COMPUTING THE MINIMUM NUMBER OF HYBRIDIZATION
EVENTS FOR A CONSISTENT EVOLUTIONARY HISTORY

MAGNUS BORDEWICH AND CHARLES SEMPLE

ABSTRACT. It is now well-documented that the structure of evolutionary rela-
tionships between a set of present-day species is not necessarily tree-like. The
reason for this is that reticulation events such as hybridizations mean that
species are a mixture of genes from different ancestors. Since such events are
relatively rare, a fundamental problem for biologists is to determine the small-
est number of hybridization events required to explain a given (input) set of
data in a single (hybrid) phylogeny. The main results of this paper show that
computing this smallest number is APX-hard, and thus NP-hard, in the case
the input is a collection of phylogenetic trees on sets of present-day species.
This answers a problem which was raised at a recent conference (Phylogenetic
Combinatorics and Applications, Uppsala University, 2004). As a consequence
of these results, we also correct a previously published NP-hardness proof in
the case the input is a collection of binary sequences, where each sequence rep-
resents the attributes of a particular present-day species. The APX-hardness
of these problems mean that it is unlikely that there is an efficient algorithm
for either computing the result exactly, or approximating it to any arbitrary
degree of accuracy.

1. INTRODUCTION

Evolutionary trees, also called (rooted) phylogenetic trees, are used in evolution-
ary biology to represent the ancestral history of a collection of present-day species.
However, evolution is not always tree-like because of reticulation events such as
hybridizations and lateral gene transfers. Consequently, rooted acyclic digraphs, in
which there is exactly one vertex that has in-degree zero and where the vertices of
out-degree zero represent the present-day species, are being used to model retic-
ulate evolution (see, for example, [2, 8, 14, 18]). In such digraphs, vertices with
in-degree at least two represent reticulation events. In this paper, we generically
call these vertices ‘hybridization vertices’ and these digraphs ‘hybrid phylogenies’.

Hybridization events are relatively rare and so a fundamental problem for biol-
ogists studying the evolution of species whose past has included hybridization is
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the following: given a collection of phylogenetic trees on sets of species that cor-
rectly represent the tree-like evolution of different parts of various species genomes,
what is the smallest number of hybridization events required so that the all of the
trees in this collection are simultaneously ‘displayed’ by a single hybrid phylogeny.
This smallest number sets a lower bound on the degree of hybridization that has
occurred in the evolution of the species under consideration. Posed in this way in
[2], and in [14] but with an additional time constraint, this and similar problems
have attracted recent interest (see, for example, [7, 8, 20]). The main results of
this paper show that computing this smallest number is also APX-hard and thus,
consequently, NP-hard. The latter means that, unless P=NP, there is some fixed
positive constant ¢ strictly bigger than 1 for which there is no polynomial-time
algorithm such that, for all instances, the ratio between the size of the feasible
solution outputted by the algorithm and the size of the optimal solution is always
smaller than ¢. In fact, we show that the APX-hardness of computing this smallest
number holds even for the simplest case in which the input collection consists of
just two phylogenetic trees on the same set of species.

The paper is organized as follows. The next section contains some necessary pre-
liminaries and a mathematical formalization of the above optimization problem for
the simplest case (which we call MINIMUM HYBRIDIZATION). Formal statements of
the main results of this paper, as well as a short summary of the complexity classes
and concepts used in these results are also included in this section. The proofs of
the main results are given in Section 3. Section 4, contains some consequences of
the work in Section 3 for the computational complexity of computing the so-called
rooted subtree prune and regraft distance between a pair of phylogenetic trees. This
measure of distance is closely associated with modelling reticulate evolution. Lastly,
Section 5 contains a discussion of the problem perfect phylogeny with recombination,
previously examined in [8] and [20]. We point out an error in the proof given in
[20] that this problem is NP- and APX-hard, and use our earlier results to provide
a correct proof. In general, the notation and terminology throughout this paper
follows [17].

2. PRELIMINARIES AND MAIN RESULTS

For a digraph D and a vertex v of D, we denote the in-degree and out-degree
of v by d~(v) and d*(v), respectively. A hybrid phylogeny or hybrid (on X) is an
ordered pair H = (D; ¢) consisting of

(i) a rooted acyclic digraph D in which the root has out-degree at least two
and, for all vertices v with d*(v) = 1, we have d~ (v) > 2, and
(ii) a bijective map ¢ from X into the set of vertices of D with out-degree zero.

