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Abstract.— Three desirable properties for any method of selecting a

subset of evolutionary units (EUs) for conservation or for genomic

sequencing are discussed. These properties are: spread, stability,

and applicability. We are motivated by a practical case in which

the maximization of phylogenetic diversity (PD), which has been

suggested as a suitable method, appears to lead to counter-intuitive

collections of EUs and does not meet these three criteria. We define
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a simple greedy algorithm (GreedyMMD) as a close approxima-

tion to choosing the subset that maximizes the minimum pairwise

distance (MMD) between EUs. GreedyMMD satisfies our three

criteria and may be a useful alternative to PD in real world situa-

tions. In particular, we show that this method of selection is suit-

able under a model of biodiversity in which features arise and/or

disappear during evolution. We also show that if distances between

EUs satisfy the ultrametric condition, then GreedyMMD deliv-

ers an optimal subset of EUs that maximizes both the minimum

pairwise distance and the PD. Finally, since GreedyMMD works

with distances and does not require a tree, it is readily applicable

to many datasets.

Key words. biodiversity conservation, phylogenetic diversity, greedy

algorithm

Quantitative methods based on biodiversity have received much attention re-

cently in conservation biology (e.g. Rodrigues and Gaston, 2002; Pardi and Gold-

man, 2005; Rodrigues et al., 2005; Steel, 2005; Moulton et al., 2007; Spillner et al.,

2007; Bordewich and Semple, 2008). These methods are used for determining which

collection of evolutionary units (EUs, including species or other higher-level taxa)

should be conserved. Maximizing phylogenetic diversity (PD) has emerged as a

leading criterion in this regard. (For a set of EUs and a given phylogeny, the PD

of the set is defined as the total length of the minimal phylogenetic subtree that

connects the EUs in the set.) In its most direct application to conservation (Faith,

1992), we select a k-element subset of EUs that maximizes PD over all k-element
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subsets. The use of PD has also been advocated when decisions need to be made

about which genomes should be sequenced (Pardi and Goldman, 2005).

However, there are instances when maximizing PD appears to be the wrong

criterion to use when selecting a set of EUs for conservation, or deciding which

genomes should be sequenced. Perhaps the best example is the iconic small-subunit

ribosomal RNA tree of the Bacteria, Archaea, and Eucarya first described in Woese

(1987), and reproduced in Figure 1. Suppose that the aim is to select three of these

EUs for sequencing. A subset of three EUs chosen to maximize PD will include two

eukaryotes and one bacterium, as shown in bold in Figure 1a. Most people would

agree that this seems wrong; after all, the second eukaryote may add comparatively

little information. In contrast, selecting a bacterium, an archaeon, and an eukaryote

(as shown in bold in Fig. 1b) is a choice that few would disagree with; it seems

intuitively better. If one were asked to explain why this is more intuitive, one might

reply that the chosen EUs are more “spread out” on the phylogenetic tree, and are

likely to contain less redundant genetic information (measured, say, by the number

of genes in common).Of course, this example is somewhat contrived, but it serves

to highlight the fact that maximizing PD is not always the best selection criterion

for biodiversity. Since PD does notalways capture what we want from a measure

of diversity, we propose an alternative.

A quantitative measure of diversity captures a specific notion of biodiversity un-

der some model of evolution. A reasonable interpretation of PD is that it measures

the expected number of different ‘features’ exhibited by the EUs in the selected

set, under a model which makes three implicit assumptions about evolution. First,

features arise in a homoplasy-free way, second, the length of any branch represents
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the number of features arising along that branch, and third, once a feature arises in

the phylogeny, it persists forever and is present in all descendant EUs. For a good

exposition of this interpretation, see Faith (1994). Thus, in the above example, PD

chooses an additional eukaryote instead of an archaeon, since a taxon connected

near the root of the phylogeny by a short branch is assumed to contain almost

exclusively features that are shared with every other taxon in the phylogeny. Being

on a short branch means that a very small number of features have arisen since the

taxon split off from the common ancestor whose features are shared by all.

Our intuition that an archaeon will add better diversity value simply because

it is some distance away in the phylogeny from bacteria and eukaryotes suggests

the above assumptions are not always valid. If one assumes that features do not

persist forever, but disappear from a lineage at a random time, it transpires that to

obtain an intuitively appropriate solution one needs to choose the set of EUs that

maximizes the minimum phylogenetic distance between any pair of EUs in the set.

Defined formally in the next section, we refer to this selection criterion as MMD

(Maximize Minimum-Distance). If MMD is applied to choose three of the EUs in

Figure 1, then a desired set of one bacterium, one archaeon, and one eukaryote is

obtained. Details of the extended model and corresponding measure of diversity

under which MMD is being used as a selection criteria are given later in the paper.

As we will show, although MMD is a heuristic for maximizing this measure, it has

a strong theoretical justification. We remark here that Faith (1994) described a

similar model of diversity based upon features arising and disappearing.
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The above discussion prompts us to consider what other properties we want

from our chosen method of selecting EUs to conserve or sequence. We have already

mentioned the following property:

(1) Spread. The selected EUs have close to maximum diversity under some

model, achieved by being ‘spread out’ in some sense on the phylogenetic

tree.

However, we would also like the selected set to have the following properties:

(2) Stability. The core of the solution set should be stable as the set size

fluctuates.

(3) Applicability. The method of selection should be able to be applied to as

general an input as possible.

We expand onthe latter two properties and why they are desirable below.

