′−{c}) = rMTx (C ′−{c}) = rMTx (C−{c}) = rMTx (C).

6.13.3. C ′ − {c} is a flat of MT \x.

Proof. Assume that this fails. Then there is an element d not in C ′−{c}
such that rMT \x((C

′−{c})∪{d}) = rMT \x(C
′−{c}). As MT \x is freer

than MTx , we see by (6.13.2) that rMTx ((C ′ − {c}) ∪ {d}) = rMTx (C ′ −
{c}), so d = c. Thus, by (6.13.2) again, rMT \x(C

′) = rMTx (C). Thus
rMTx (C) = rMT \x(C

′) ≥ rMT \x(C) ≥ rMTx (C). Hence equality holds
throughout and we have a contradiction as C is a circuit in MTx but
an independent set in MT \x. �

Let rMTx (C ′) = t. Then C ′ is a maximal Tx-small (t+ 1)-separating
set in M\x. Since c ∈ clMTx (C ′−{c}), it follows that λM\x(C

′−{c}) ≥
λM\x(C

′). Hence c ∈ clM\x(C
′ − {c}) or c ∈ cl∗M\x(C

′ − {c}). In the
former case, c ∈ clM(C ′ − {c}), so λM(C ′ − {c}) ≥ λM(C ′). Hence
c ∈ clMT (C ′ − {c}), contradicting the fact that C ′ − {c} is a flat of
MT \x.

We now know that c ∈ cl∗M\x(C
′ − {c}). Then, as C ′ − {c} ⊆

E(M) − F , we deduce that c ∈ cl∗M\x(E(M) − F ). This implies that
c ∈ cogutsM\x(F − {x}). Since F is fully closed in M , it follows that
F − {x} is fully closed in M\x. As | guts(F )| ≥ 3, there are at least
two elements in gutsM\x(F − {x}). As M\x is 3-connected, we now
have a contradiction to Lemma 2.5. Hence (ii) holds.

Let U be a witness for breadth(T ). As T has order k ≥ 4, the
matroid MT has rank at least three, so U has rank at least three. Such
a uniform matroid cannot contain a triangle, so |F ∩ U | ≤ 2. Let a
be an element of gutsM(F ) − U . By (ii), (MT \a)|U = MTa |U . Hence
U is also a witness for breadth(Ta). We conclude that breadth(T ) =
breadth(Ta), as required. �
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7. Proof of the Main Theorem

Recall that a matroid M is weakly 4-connected if M is 3-connected
and a subset A of E(M) has λ(A) = 2 only if |A| ≤ 4 or |E(M)−A| ≤ 4.

Theorem 7.1. Let T be a tangle of order k ≥ 4 in a matroid M . Then

(i) M is weakly 4-connected; or
(ii) M has an element a such that, for some N in {M\a,M/a},

the tangle T generates an order-k tangle T ′ in N with
breadth(T ′) = breadth(T ).

The following is an immediate consequence of this theorem.

Corollary 7.2. Let T be a tangle of order k ≥ 4 in a matroid M . If
T is breadth-critical, then M is weakly 4-connected.

We first note some lemmas.

Lemma 7.3. Let F be a fully closed exactly 3-separating set in a 3-
connected matroid M . Suppose that r(F ) > 2, that r∗(F ) > 2, and that
|F | ≥ 5. Then there is a 3-connected matroid N in {M\a,M/a} such
that | intN(F − {a})| ≥ 2.

Proof. We first consider the case that r(F ) = 3.

7.3.1. If r(F ) = 3, then F contains an element a such that M\a is
3-connected and | intM\a(F − {a})| ≥ 2.

Proof. First, suppose that x ∈ F and M\x is 3-connected. We shall
show that | intM\a(F − {a})| ≥ 2. To see this, note that λM\x(F −
{x}) = 2, so r(F − {x}) + r∗M\x)− |F − {x}| = 2. Now |F − {x}| ≥ 4

and r(F − {x}) = 3, so F − {x} is not a line of (M\x)∗. This means
that outcome (iii) or outcome (iv) of Lemma 2.6 holds. In both cases,
| intM\x(F − {x})| ≥ 2 as desired.