For completeness, if | X| = 1, then the digraph consisting of an isolated vertex v and
a map from X into {v} is also defined to be a hybrid on X. The set X corresponds
to the set of present-day species and is called the label set of H which is denoted
by L(H). Vertices of in-degree at least two (called hybridization vertices) represent
hybridization events and correspond to an exchange of genetic information between



MINIMUM NUMBER OF HYBRIDIZATION EVENTS 3

FIGURE 1. A rooted binary phylogenetic tree 7 and a hybrid H
displaying 7.

hypothetical ancestors. The hybridization number of H, denoted h(H), is

hH) = S(d () — 1),
vEp
where p denotes the root of H. Observe that h(H) > 0, and h(H) = 0 precisely if
D is a rooted tree. Throughout this paper, we adopt the convention that hybrid
phylogenies are always drawn with their arcs directed downwards and so omit the
arrowheads. A hybrid phylogeny H with h(H) = 2 is shown in Fig. 1.

A rooted binary phylogenetic tree is a special type of hybrid phylogeny in which
the root has degree two and all other interior vertices have degree three, and (apart
from the root) all vertices have in-degree one.

Let 7 be a rooted binary phylogenetic X-tree and let H be a hybrid phylogeny
on X. We say that ‘H displays T if 7 can be obtained from a rooted subtree of
‘H by contracting degree-two vertices. In other words, 7 can be obtained from H
by deleting first a subset of the edges of H, and then deleting the isolated vertices,
and contracting non-root degree-two vertices. For example, in Fig. 1, the hybrid H
displays the rooted binary phylogenetic tree 7. For two rooted binary phylogenetic
X-trees 7 and 7', we set

h(T,T') = min{h(H) : H is a hybrid on X that displays 7 and 7'}.

The optimization problem MINIMUM HYBRIDIZATION is formally stated as follows.

MiINIMUM HYBRIDIZATION

Instance: A finite set X, and two rooted binary phylogenetic X-trees 7 and 7".
Goal: Find a hybrid phylogeny H that displays 7 and 7’ with minimum hybridiza-
tion number.

Measure: The value of h(H).

The main results of this paper are Theorem 2.1 and Corollary 2.2.

Theorem 2.1. The optimization problem MINIMUM HYBRIDIZATION is APX-hard.
In particular, there is no polynomial-time approximation scheme for MINIMUM HY-
BRIDIZATION unless P=NP.

It immediately follows from Theorem 2.1 that the analogous formalization of the
(general) fundamental problem described in the introduction, where we are given
an arbitrary size collection of rooted phylogenetic trees is APX-hard.
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Corollary 2.2. Unless P=NP, there is no polynomial-time approzimation algo-

rithm for MINIMUM HYBRIDIZATION with an approximation ratio better than %

We end this section with a short summary of the complexity classes and concepts
described in Theorem 2.1 and Corollary 2.2. For further details, we refer the reader
to [15] and [1].

For optimization problems that are NP-hard, an important consideration is the
possibility of polynomial-time approximation algorithms. In such an algorithm,
one would like to guarantee for all instances that the ratio between the size of the
feasible solution outputted by the algorithm and the size of an optimal solution is
always smaller than some fixed constant. To treat minimization and maximization
problems in the same way, we will assume that this ratio is always at least 1. The
existence of polynomial-time approximation algorithms varies greatly amongst NP-
hard problems. Indeed, there are some NP-hard problems 7 for which regardless
of the size of this fixed constant, there is always such an algorithm. In this case, ™
is said to exhibit a polynomial-time approzimation scheme (PTAS). Such problems
include the problem of finding a maximum independent set in a planar graph. But
then there are other NP-hard problems, such as the (general) travelling salesman
problem, for which there exists no polynomial-time approximation algorithm (no
matter how big the fixed constant is) unless P=NP.

The class APX (also known as MAX SNP) is the class of optimization problems
for which there exists a polynomial-time approximation algorithm for some constant
approximation ratio. Within this class, is the class of APX-complete problems. If
an optimization problem is APX-complete, then it has no polynomial-time approx-
imation scheme unless P=NP. Assuming that P # NP, this implies that there is
some fixed constant r strictly bigger than 1 for which there is no polynomial-time
approximation algorithm with ratio r. To show that an optimization problem s is
APX-hard, it suffices to find an APX-complete problem 7; and show that there is
an ‘L-reduction’ from 7 to ma. Introduced by Papadimitriou and Yannakakis [15],
the reason that this suffices is that L-reductions preserve approximability.