Stability

The amount of money available for conservation projects fluctuates with the politi-

cal climate and with other social and economic factors. The set of species targeted

for conservation or set of genomes chosen to sequence needs to be stable as budgets

vary. Suppose that you are told that there is sufficient money to conserve k species,

or sequence k genomes. Being a good phylogeneticist, you apply a diversity-based

method to choose your k-element subset of EUs. Your project gets underway, but

after a year the budget available is adjusted up or down. Clearly, it is extremely

desirable that the set of EUs selected under the new budget is closely related to
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the original set of EUs chosen. If the number of EUs can be increased, you would

like the k EUs previously chosen, and partially worked on, to be guaranteed to be

in the larger set of EUs chosen by the algorithm you have used for selection. If the

number of EUs is to be reduced, you would like the new solution set to be a subset

of the EUs you have already started conserving or sequencing. This notion of sta-

bility is captured by a greedy algorithm: selecting the pair of EUs that maximizes

(pairwise) a measure of diversity, and then iteratively selecting an EU to add to the

set that gives the best measure amongst all single EU increments to the existing

set, until the desired number of EUs is reached. Therefore, any increase in the size

of the chosen set is made by simply adding more EUs to the existing set, whilst

any decrease may be made by removing the EUs added last. Thus we see that a

greedy selection criteria exactly captures the idea of stability that we are after for

our method of selection.

Applicability

We would like to be able to apply the selection method to many varied data sets.

It is not always the case that an accurate tree with known branch lengths will be

available. However, as a minimum, it seems reasonable to expect that a matrix of

pairwise distances between EUs will be available, or at least readily estimated from

sequences (e.g. using Hamming distance, see Hamming, 1950). Therefore we would

like our method and measure of diversity to apply in this situation, without having

to go to the computational expense and loss of information involved in estimating

a phylogeny first.



7

We now consider under what conditions PD and MMD meet these three criteria.

Most significant is that PD and MMD both meet the spread criterion, but only

under different assumptions. As discussed above, under a model of evolution in

which features may both arise and disappear MMD captures the notion of spread

that we require, whereas PD is appropriate for a model in which features persist

indefinitely. With regard to applicability, since MMD depends only on the pairwise

distances between EUs, it can be applied to a distance matrix without reference to

any underlying tree. Thus MMD satisfies the applicability criteria. While PD can

be computed using a character matrix, a distance matrix could be more problematic

for computing PD. If the distances fit a tree metric, then, using the ideas in Faith

(1992), it is possible to compute PD from such a matrix. But if the distance matrix

does not fit a tree metric, then it is not clear how to compute PD without first

estimating a phylogeny.

For stability, the situation is reversed. An optimal set under the PD measure

is generated by a greedy algorithm (Pardi and Goldman, 2005; Steel, 2005), while

under MMD being greedy does not always return the optimal solution (see Exam-

ple 3). Hence MMD will not necessarily have the stability property, whereas PD

does. Indeed, after an increase of one EU, the revised optimal subset of EUs under

MMD could exclude some of the original EUs you had selected (see Example 2).

Thus, depending on the model of evolution appropriate to the circumstances, nei-

ther MMD nor PD will always satisfy all three criteria. In order to satisfy all three

under our model in which features may disappear, we propose a greedy approach

to MMD. This method, called GreedyMMD, gains stability and still maintains a
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good, though not necessarily optimal, solution to MMD, thus retaining spread and

applicability.

Provided the pairwise distances satisfy the triangle inequality, it has previously

been shown in the context of operations research that GreedyMMD gives a 2-

approximation to the optimal MMD solution (Tamir, 1991; Ravi et al., 1994). Ob-

serve that this includes the case that the distances fit a tree metric. Noting that it

is NP-hard to compute an optimal set under MMD if the distance matrix satisfies

the triangle inequality (but is not necessarily a tree metric) (Ravi et al., 1994), we

show via a simple example that this approximation is sharp even if the distance

matrix is a tree metric. In addition, we show that if the pairwise distances sat-

isfy the ultrametric condition, then GreedyMMD returns an optimal set of EUs

under MMD and, moreover, this set also maximizes PD. We conclude that the se-

lection method GreedyMMD satisfies the three criteria of spread, stability and

applicability, and advocate it as a useful and practical alternative to PD in certain

real-world situations.

The paper is organized as follows. The next two sections gives a formal definition

of MMD and describe the model under which MMD is an optimal criterion. We

then present GreedyMMD and consider how well it performs as an approximation

algorithm to MMD if the pairwise distances satisfy the triangle inequality, and if it

is applied to a set of pairwise distances that satisfy the ultrametric condition. We

end the paper by considering taxonomic distinctness, a measure for diversity with

similarities to MMD, and p-median diversity.
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We end the introduction with a remark on the previous use of MMD in compu-

tational biology. The idea of choosing a set of EUs using the criterion of MMD has

been considered by Holland (2001) in the context of selecting representative model

strains. This criterion was one of several such criteria looked at in her thesis. How-

ever, while GreedyMMD was also considered as an efficient way of selecting EUs

under MMD, the thesis did not explore any theoretical results or the model for

which MMD is an optimal criterion.

Definitions and Problem Specification

In this section, we detail some definitions that are used throughout the paper

and formally describe MMD. An (unrooted) phylogenetic X-tree is a tree with no

degree-two vertices and whose leaf set is X . A rooted phylogenetic X-tree is a rooted

tree with no degree-two vertices except the root which may have degree two and

whose leaf set is X . For the purposes of this paper, we will assume that all the edges

of a (rooted or unrooted) phylogenetic tree are assigned non-negative real-valued

lengths.

For a set X , a distance on X is a function δ that assigns a non-negative real

value to each ordered pair in X ×X such that, for all x, y ∈ X , we have δ(x, x) = 0

and δ(x, y) = δ(y, x). A distance is said to satisfy the triangle inequality if, for all

x, y, z ∈ X ,

δ(x, z) ≤ δ(x, y) + δ(y, z).

A natural way to obtain a distance on X is from a phylogenetic X-tree. In par-

ticular, a distance δT on X can be obtained by setting δT (x, y) to be the sum of
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the edge-lengths on the (unique) path from x to y for all x, y ∈ X . Distances that

can be realized via a phylogenetic tree in this way are known as tree metrics. Such

metrics satisfy the triangle inequality.