We may now assume that if x ∈ F , then M\x is not 3-connected.
As λM\x(F −{x}) = 2 and r(F ) = 3, it follows that F is a cocircuit of
M . As r(F ) = 3 and |F | ≥ 5, there is a circuit C contained in F . By a
theorem of Lemos [9], M has a triad T ∗ meeting C. By orthogonality
and the fact that F is fully closed, we deduce that T ∗ ⊆ F . This is
contradiction as both T ∗ and F are cocircuits, and |F | ≥ 5. �

7.3.2. The lemma holds if r(F ) > 3 and r∗(F ) > 3.

Proof. If there is element x of F such that N ∈ {M\x,M/x} and N
is 3-connected, then F − {x} is not a line of N or of N∗, so outcome
(iii) or outcome (iv) of Lemma 2.6 holds for N and the lemma holds.
Thus we may assume that if x ∈ F , then neither M\x nor M/x is
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3-connected. As F is fully closed in M , it is fully closed in all N in
{M\x,M/x} for all x in F . This gives a contradiction to a result of
Oxley [10, Theorem 1.1]. �

If F satisfies the hypotheses of the lemma, then we are either in the
case of (7.3.1), the dual of (7.3.1), or (7.3.2). �

Proof of Theorem 7.1. Let T be a tangle of order k ≥ 4 in M . By
Corollary 6.6, M is 3-connected. Assume that M is not weakly 4-
connected. Then M has a 3-separation (X, Y ) with |X|, |Y | ≥ 5. We
may assume that X is T -small. Then rMT (X) = 2. Let F = clMT (X).
Then, since r(MT ) = k − 1 ≥ 3, we see that F 6= E(M). By Corol-
lary 3.10, F is fully closed in M .

Assume that rM(F ) = 2. Then |F | = | gutsM(F )| = 5 ≥ 3. By
Lemma 6.13, for some a in F , the tangle T generates a tangle Ta of
order k in M\a with breadth(Ta) = breadth(T ). Thus we may assume
that rM(F ) ≥ 3. By duality, we may also assume that r∗M(F ) ≥ 3.

Lemma 7.3 now gives us that there is an element a in F and a
matroid N in {M\a,M/a} such that N is 3-connected and | intN(F −
{a})| ≥ 2. By Lemma 6.11, T generates an order-k tangle Ta in N
with breadth(Ta) = breadth(T ). �

We are now in a position to prove Theorem 1.1 which we restate as
a corollary of earlier results of this section.

Corollary 7.4. Let T be a tangle of order k ≥ 4 in a matroid M .
Then M has a weakly 4-connected minor N with a tangle T ′ of order
k such that T ′ is generated by T and breadth(T ′) = breadth(T ).

Proof. If M is weakly 4-connected, let N = M . Otherwise, by re-
peated application of Theorem 7.1, there is a, necessarily finite, se-
quence N1, N2, . . . , Nm of matroids and a sequence T1, T2, . . . , Tm of
order-k tangles such that all of the following hold.

(i) M = N1;
(ii) each Ni for i > 1 is a single-element deletion or a single-element

contraction of Ni−1;
(iii) T1 = T and if i > 1, then Ti is a tangle of Ni that is generated

by Ti−1 with breadth(Ti) = breadth(Ti−1); and
(iii) Nm is weakly 4-connected.

By Lemma 4.4, Tm is generated by T in Nm, so the result holds. �

8. Tangles of Order 4

Until now, we have presented our main results for tangles of order
at least 4. If we are focussed on a “4-connected component” of our
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matroid, then it is a tangle of order exactly 4 that we are interested in.
By Corollary 7.4, a tangle of order 4 in a matroid generates a tangle of
order 4 in a weakly 4-connected minor that preserves its breadth. In
what follows, we make some observations about tangles in this world.

Lemma 8.1. Let M be a weakly 4-connected matroid with at least
thirteen elements. Then M has a unique tangle of order 4.