Let m; and 7o be two optimization problems. An L-reduction from 7 to o
is a pair of polynomial-time computable functions f and g, and a pair of positive
constants o and J that satisfy the following properties:

(i) If I is an instance of 71, then f(I) is an instance of mo with

opt(f (1)) < aopt(),

where opt(I) and opt(f(I)) denotes the size of an optimal solution to I and
f(I), respectively.
(if) If S is a feasible solution of f(I), then g(5) is a feasible solution of I with

lopt(1) — ¢(g(5))] < Blopt(f (1)) — c(S)],

where ¢(g(95)) and ¢(S) is the size of g(S) and S, respectively.
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3. PROOFS OF THEOREM 2.1 AND COROLLARY 2.2

We prove Theorem 2.1 (and Corollary 2.2) in two steps. The first step is by es-
tablishing an L-reduction from MAXIMUM 4-DIMENSIONAL MATCHING to a prob-
lem we call MAXIMUM-ACYCLIC-AGREEMENT FOREST, while the second step is
showing that there is an L-reduction from this latter problem to MINIMUM Hy-
BRIDIZATION.

Agreement Forests. Let 7 be a rooted binary phylogenetic X-tree and let X’
be a subset of X. The minimal rooted subtree of 7 that connects the vertices of 7°
labelled by the elements of X’ is denoted by 7 (X’). Furthermore, the restriction of
7T to X', denoted by 7|X’, is the rooted binary phylogenetic tree that is obtained
from 7 (X’) by contracting any non-root vertices of degree two.

Let 7 and 7’ be two rooted binary phylogenetic X-trees. For the purposes of
the definition of an agreement forest, we regard the root of both 7 and 7’ as a
vertex p at the end of a pendant edge adjoined to the original root. Furthermore,
we also regard p as part of the label sets of 7 and 7”, thus we view both label sets
as X U {p}. An agreement forest for 7 and 7" is a collection {7,, 71,75, ..., Ts},
where 7, is a rooted tree whose label set £, includes p and 73,75, ..., 7}, are rooted
binary phylogenetic trees with label sets L1, Lo, ..., Ly, respectively, such that the
following properties are satisfied:

(i) The label sets L,, L1, Lo, ..., Ly partition X U {p}.
(ii) For alli € {p,1,2,...,k}, T, 2 T|L; 2 T'|L;.
(iii) The treesin {7(L;):i € {p,1,2,...,k}} and {7T'(L;):i € {p,1,2,...,k}}
are vertex disjoint rooted subtrees of 7 and 7", respectively.

It is easily seen that if F is an agreement forest for 7 and 77, then, up to contracting
non-root vertices of degree two, F can be obtained from each of 7 and 7’ by
deleting |F| — 1 edges. An agreement forest for 7 and 7" is a maximum-agreement
forest if, amongst all agreement forests for 7 and 7, it has the smallest number of
components, in which case we denote the value of k by m(7,7").

Intuitively, the deleted edges are those which disagree in 7 and 77, and hence
correspond to different paths of genetic inheritance, i.e. hybridization events. So
the fewer edges deleted, the smaller the number of hybridization events. However,
one additional condition is required to link agreement forests and the hybridization
number formally. This condition excludes agreement forests in which any vertex in
the associated hybrid phylogeny inherits genetic information from its own descen-
dants.

Let F = {7,,71,72,...,7;} be an agreement forest for 7 and 7'. Let G be
the directed graph whose vertex set is F and for which (7;,7;) is an arc precisely
if ¢ # j and either

(I) the root of T(L;) is an ancestor of the root of 7(L;), or
(IT) the root of 7'(L;) is an ancestor of the root of 7'(L;).
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FIGURE 2. Two rooted binary phylogenetic trees 7 and 7".
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FIGURE 3. (a) A maximum-acyclic-agreement forest F for 7 and
7'. (b) The graph G.

Since F is an agreement forest, the roots of 7(L£;) and 7 (£;), and the roots of
T'(L;) and T'(L;) are not the same. We say that F is an acyclic-agreement forest
if G is acyclic. (Note that, in [3], the adjective “good” is used instead of “acyclic”
in the definition of an acyclic-agreement forest.) Furthermore, if F contains the
smallest number of components over all acyclic-agreement forests for 7 and 77,
we say that F is a mazimum-acyclic-agreement forest for T and 7', in which case
we denote this value of k by mq(7,7"). Observe that my(7,7") = 0 if and only
if, up to isomorphism, 7 and 7’ are identical. To illustrate these definitions,
Fig. 3(a) shows a maximum-acyclic-agreement forest F for the two rooted binary
phylogenetic trees shown in Fig. 2, where we have adjoined to the root of each of 7
and 7’ a pendant edge as described above. The graph G is shown in Fig. 3(b).

The problem MAXIMUM-ACYCLIC-AGREEMENT FOREST is formally stated as
follows.