A tree metric δT on X is an ultrametric if it can be realized by a rooted phylo-

genetic X-tree T such that, for all x, y ∈ X ,

δT (ρ, x) = δT (ρ, y),(1)

where ρ is the root of T . The equality in (1) means that all leaves are equidistant

from the root. Equivalently, for an arbitrary distance δ on X , δ is an ultrametric

precisely if, for every three distinct elements x, y, z ∈ X ,

δ(x, y) ≤ max{δ(x, z), δ(y, z)}.

For this equivalence, see Semple and Steel (2003).

Let δ be a distance on X . For a subset S of X , we define the minimum distance

of S to be

MD(S) = min{δ(x, y) : x, y ∈ S}.

For a given positive integer k, the problem MMD is to find a subset S of X that

maximizes MD(S) amongst all subsets of X of size k. Intuitively, such a set S

corresponds to selecting a k-element subset of X in which each pair of elements is

as ‘far apart’ as possible under δ.

As noted earlier, whereas it is usual to think of phylogenetic diversity as a crite-

rion that requires a phylogenetic tree as a basis for implementation, MMD is more

general. In particular, the criterion MMD can be applied to any distance measure.
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The Model of Diversity

In this section, we describe the model for which MMD is an appropriate criterion

for optimizing biodiversity. Under PD, one assumes that ‘features’ arise during

evolution at a constant rate—for two points u and v on a rooted phylogenetic X-

tree T with v an ancestor of u, the distance from v to u represents the number of

new features that arose on the evolutionary path from v to u. Thus, for every unit

of distance, a new feature arises. It is important to note that, under this model, any

feature arising at a point v on T is present at all points descendant from v. Now

consider the model where, in addition to features arising in this way, features have a

constant probability of disappearing on every evolutionary path in T on which they

are present. In mathematical terms, features disappear according to an exponential

distribution with rate λ independently on any branch. In particular, once a feature

is present, it has a constant and memory-less probability e−λ of surviving in each

time step. So that there is a full set of features available at the beginning, we

also assume that the root of T is on an infinitely long branch connected to its first

branching point.

For a subset A of X , the number of features present at at least one EU in A

is a random variable FA. We next consider the expected value of FA. If A is the

singleton {a}, then the expected value of F{a} is the sum over all points on the

path from the root to a of the probability that the feature arising at that moment

is still present at a. In particular,

E(F{a}) =

∫ ∞

0

e−λxdx =
1

λ
.
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If A consists of two EUs a and b whose distances from their most recent common

ancestor are da and db, respectively, then, although individually {a} and {b} each

have 1/λ expected features, the expected value of F{a,b} is

E(F{a,b}) =

∫ da

0

e−λxdx +

∫ db

0

e−λxdx +

∫ ∞

0

e−λx(e−λda + e−λdb − e−λ(da+db))dx

=
1

λ
(2 − e−λ(da+db)).

The above calculations can be extended using the principle of inclusion/exclusion

to any size subset of X . For example, if A consists of three EUs a, b, and c whose

pendent branch lengths are da, db, dc, and whose internal branch length from the

most recent common ancestor of a and b to the most recent common ancestor of

all three EUs is dab, then the expected value of F{a,b,c} is the contribution of the

three independent EUs, minus the expected number of pairwise common features,

plus the expected number of features common to all three EUs:

E(F{a,b,c}) =
1

λ
(3 − e−λ(da+db) − e−λ(da+dab+dc)(2)

− e−λ(db+dab+dc) + e−λ(da+db+dab+dc))

Although the full inclusion/exclusion formula for k EUs has exponentially many

terms (in k), it is still possible to calculate the expected number of observed features

for a subset of X of size k efficiently on a rooted binary phylogenetic tree. This

uses the independence of distinct branches and a bottom-up calculation.

Returning to when A consists of three EUs a, b, and c, observe that if λ is very

small, then we can approximate e−λm with (1 − λm) for all 0 ≤ m ≪ 1/λ. With
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this assumption, Equation (2) simplifies to

E(F{a,b,c}) ≈
1

λ
+ da + db + dab + dc.

Recalling that the root is incident with an infinitely long branch, the term 1/λ is the

contribution of the features common to all EUs and may be ignored. It follows that

as λ tends to zero, the contribution of the selected EUs to the expected number of

features tends to PD({a, b, c}). This should be expected since zero λ corresponds

to all features persisting throughout the phylogeny, which is the assumption of PD.

This relationship extends to arbitrary sized sets of EUs, and was observed in Faith

(1994) under their slightly different model.

On the other hand, if λ is very large, so features die out reasonably quickly, then

the exponential terms in Equation (2) will be very small. This corresponds to very

few features being common to more than one EU. In Faith (1994), it is remarked

that if λ “is so large that all features which arise are lost within one unit step,

then all species are of equal status as there is no predictable redundancy among

them,” again using a slightly different model. This is sometimes termed ‘species

richness’. However, before λ becomes so large that this happens, we can do better

than regarding all exponential terms to be zero. For a subset S of X consisting of

k EUs, the inclusion/exclusion formula for the expected number of features of S

satisfies

(3)

1

λ



k −
∑

a,b∈S

e−λd(a,b)



 ≤ E(FS) ≤
1

λ



k −
∑

a,b∈S

e−λd(a,b) +
∑

a,b,c∈S

e−λPD({a,b,c})



 ,

where d(a, b) is the distance in T between a and b, and PD({a, b, c}) is simply

a convenient way to write the sum of the edge weights of the minimal subtree of
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T connecting a, b, c. In both the upper and lower bound, the largest term is k/λ

and the second largest term is e−λd′

/λ, where d′ is the distance in T between the

closest pair of EUs in S. Assuming that in a real-world situation no two pairs of

EUs are exactly the same distance apart, it follows that, as λ becomes large, these

two terms will dominate the others, and so the expected value of FS approaches

1
λ
(k − e−λd′

). Thus, if λ is large, then the most important thing to do in order

to maximize the number of observed features in a set of EUs of fixed size is to

maximize the minimum distance in T between the closest pair of selected EUs. In

other words, select a subset of EUs that optimizes the MMD criterion. This is

illustrated in the following example.