Proof. Let T consist of those subsets A of E(M) for which λ(A) ≤ 2
and |A| ≤ 4. It is easily seen that T is a tangle in M . Say T ′ is
another order-4 tangle in M . Then there is a set X with |X| ≤ 4
such that E(M) − X belongs to T ′. Let (Y, Z) be a partition of X
into sets with |Y |, |Z| ≤ 2. At least one of Y or Z must be T ′-large,
otherwise we cover E(M) by three T ′-small sets. Assume that Y is
T ′-large. Since Y is T ′-large, |Y | = 2 by (T4). Say Y = {y1, y2}.
Then {E(M) − Y, {y1}, {y2}} is a cover of E(M) by T ′-small sets, a
contradiction. �

Assume that T is a tangle of order 4 in a matroid M and let N be a
weakly 4-connected minor of M such that the unique tangle of order 4
in N is generated by T and has breadth equal to breadth(T ). Then
we say that N is a witness for T .

Let {T1, T2, . . . , Ts} be the collection of tangles of order 4 in a ma-
troid M . This is a collection of incomparable tangles and can there-
fore be displayed in a tree-like way [6]. Then there is a collection
{N1, N2, . . . , Ns} of minors of M such that, for each i ∈ {1, 2, . . . , s},
the minor Ni is a witness for Ti. Put together, we have a weak ana-
logue of the 2-sum decomposition of a matroid with its collection of
3-connected minors.

The 3-connected minors associated with the 2-sum decomposition
are unique up to isomorphism, but it is evident that a tangle of or-
der 4 in M can have non-isomorphic witnesses. Also, given the 2-sum
decomposition of a matroid, we can build the original matroid from its
underlying 3-connected minors. Finding an analogue of this for tan-
gles seems ambitious. Utilising the 3-separation tree of a 3-connected
matroid described by [12] and the results of [2], it is possible that
something could be done in the case of representable matroids.

We now consider the structure of tangle matroids.

Lemma 8.2. Let P be a simple rank-3 matroid that cannot be covered
by three lines. Then P has a unique 4-tangle T . Moreover, MT = P .

Proof. Let T consist of those subsets A of E(M) for which r(A) ≤ 2.
Then one easily checks that T is a tangle of order 4. Assume that T ′
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is a tangle of order 4 that differs from T . Then E(M) has a subset X
such that r(X) ≤ 2 and E(M) − X ∈ T ′. For a subset Y of X, we
now argue by induction on |Y | that Y ∈ T ′. This is certainly true if
|Y | ≤ 1. Assume it true if |Y | < t and let |Y | = t ≥ 2. Take y in
Y and suppose that Y 6∈ T ′. Then E(M) − Y , Y − {y}, and {y} are
T ′-small sets whose union is E(M), a contradiction. We conclude, by
induction, that Y ∈ T ′. Hence X ∈ T ′, a contradiction. Thus T ′ = T .

By Theorem 3.2, P is a tangle matroid. By Lemma 3.9, MT is a
quotient of P . As r(MT ) = 3 = r(P ), we deduce that MT = P . �

The next result follows by combining the last two lemmas.

Corollary 8.3. Let P be a matroid with at least thirteen elements.
Then P is the tangle matroid of the tangle of order 4 associated with a
weakly 4-connected matroid M if and only P is simple, r(P ) = 3, and
each line of P has at most four elements.

Proof. Let M be a weakly 4-connected matroid with at least thirteen
elements. By Lemma 8.1, M has a unique tangle T of order 4. The
tangle matroid MT is simple and has rank three. By Theorem 3.2, MT
cannot be covered by three lines. Suppose MT has a line L with at
least five points. Then λM(L) = 2. But, since E(M) − L cannot be
covered by two lines of MT , it follows that |E(M) − L| ≥ 5. Then
(L,E(M)−L) is a 3-separation of M that contradicts the fact that M
is weakly 4-connected. We deduce that each line of MT has at most
four elements.

Conversely, let P be a simple rank-3 matroid in which each line has
most four elements. If |E(P )| ≥ 13, then E(P ) cannot be covered by
three lines. Thus, by Lemma 8.2, P has a unique tangle T of order
4 and MT = P . Now P is certainly 3-connected. Moreover, because
each line has at most four elements, P is weakly 4-connected. �

Lemma 8.4. Let M be a weakly 4-connected matroid with at least
thirteen elements and let T be the tangle of order 4 associated with M .
Then breadth(T ) ≥

√
|E(M)|.