MAXIMUM-ACYCLIC-AGREEMENT FOREST

Instance: A finite set X, and two rooted binary phylogenetic X-trees 7 and 7".
Goal: Find a maximum-acyclic-agreement forest F for 7 and 7".

Measure: The number of components in F minus one.
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For us, all of the work in proving Theorem 2.1 goes into establishing the L-
reduction from MAXIMUM 4-DIMENSIONAL MATCHING to MAXIMUM-ACYCLIC-
AGREEMENT FOREST because of the following theorem in [3, Theorem 2].

Theorem 3.1. Let T and T’ be two rooted binary phylogenetic X -trees. Then

(i) MT,T") =ma(T,T").

(ii) If'H is a hybrid phylogeny that displays T and T', then there is a polynomial-
time algorithm for converting H into an acyclic-agreement forest F for T
and T'. Furthermore,

(|‘7| - 1) - ma(Ta T/) S h(H) - h(Tv T/)

Remarks. Part (ii) in Theorem 3.1 is not explicitly stated in [3]. However, it
is a consequence of the proof of [3, Theorem 2]. Intuitively, one takes H and
systematically cuts off rooted subtrees whose root has in-degree at least two. By
viewing the root of H as a vertex at the end of a pendant edge adjoined to the
original root, we obtain an acyclic-agreement forest F for 7 and 7", and so |F| —
1 < h(H). This construction also provides one direction of (i). For the other
direction of (i), if F is an acyclic-agreement forest for 7 and 7", then, taking an
acyclic ordering of Gz, one can construct a hybrid phylogeny beginning with the
component of F containing the label p and systematically adjoining the rest of the
components (respecting the ordering) with at most two new edges to the current
hybrid phylogeny so that the resulting hybrid phylogeny displays the appropriate
restrictions of 7 and 7. The value of the hybridization number of the final hybrid
phylogeny in this construction is at most |F| — 1.

The next corollary is an immediate consequence of Theorem 3.1.

Corollary 3.2. There is an L-reduction from MAXIMUM-ACYCLIC-AGREEMENT
FOREST to MINIMUM HYBRIDIZATION with « = 1 and 8 = 1.

It follows from Corollary 3.2 that MINIMUM HYBRIDIZATION is APX-hard if
MAXIMUM-ACYCLIC-AGREEMENT FOREST is APX-hard. With this in mind, we
next show that there is an L-reduction from the following problem to MAXIMUM-
AcyYCLIC-AGREEMENT FOREST.

MAXIMUM B-DIMENSIONAL MATCHING (MAX-BDM)

Instance: B disjoint sets X7, Xo,..., Xp. A subset @ of X7 X Xo X -+ X Xp.
Goal: Find a maximum-sized subset M of @) with the property that no two mem-
bers of M agree in any coordinate.

Measure: The cardinality of M.

Kann [12] showed that MAX-3DM is APX-complete, even when each element of
UZ | X; appears in at most 3 members of Q. Hazan et al. [9] proved explicit inap-
proximability ratios for MAX-BDM, for B > 4. Chlebik and Chlebikové [6] gave
tighter inapproximability ratios for MAX-3DM and MAX-4DM, and importantly
their results hold even in the restricted case that each element of U2 | X; appears
in exactly 2 members of ). We denote this restricted case by MAX-BDM-2. We
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FIGURE 4. The tree 7 and its subtrees A;.

will show that there is an L-reduction from MAX-4DM-2 to MAXIMUM-ACYCLIC-
AGREEMENT FOREST.

Let W, X, Y, Zand Q C W x X XY X Z be an instance I of MAX-4DM-2.
Let |W| = p. Since each element of W U X UY U Z appears in exactly 2 members
of ), we have

p=IW[=I[X|=Y]=[Z]=|Ql/2

Using the above instance of MAX-4DM-2, we now construct two rooted binary
phylogenetic trees 7 and 7’ with the same label sets. With some modifications,
this construction follows the same construction as that used in [11] and [5] to show
that a certain related problem is NP-hard but with MAXx-4DM-2 replacing EXACT
COVER BY 3-SETS (see Section 4 for further details).

Let Q = {(wl,xl,yl,zl), (wa, T2, Y2, 22), . - ., (wgp,xgp,ygp,ZQP)}. The tree 7 is
shown in Fig. 4. Each subtree A;, with ¢ = 1...2p, corresponds to exactly one
tuple in Q. The tree 7’ is shown in Fig. 5. Each subtree B, corresponds to an
element 7 of WU X UY UZ, where i and j identify the two members of ) in which
r appears. The order of attaching the subtrees B, for r €¢ WU X UY U Z to the
spine of 7’ is not important. Each subtree C;, with ¢ = 1...2p, corresponds to a
tuple in Q.