Example 1. Consider the rooted phylogenetic tree shown in Figure 2. Suppose

we have already selected EUs a and c, and we are now deciding between b1 and

b2 for the third EU. In particular, which of the expected values E(F{a,c,b1}) and

E(F{a,c,b2}) given by Equation (2) is bigger? (Note that, under PD, b1 would be

chosen, while, under MMD, b2 would be chosen.) If λ = 0.4, then choosing b1

would give a diversity measure of 5.19, whereas choosing b2 would give 7.43, a gain

of over 43%.

As discussed prior to the example, if λ is small enough, then PD will select the

EU that maximizes Equation (2). For this to happen in this example, we would need

λ < 0.00047 for b1 to maximize Equation (2). It was also mentioned above that, for

λ large enough, you might as well choose any three EUs, since each will contribute

a roughly independent set of features. For the difference in Equation (2) of the

optimal set of three EUs to a choice of any three EUs to be within 5% and 1%, we

would require λ > 9.72 and λ > 17.6, respectively. Thus the range of λ for which
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selecting a third EU under MMD would be a significantly more accurate choice

than either PD or an arbitrary selection is large—features disappearing between

about 10 times faster than they arise and 2000 times slower.

Thus the measure of diversity that we wish to maximize is the expected number

of features given by the inclusion/exclusion formula. However, it seems unlikely

that one can find a simple and efficient algorithm to select a set of EUs that maxi-

mizes this expectation. Thus we must use some form of simplification to proceed.

One possible simplification, as taken by PD, is to assume λ is zero, or at least

extremely small. We do not think this assumption is valid in all circumstances,

and so consider a simplification based upon the dominant terms if λ is large. One

might consider whether it is possible to minimize the sum
∑

a,b∈S e−λd(a,b) given

in both upper and lower bounds of Equation (3), rather than minimizing the sin-

gle term maxa,b∈S e−λd(a,b). This also seems very difficult to do in practice. In

particular, this is not the same as maximizing
∑

a,b∈S d(a, b) (see discussion on

taxonomic distinctness). Moreover, in practice, no two pairs of EUs will be at ex-

actly the same distance. In this case, as mentioned above, for large λ, the single

term maxa,b∈S e−λd(a,b) will dominate the sum.

One possible criticism of MMD as a measure of diversity is that it depends only

on the closest pair of EUs. Thus one can imagine a situation in which there are

t well separated clades, each consisting of a large number of closely related EUs.

Any set of t + 1 EUs will have to contain two EUs from one of the clades. Hence,

under MMD, the measure for a set consisting of t + 1 EUs from a single clade will

be similar to the measure for any other set of t + 1 EUs. This is tantamount to
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saying that one would ideally prefer to minimize the whole sum of exponentials

as discussed above. However, a weaker notion would be to say that amongst sets

of EUs that maximize the minimum pairwise distance, we prefer those that also

maximize the second smallest pairwise distance, and so on. The greedy approach

we propose in the next section will always have a solution for k EUs which contains

the solution for j EUs for every j < k. This means that not only the minimum

distance, but also the distances between all previously chosen EUs will be large. In

a situation similar to that outlined here, the GreedyMMD solution for t + 1 EUs

will contain the solution for t EUs, i.e. at least one from every clade.

A Greedy 2-Approximation Algorithm for MMD

In this section, we analyze the simple greedy approach for selecting a subset of

EUs under MMD with distance δ. If δ is a tree metric, then, as observed in Spillner

et al. (2007), one can obtain an optimal solution for MMD in polynomial time using

the techniques of Chandrasekaran and Daughety (1981). Nevertheless, because of

the desirable property of stability, we are interested in greedy solutions in their own

right, and so wish to understand their relative performance. In terms of stability,

Example 2 illustrates the potential problem of using the true optimal solution.

Example 2. Consider the phylogenetic tree shown in Figure 3. Under MMD,

it is easily checked that S5 = {x1, x3, x5, x7, x9} is the unique optimal set of five

EUs (MD(S5) = 7), while S6 = {x1, x2, x4, x6, x8, x9} is the unique optimal set

of six EUs (MD(S6) = 6). Thus, in this instance, increasing resources to enable

an additional EU to be conserved would see three of the currently selected EUs

dropped from the optimal set. This example can be extended in the obvious way
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so that, for an arbitrary k, the unique optimal set of size k + 1 intersects in only

two EUs with the unique optimal set of size k.

We analyze the following greedy algorithm.

GreedyMMD(δ, k)

Step 1 Let S be the empty set.

Step 2 Select the two most distant EUs and add to S.

(That is, select two elements x and y that maximize δ(x, y).)

Step 3 Set counter c = 2.

Step 4 If c = k, STOP; otherwise, select an EU from those not already included

in S so that the minimum distance between that EU and those in S is

maximum amongst all remaining EUs not in S.

(That is, select z ∈ X − S that maximizes miny∈S δ(z, y).)

Add the selected EU to S.

Step 5 Set c = c + 1 and return to Step 4.

We remark here that the greedy selection criterion in Step 4 of GreedyMMD may

be restated simply as: choose z that maximizes MD(S∪{z}) amongst all z ∈ X−S.

The next theorem shows that provided δ satisfies the triangle inequality, then

GreedyMMD is a 2-approximation algorithm to MMD. This means that if S

is the solution returned by GreedyMMD and Yopt is an optimal solution, then

2MD(S) ≥ MD(Yopt), that is, MD(S) is at least half MD(Yopt). It is shown

in Ravi et al. (1994) that, assuming δ is only guaranteed to satisfy the triangle



18

inequality, for any ǫ > 0, no polynomial-time algorithm can return a (2 − ǫ)-

approximation to MMD unless P=NP. In particular, in this case the problem MMD

is NP-hard. Hence, in this setting, GreedyMMD gives the best possible approx-

imation. This theorem has previously been observed in the context of operations

research, for example, see Tamir (1991) and Ravi et al. (1994). However, we have

included our proof in the appendix as the associated preliminary lemma will be used

again in the next section and the proof is written in the language of phylogenetics.