Proof. Let breadth(T ) = β and let U be a witness of breadth(T ). Then
U is a spanning uniform restriction of the 3-connected rank-3 matroid
MT . All other elements of E(M) must lie on lines spanned by pairs of
elements of U . There are

(
β
2

)
such pairs, and each associated line has

at most four elements. We deduce that |E(M)| ≤ β + 2
(
β
2

)
= β2. �

We do not know the best-possible bound that can be given on
breadth(T ) in Lemma 8.4.
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9. Can we do Better?

It is natural to ask whether the connectivity condition on M in
Theorem 7.1 can be strengthened beyond M being weakly 4-connected.
In this section, we present an example that shows that Theorem 7.1 is
in some sense best possible.

Say s ≥ 6, and let E = {e1, e2, . . . , es}. Let M1 be a matroid on
E with M1

∼= U3,s. Let M2 be isomorphic to M(K4) and have ground
set {a, b, c, d, e, f} where {c, d, e}, {a, b, e}, {b, c, f}, and {a, d, f} are
triangles. Observe that {e, f} is not contained in a triangle. Consider
M1⊕M2. Extend this matroid by placing elements f1 and f2 freely on
the lines {e, e1} and {f, e2}, respectively. Extend the resulting matroid
by placing elements g1 and g2 freely on the flats E ∪ {f1, e} and E ∪
{f2, f}, respectively. Finally, delete the elements e and f to obtain a
matroid M with ground set {a, b, c, d, f1, f2, g1, g2, e1, . . . , es}.

It is readily checked that M is weakly 4-connected with |E(M)| =
s + 8. Let T denote the unique tangle of order 4 in M . All maximal
T -weak 3-separating sets are pairs except the 4-element 3-separating
set {a, b, c, d}. It follows that, for any pair {x, y} ⊆ {a, b, c, d}, we have
MT \x, y ∼= U3,s+6. In other words, T has breadth s+ 6.

Consider the matroids M/a and M\a. We shall show that T
generates tangles in both of these matroids. First focus on M/a.
Let T ′ denote the unique tangle of order 4 in M/a. Then T ′ con-
tains {A − a : A ∈ T }. Hence T generates T ′. The triangles
{b, f1, e1} and {b, f2, e2} of M/a guarantee that a uniform restriction
of MT ′ contains at most two elements of each of these sets. Hence
breadth(T ′) ≤ |E(M)/a| − 2 = s + 5 < breadth(T ). Now focus on
M\a. Let T ′′ denote the unique tangle of order 4 in M\a. Since T ′′
contains {A − a : A ∈ T }, it follows that T ′′ is generated by T in
M\a. The sets {d, f1, g1} and {b, f2, g2} are T ′′-weak triads of M\a.
Hence they are triangles of T ′′. Arguing just as in the previous case,
we deduce that breadth(T ′′) < breadth(T ).

The bijection on E(M) that interchanges a and d, interchanges b
and c, and fixes every other element is an automorphism of M ; so
is the bijection that interchanges c and d, interchanges a and b, and
fixes every other element. Furthermore it is readily verified that M is
breadth critical. Having said that we only needed to check the elements
of the quad {a, b, c, d} to guarantee the next lemma.

Lemma 9.1. There exists a breadth-critical tangle of order 4 in a ma-
troid that has a 4-element 3-separator.
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The previous example was based on a quad. It is also possible to con-
struct examples for graphic matroids where the 4-element 3-separator
is a fan. Let G be a graph constructed as follows. Begin with a simple
4-connected graph H with no triangles that has a stable set {5, 6, 7, 8}
of vertices. Let {1, 2, 3, 4} be an additional set of vertices and add
the edges {25, 26, 36, 37, 47, 48, 24, 12, 13, 14}. Then M(G) is weakly 4-
connected with a fan {12, 13, 14, 24} and, apart from that fan, all fully
closed 3-separators have size at most 2. Let T be the unique tangle of
order 4 in M(G). Then it is readily verified that T is a breadth-critical
tangle in M(G).

10. Back to k-connected sets

We now return to our original assertion about k-connected sets in
matroids. The next theorem is a restatement of Theorem 1.2.

Theorem 10.1. Let k ≥ 4 be an integer and M a matroid with an
n-element k-connected set where n ≥ 3k − 5. Then M has a weakly
4-connected minor with an n-element k-connected set.