Theorem 1. Let δ be a distance on X, and suppose that δ satisfies the triangle

inequality. Let k be an integer greater than one and let Sk be the set returned

by GreedyMMD(δ, k). Then MD(Sk) is a 2-approximation to MD(Yopt), where

Yopt is an optimal solution of size k to MMD.

It is possible that for a given set of EUs, the k-element subset returned by

GreedyMMD and that which optimizes MMD will exhibit the same minimum

distance or, in fact, be the same subsets. However, we reiterate that the greedy

algorithm cannot be guaranteed to work any better than as a 2-approximation

algorithm even if δ is a tree metric, as we show in the following example. We say,

therefore, that Theorem 1 is sharp.

Example 3. Consider the phylogenetic X-tree T shown in Figure 4, where the

length of the edge incident with z is arbitrarily small. Suppose that GreedyMMD

is applied to the distance on X induced by the path lengths in T , where k = 4.

The first two elements selected by GreedyMMD are x1 and x2, the third element

is z, and the last element is either y1 or y2. If S denotes the resulting set, then
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MD(S) = 3 + ǫ. However, it is easily seen that

Yopt = {x1, x2, y1, y2}

is an optimal solution and MD(Yopt) = 6. Thus the approximation ratio in this

case can be made arbitrarily close to 2 by an appropriate choice of ǫ.

Ultrametric Distances

In the previous section, we described how well GreedyMMD performed as

an approximation to MMD provided the distance measure satisfied the trian-

gle inequality. In this section, we show that there are conditions under which

GreedyMMD will always return a subset of EUs that is optimal under MMD. In

particular, the next theorem guarantees that if δ is an ultrametric, then the solution

set S returned by GreedyMMD(δ, k) is an optimal solution of size k to MMD.

Moreover, if T is a rooted phylogenetic tree that realizes δ, then the PD score of

S, denoted PD(S), is equal to the maximum PD score over all subsets of size k.

We denote this last score by PDk. Note that, in this setting, PD(S) is the total

length of the subtree connecting the elements of S and the root of the phylogeny.

A proof of Theorem 2 can be found in the appendix.

Theorem 2. Let δ be an ultrametric on X, and let k be an integer greater than

one. Let Sk be the set returned by GreedyMMD(δ, k) and let Yopt be an optimal

solution of size k to MMD. Then

MD(Sk) = MD(Yopt).
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Moreover, if T is a rooted phylogenetic X-tree that realizes δ, then PD(Sk) = PDk

on T .

Taxonomic Distinctness and p-Median Measures

In this section we discuss two existing measures of diversity, namely taxonomic

distinctness and the p-median. We briefly outline why we do not think these are

suitable for our purposes.

Taxonomic Distinctness

A measure closely related to MMD that is widely used in conservation biology,

though in slightly different circumstances, is taxonomic distinctness (TD), see Clarke

and Warwick (1998). Typically, TD is used for comparing the biodiversity of dif-

ferent areas. Each area is visited and the set of taxa observed within the area

is recorded. The TD of the area is (effectively) taken to be the average pairwise

distance between taxa. This naturally leads to the idea in our setting of select-

ing a set of EUs that maximizes the average distance between EUs (MAD). At

first sight, this appears similar to maximizing the minimum pairwise distance as in

MMD. However, for many instances in which there is dominant longest path in the

tree, e.g. to an out-group of EUs, the optimal and greedy sets chosen under MAD

unduly try to balance the number of EUs either side of this path, see Example 4.

A greedy set under MAD is chosen in the same way as that for MMD except that

Step 4 in GreedyMMD is replaced with the following step:

Step 4′ If c = k, STOP; otherwise, select an EU from those not already included

in S so that the sum of the pairwise distances between that EU and those
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in S is maximum amongst all remaining EUs not in S.

(That is, select z ∈ X − S that maximizes
∑

y∈S δ(z, y).)

Add the selected EU to S.

Example 4. Consider the ultrametric tree shown in Figure 5. Because of the

relatively short distance between any two elements in {a1, a2, . . . , an}, under MMD

and PD, a greedy (and therefore optimal) solution set will involve a single element

from {a1, a2, . . . , an}; the rest of the set will be made up of a spread of elements from

{b1, b2, . . . , bm}. Whereas for all k, under MAD, both greedy and optimal solution

sets of size k will either have k
2 or k−1

2 of its elements from {a1, a2, . . . , an}. This

is straightforward to see by noting that the longest path between any pair of EUs

always involves an ai and a bj .

For completeness, we highlight the computational similarities and differences

between MMD and MAD depending on whether δ is a tree metric or satisfies the

triangle inequality. First, if δ is a tree metric, then, as in the case for MMD,

selecting an optimal set of k EUs under MAD can be done in polynomial time

(Chandrasekaran and Daughety, 1981). Furthermore, it appears that the exact

approximation ratio of the greedy algorithm for MAD is unknown. Ravi et al.

(1994) have shown that it is no worse than a 4-approximation; simple examples show

that it is no better than a 4/3-approximation. In comparison, the greedy algorithm

GreedyMMD returns a 2-approximation to MMD and this is sharp. Second, if δ

satisfies the triangle inequality, Ravi et al. (1994) show that the greedy algorithm

for MAD is no worse than a 4-approximation and no better than a 2-approximation
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algorithm. Again, GreedyMMD returns a 2-approximation to MMD, and this is

sharp.

The p-median

Faith and Walker (1993) proposed an alternative measure of phylogenetic di-

versity called “p-median diversity” to capture a notion of spread. There are two

variants: the continuous and the discrete p-median. Both are defined in terms of

a redundancy which is the complement of diversity. The objective is to minimize

the p-median redundancy when selecting a set of EUs. As before, let X be a set of

EUs and T be a phylogenetic X-tree. For all p ≥ 1, let S be a p-element subset of

X . The continuous p-median redundancy of S is the sum, over all points q in T ,

of the distances dT (q, sq), where sq is the element of S closest to q in T . Here one

views each branch of T as a path consisting of l edges, where l is the length of the

branch and, under this viewpoint, a point of T is a vertex of T .

The continuous p-median arises naturally in a setting in which combinations of

features both arise and disappear in the phylogeny, see Faith (1994) for a description

of the proposed model. A set which minimizes the continuous p-median redundancy,

and thus maximizes the continuous p-median diversity, will maximize the number

of observed combinations of features (Faith, 1994). However, as pointed out in the

same paper, one weakness of this model is that features arising near the end of a

pendant (terminal) branch are ignored. The model described in this paper does

not ignore such features.

The discrete p-median redundancy is defined similarly to the continuous, except

the sum is restricted to points q in X . It is remarked in Faith (1994) that the discrete
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p-median has some undesirable properties. In particular, they give an example in

which the discrete p-median does not correctly select a set that maximizes the

observed number of combinations of features according to the proposed model.

Therefore we focus here only on the continuous p-median, although our discussion,

below, applies to both variants.

An unusual property of p-median is that it depends not only on the set of EUs

selected, but also on all those not selected. This leads to several issues. For example,

two groups of researchers considering the same subset of EUs will arrive at different

views of the diversity value of the set, depending on what other EUs they do or do

not include in the analysis. Depending on ones objectives, it may be that the type

of representative subset given by the p-median is useful. In Horn et al. (1996), it

is observed that such a set gives a best representation of the entire tree, in some

sense. However, it is not appropriate for our purposes in which we seek a set that

intrinsically captures maximum diversity, as we illustrate in the following example.

Example 5. Consider the phylogeny depicted in Figure 6. All edges have the

marked length. Suppose we wish to select a set of three EUs to maximize diversity.

Under continuous p-median, we would select a set containing exactly one of a and

b, exactly one of c and d, and the EU e; for example, {a, c, e}. This is because

for a set such as {a, b, c}, each long edge contributes ≈
∑100

i=1 i to the p-median

redundancy. Whereas, for a set such as {a, c, e}, the long edges leading to a and

c contribute only ≈ 2
∑50

i=1 i to the p-median redundancy, which is therefore much

smaller.
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Under MMD and PD, we would select either {a, b, c} or {a, b, d}. This fits in

with our intuition that of the features present at the root that survive down to a or

c, there will be greater overlap in EU e than in EU b. Thus including b with a and

c will provide the greater additional number of observed features than including e.

We confirm this using the full model, and in particular (2), described in the model

section. Take λ ≈ 1/167, so that many features are expected to survive down a

single evolution of 100 time steps, but most do not to survive down two independent

evolutions of 100 time steps. Taking set {a, b, c}, we expect to observe over 18%

more features than taking set {a, b, e}. We also observe that if we are selecting

four EUs, then under MMD and p-median we would select {a, b, c, e} or {a, b, d, e},

whereas under PD we would select {a, b, c, d}. Again this fits our intuition and our

model, since c and d will share many more features than e shares with any other

EU.

Note that this specific example holds for all λ ≥ 0, but is clearest for the value

given above. In other examples and for some lambdas a set chosen using p-median

may exhibit a greater number of expected features under our model. As discussed

previously, our approach is for large values of λ relative to the phylogenetic dis-

tances. For readers considering other ranges of λ or interested in further alternatives

to PD, we recommend investigating p-median (Faith, 1994).

Discussion

In this paper, we show that a subset of EUs that maximizes phylogenetic diversity

may result in a counter-intuitive collection of species earmarked for conservation
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or as genomic sequencing targets. We argue that as a plausible alternative to

phylogenetic diversity, an appropriate criterion is to choose the subset of EUs where

the minimum distance between any pair of EUs is maximum, amongst all possible

subsets of the same size. This criterion has the virtue of choosing EUs that are

“spread out” across the phylogenetic tree and has a strong theoretical justification

as a heuristic for selecting EUs that optimize a natural model of diversity.

However, as others have shown (e.g. Moulton et al., 2007), choosing the subset

that maximizes the minimum pairwise distance between EUs cannot be achieved

by applying a greedy algorithm whereby one “builds up” a subset of k EUs by

successively adding to optimal subsets of 2, 3, . . . , k−1 EUs. Nonetheless, we think

that there is real value in being greedy. When one has the opportunity to sequence

yet another genome or save yet another species, one would want all the genomes

that have already been sequenced and all the species that have already been saved

to be part of the larger optimal subset. A greedy algorithm guarantees this and,

moreover, gives a solution such that not only the minimum pairwise distance, but

also the pairwise distances between all previously chosen EUs will be large.

It is of value, then, to consider the extent to which a greedy algorithm ap-

proximates an optimal implementation of MMD. At worst, the greedy algorithm

we defined (GreedyMMD) will choose EUs that are separated on a tree by dis-

tances no shorter than half the shortest distance of an optimal subset of EUs under

MMD provided the distance satisfies the triangle inequality. This suggests that

GreedyMMD will still choose a subset that is reasonably “spread out”.
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When distances are ultrametric, Theorem 2 shows that GreedyMMD returns

a set which is in fact optimal under both MMD and PD. This is significant as it

may be possible that even with approximately ultrametric distances GreedyMMD

produces a set that is close to optimal under PD. (Note that, although one could

compute PD directly using a distance matrix that satisfies the ultrametric condition,

it is not clear what one does for a distance matrix that has no underlying tree.)