Proof. By Lemma 3.6, M has a tangle of order k and breadth at least n.
By Theorem 7.1, M has a weakly 4-connected minor N with a tangle
T of order k and breadth m ≥ n. By the definition of breadth, N has
an m-element set Z such that MT |Z ∼= Uk−1,m. By Lemma 3.5, Z is a
k-connected set in N . �

11. Discussion

A tangle T of order k in a matroid M identifies a “k-connected com-
ponent” of M and we have used the notion of breadth to measure the
size of such a component. Thus, if we are interested in measuring the
“size” of a 4-connected component, we need a tangle of order exactly
4. Nonetheless, Theorem 7.1 is potentially of interest for larger values
of k. Let t ≥ 0 be an integer, and let (s0, s1, . . . , st) be a sequence of
non-negative integers. Then a matroid M is (s0, s1, . . . , st)-connected if,
whenever F ⊆ E(M) has λ(F ) = i for i ∈ {0, 1, . . . , t}, either |F | ≤ si
or |E(M)− F | ≤ si.

In this terminology, a matroid is weakly 4-connected if and only if it is
(0, 1, 4)-connected. Thus we have proved that if T is a breadth-critical
tangle of order at least 4 in a matroid M , then M is (0, 1, 4)-connected.
We conjecture the following.

Conjecture 11.1. There is an infinite sequence (s0, s1, s2, . . .) such
that, for all k ≥ 2, if T is a breadth-critical tangle of order at least k
in a matroid M , then M is (s0, s1, . . . , sk−2)-connected.



WHAT IS A 4-CONNECTED MATROID? 33

For a stronger conjecture, one might speculate as to what a suitable
sequence could be. Observe that a 4-separating set F in a (0, 1, 4)-
connected matroid is guaranteed to be titanic if |F | ≥ (3×4)+1 = 13.
Define the sequence (t0, t1, t2, . . .) by t0 = 0, t1 = 1 and, otherwise,
ti = 3ti−1 + 1. Note that ti = (3i − 1)/2.

Conjecture 11.2. If T is a breadth-critical tangle of order at least k
in a matroid M , then M is (t0, t1, . . . , tk−2)-connected.

Let T be an order-k tangle in a matroid M ; say t ∈ {2, 3, . . . , k−1}.
Then it is easily seen that the collection Tt(T ) = {A ∈ T : λ(A) ≤ t−2}
is a tangle of order t in M . We say that Tt(T ) is the truncation of T
to order t. Truncations of tangles correspond to truncations of their
tangle matroids.

Lemma 11.3. Let T be a tangle of order k in a matroid M , say t ∈
{2, 3, . . . , k − 1} and let Tt(T ) denote the truncation of T to order t.
Then MTt(T ) is the truncation to rank t− 1 of MT .

Since truncations of uniform matroids are uniform, it follows from
Lemma 11.3 that, if T has order k, then breadth(Tt(T )) ≥ breadth(T )
for any truncation Tt(T ), but it is easily seen that the converse does
not hold.

Via truncation, we have a suite of tangles associated with a given
tangle. For each member of this suite of order at least 4, we can find a
(0, 1, 4)-connected matroid that preserves its breadth. Can we do this
simultaneously?

Conjecture 11.4. Let T be a tangle of order k ≥ 4 in a matroid
M . For each i ∈ {4, 5, . . . , k}, let Ti(T ) denote the truncation of T to
order i. Then there is a (0, 1, 4)-connected minor N of M such that,
for all i ∈ {4, 5, . . . , k}, the tangle Ti(T ) generates a tangle T ′i (T ) in
N . Moreover, breadthM(Ti(T )) = breadthN(T ′i (T )).

It is shown in Section 10 that we cannot do better than weakly
4-connected as an outcome. This is because of the requirement of pre-
serving breadth. Given the results of [1], one could expect to sacrifice
a constrained amount of breadth to arrive at an internally 4-connected
minor. The following conjecture may not be difficult.

Conjecture 11.5. Let T be a tangle of order k ≥ 4 and breadth m in
a matroid M . Then M has an internally 4-connected minor N with a
tangle T ′ of order k such that T generates T ′ in N and such that the
breadth of T ′ is at least m/2.
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