Lastly, GreedyMMD can be used on a pairwise distance matrix that does not

necessarily induce a tree metric. Thus a large set of sequences could be analyzed us-

ing this method based upon a simple distance measure such as Hamming distance

(Hamming, 1950), without expending the computational time required to recon-

struct an accurate phylogeny. Moreover, if our data satisfies the triangle inequality,

we have the performance guarantee of Theorem 1.
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Appendix: Proofs of Theorems 1 and 2

Here we give the proofs of Theorems 1 and 2. Both proofs make use of the

following lemma.

Lemma 3. Let δ be a distance on X and let k be an integer greater than two. Let

Sk−1 be the (k − 1)-element set that is constructed at the completion of the second-

to-last iteration of GreedyMMD(δ, k). Then, for any element x ∈ X − Sk−1, we

have MD(Sk−1 ∪ {x}) = δ(x, s) for some s ∈ Sk−1.

Proof. For 2 ≤ i ≤ k − 1, let Si = {s1, s2, . . . , si} denote the i-element subset of

Sk−1 that is sequentially constructed by GreedyMMD(δ, k). If MD(Sk−1∪{x}) 6=

δ(x, s) for any s ∈ Sk−1, then, for some distinct si, sj ∈ Sk−1 with i < j, we have

MD(Sk−1 ∪ {x}) = δ(si, sj) < δ(x, s). If there is more than one pair si, sj , choose

a pair with minimal j, and so MD(Sj−1) > δ(si, sj). But then

MD(Sj−1 ∪ {x}) = min{MD(Sj−1), min
s∈Sj−1

δ(x, s)} > δ(si, sj) ≥ MD(Sj),

contradicting the way in which GreedyMMD selects elements. The lemma now

follows. �

Proof of Theorem 1. For all 2 ≤ i ≤ k, let Si = {s1, s2, . . . , si} denote the i-element

subset of Sk that is sequentially constructed by GreedyMMD(δ, k). By Lemma 3,

MD(Sk) = δ(sk, si) for some i ∈ {1, 2, . . . , k − 1}.

Let Yopt = {y1, y2, . . . , yk} be an optimal solution of size k to MMD. Amongst

the elements in Yopt − Sk−1, let y be an element such that

MD(Sk−1 ∪ {y}) = max{MD(Sk−1 ∪ {y′}) : y′ ∈ Yopt − Sk−1}.
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By Lemma 3, MD(Sk−1 ∪ {y}) = δ(y, si′) for some i′ ∈ {1, 2, . . . , k − 1}. Because

of the selection criteria of GreedyMMD, MD(Sk) ≥ MD(Sk−1 ∪ {y}), and so

δ(sk, si) ≥ δ(y, si′).

Now assign each element of Yopt to the element in Sk−1 that it is closest to under

δ. Since |Yopt| > |Sk−1|, it follows by the pigeon-hole principle that two distinct

elements yr, ys ∈ Yopt − Sk−1 are assigned to the same element, s say, in Sk−1. By

the choice of y above,

δ(yr, s) ≤ δ(y, si′) and δ(ys, s) ≤ δ(y, si′).

Then, as δ satisfies the triangle inequality and it is symmetric,

MD(Yopt) ≤ δ(yr, ys)

≤ δ(yr, s) + δ(s, ys) = δ(yr, s) + δ(ys, s)

≤ 2δ(y, si′)

≤ 2δ(sk, si)

= 2MD(Sk)

≤ 2MD(Yopt).

That is,

MD(Yopt)/2 ≤ MD(Sk) ≤ MD(Yopt).

Hence MD(Sk) is a 2-approximation to MD(Yopt). �

Proof of Theorem 2. The first part of the proof proceeds in a similar way to that

used for proving Theorem 1. Nevertheless, for clarity, we include the proof in full.
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For 2 ≤ i ≤ k, let Si = {s1, s2, . . . , si} denote the i-element subset of Sk that is

sequentially constructed by GreedyMMD(δ, k). By Lemma 3, MD(Sk) = δ(sk, si)

for some i ∈ {1, 2, . . . , k − 1}. Let Yopt = {y1, y2, . . . , yk} be an optimal solution

of size k to MMD. Amongst all elements in Yopt − Sk−1, let y be an element that

maximizes MD(Sk−1 ∪ {y}). By Lemma 3, MD(Sk−1 ∪ {y}) = δ(y, si′) for some

i′ ∈ {1, 2, . . . , k − 1}. Now δ(sk, si) ≥ δ(y, si′) as MD(Sk) ≥ MD(Sk−1 ∪ {y}).

Assign each element of Yopt to the element of Sk−1 that it is closest to under δ.

Since |Yopt| > |Sk−1|, there are two distinct elements yr and ys in Yopt − Sk−1

assigned to the same element s in Sk−1. By choice of y above,

δ(yr, s) ≤ δ(y, si′) and δ(ys, s) ≤ δ(y, si′).

Thus, since δ is an ultrametric, we have

MD(Yopt) ≤ δ(yr, ys)

≤ max{δ(yr, s), δ(ys, s)}

≤ δ(y, si′)

≤ δ(sk, si)

= MD(Sk)

≤ MD(Yopt).

In other words, equality holds throughout and so MD(Sk) = MD(Yopt). This

completes the first part of the theorem.
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To show that PD(Sk) = PDk on T , we use induction on k. Clearly, the result

holds if k = 2. So assume that the result holds whenever the set returned by

GreedyMMD has size at most k − 1, where k ≥ 3.

Suppose that Sk = {s1, s2, . . . , sk} is returned by GreedyMMD. By Lemma 3,

MD(Sk) = δ(sk, si) for some i < k. Let u be the most recent common ancestor of

sk and si in T . Then, as δ is an ultrametric,

MD(Sk) = δ(si, sk) = δ(si, u) + δ(u, sk) = 2δ(u, sk).

Note that, except for u, the path from sk to u in T does not intersect the minimal

subtree of T connecting the root and the elements in {s1, s2, . . . , sk−1}; otherwise,

MD(Sk) < δ(sk, si). Thus, in determining Sk, GreedyMMD finds the element s

in X − Sk−1 that maximizes the sum of the edge lengths from s to the minimal

subtree of T that connects the elements in Sk−1. Indeed, this is exactly the greedy

selection criterion used in finding a set of EUs that optimizes phylogenetic diversity.

In particular, to get a set of size k that optimizes PD, take a set of size k − 1 that

optimizes PD and find an element that maximizes the sum of the edge lengths

joining it to the minimal subtree of T connecting the root and the elements in

the set of size k − 1 (Pardi and Goldman, 2005; Steel, 2005). By the induction

assumption, PD(Sk−1) = PDk−1, and so PD(Sk) = PDk. This completes the

proof of the theorem. �
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Figure Captions

Figure 1. Reproduction of Woese’s (Woese, 1987) small-subunit ribosomal

RNA tree showing the subtree subtended by three EUs chosen by (a) minimizing

PD and by (b) maximising the minimum distance. We constructed this tree using

small-subunit ribosomal RNA sequences from an alignment by Barns et al. (1996)

available in TreeBase (Sanderson et al., 1994). Maximum likelihood trees were

constructed with PHYML (Guindon and Gascuel, 2003) using a GTR model of

evolution. The three groups on our tree are represented by the following taxa. AR-

CHAEA: Methanococcus vannielli (Methanogen A), Methanobacterium (Methanogen

B), Thermococcus (Extreme thermophile A), Thermoproteus (Extreme thermophile

B), Desulfurococcus (Extreme thermophile C), Haloferax (Extreme halophiles);

BACTERIA: Thermotoga, Flavobacteria (Flavobacteria), Gloeobacter (Cyanobac-

teria), Escherichia coli (Purple bacteria), Bacillus (Gram-positive bacteria), Ther-

momicrobium (Green non-sulphur bacteria); EUKARYOTES: Vairimorphal (Mi-

crosporidia), Euglena geniculata (Flagellates), Dictyostelium (Cellular slime molds),

Zea mays (Plants), Homo sapiens (Animals) and Coprinus (Fungi).

Figure 2. A phylogeny on which the optimal set of 3 EUs chosen to maximize the

minimum pairwise distance yields a greater expected number of observed features

for all λ > 0.00047 and is significantly different from an arbitrary set of 3 EUs for

λ < 9.72.

Figure 3. A phylogeny on which the (unique) optimal set {x1, x3, x5, x7, x9} of

5 EUs and the (unique) optimal set {x1, x2, x4, x6, x8, x9} of 6 EUs selected under

MMD intersect in only 2 EUs.
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Figure 4. A phylogenetic tree demonstrating that GreedyMMD cannot be

guaranteed to be better than a 2-approximation to MMD. In selecting a set of size

4, GreedyMMD selects a set S containing x1, x2, z, and either y1 or y2, while

MMD selects {x1, x2, y1, y2}. Here MD(S) = 3 + ǫ, but MD({x1, x2, y1, y2}) = 6.

Figure 5. An ultrametric tree on which MAD disagrees with MMD and PD. For

all k ≥ 2, both MMD and PD greedily (and therefore optimally) select a set of size

k that contains exactly one element from {a1, a2, . . . , ak} and a spread of elements

from {b1, b2, . . . , bm}. While, under MAD, both greedy and optimal solution sets

of size k will either have k
2 or k−1

2 of its elements from {a1, a2, . . . , an} depending

on whether or not k is even.

Figure 6. A phylogeny on which the continuous p-median does not give an

optimal set under our model. All edges have the marked length. Suppose we wish

to select a set of three EUs to maximize diversity. Under p-median, we would

select a set containing e, one of a and b, and one of c and d; for example, {a, c, e}.

However, under MMD, we would select either {a, b, c} or {a, b, d}. This fits in with

our intuition that of the features present at the root that survive down to a or c,

there will be greater overlap in EU e than in EU b. Thus including b along with a

and c will provide the greater additional number of observed features than including

e. We confirm this using the model described in this paper. Taking λ ≈ 1/167, for

set {a, b, c} we expect to observe over 18% more features than taking set {a, b, e}.



36

ba
ct

er
ia

a)

b)

Plants

C
iliates

C
ellular slim

e m
ould

F
la

ge
lla

te
s

Purple bacteria

T
herm

otoga

G
ra

m
−p

os
iti

ve
C

ya
no

ba
ct

er
ia

Animals

Extre
me therm

ophile B

Extreme thermophile A

Extreme halophiles

M
ethanogen B

Flavobacteria

Fungi

M
ic

ro
sp

or
id

ia

Extreme thermophile C

M
ethanogen A

G
re

en
 n

on
−

su
lp

hu
r

Plants

C
iliates

C
ellular slim

e m
ould

F
la

ge
lla

te
s

Purple bacteria

T
herm

otoga

G
ra

m
−p

os
iti

ve
C

ya
no

ba
ct

er
ia

G
re

en
 n

on
−

su
lp

hu
r

Animals

Extre
me therm

ophile B

Extreme thermophile A

Extreme thermophile C

Extreme halophiles

M
ethanogen B

M
ethanogen A

Flavobacteria

Fungi

M
ic

ro
sp

or
id

ia

ba
ct

er
ia

ba
ct

er
ia

ba
ct

er
ia

Figure 1



37

b2

10

ρ

cb1

1

a

0.1 0.1

0.05
10

Figure 2



38

2

2

2

2

2

2

2

2

2

1

x1 x2

x3

x4

x5

x6

x7

x8 x9

1

1

1

424

Figure 3



39

z y2

x2

ǫ
11

x1

y1

10 10

2 2

Figure 4



40

b1 b2 bm−1 bmana2a1 b4b3

Figure 5



41

b

1

100

dca

98

e

22

100

Figure 6