The following lemma is central to the proof that MAXIMUM-ACYCLIC AGREE-
MENT FOREST is APX-hard. Although not used in this section, the second part of
the lemma will be used in Section 4.

Lemma 3.3.
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FIGURE 5. The tree 7/, and its subtrees B, and C;.

(i) @Q contains a 4-dimensional matching of size k if and only if there is an
acyclic-agreement forest for T and T’ of size

1+8k+92p—k)=18p—k+1.

In particular, mq(7,7') = 18p — opt(Q).
(ii) If there is an agreement forest for T and T’ of size

1+8k+9(2p—k)=18p—k +1,

then ) contains a 4-dimensional matching of size k. In particular, in com-
bination with the necessary direction of (i), m(7,T") = 18p — opt(Q).

Proof. We first prove the necessary direction of (i). Suppose @ contains a 4-
dimensional matching M of size k. We can obtain an acyclic-agreement forest
Far of size 18p — k + 1 for 7 and 7’ by making the following edge deletions to 7
and then contracting any resulting non-root degree-two vertices:

(i) For each i, delete the edge attaching A; to the rest of 7.
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(ii) For each 4, if A; corresponds to a tuple in M, delete each of the pendant
edges attaching w;, x;, y;, and z;, and then delete each of the edges attach-
ing the subtrees containing u; ., and v; w,, Uiz, and v;,, and u,,, and
V4iy,. Thus, in this case, each A; is broken into 8 components.

(iii) For each i, if A; does not correspond to a tuple in M, then delete each of
the pendant edges attaching the leaves w; v, Viw;» Wi,z Viwir Wisys> Viiyss
U; ;, and v; ;. In this case, each A; is broken into 9 components.

Clearly, |Far| = 148k+9(2p — k) = 18p — k+ 1. Furthermore, noting that each B,
corresponds to a particular element of WU X UY U Z, we also have that F,; can
be obtained from 7’ by making the following edge deletions and then contracting
any resulting non-root degree-two vertices:

(i)’ For each i and r, delete the edge attaching B, and C; to the rest of 7".

(ii)" For each 1, if C; corresponds to a tuple in M, delete each of the pendant
edges attaching w;, z; and y;, so C; is broken into 4 components. If C; does
not correspond to a tuple in M, it remains 1 component. Thus the cuttings
in (ii)" together with the cutting of each C; in (i)’ contribute 4k + (2p — k)
components.

(iii)" For each r € WU X UY U Z, if r appears in a tuple in M, then it appears
at most once, in which case without loss of generality we may assume r;
appears in some tuple in M, but r; does not. Then in B, delete each of
the edges attaching v, and v; ., so that B, is broken into 3 components.
If neither r; nor r; appears in a tuple in M, then in B, delete each of the
pendant edges attaching wu; ., vir, and wuj,;, so that B, is broken into 4
components. Hence the cuttings in (iii)’ together with the cutting of each
B, in (i)’ contribute 4k - 3 + (4p — 4k)4 components.

In this case also, as expected, the total number of components is
1+4k+ (2p—k)+4k-3+ (dp —4k)4 =1+ 8k+9(2p — k).

Hence Fj; is indeed an agreement forest for 7 and 7’. A routine check now shows
that Fjs is also an acyclic-agreement forest.

We next simultaneously prove (ii) and the sufficient direction of (i). Let S =
{51,52,...,836p2, 1, b2, ..., t72p2}. Let F be an agreement forest for 7 and 7' of
size at most 18p + 1. Note that F may or may not be acyclic. We first show that
if 7; is a tree in F with label set £(7;), then if £(7;) N L(A;) # 0 it follows that
L(T;) C L(Ai), and if L(T;) N L(B,) # 0 it follows that £(7;) C L(B,).

Let 7; be a tree in F, and first assume that for some ¢ the set £(7;) N L(A;)
is non-empty and contains at least one element x of £(7) not in £(A;). Suppose
that @ € L(A;) for some i’ # i. Then, since F is an agreement forest for 7 and
7', there are at least 18p members of S that appear as singletons in F (those
in the chain between A; and A;). By comparing 7 and 77, the label set of no
component in F contains the entire label set of A; (for any ), and so F contains
at least 18p + 2 components; a contradiction. Now suppose that x € S. If x €
{t1,t2,...,t79p2}, then, as F is an agreement forest, each of the 18p elements in
{836p2—18p+1, - - - » S36p2 } appear as singletons in F. As the label set of no component
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in F contains the entire label set of A;, this implies that F contains at least 18p+ 2
components; a contradiction. Therefore we may assume that « € {s1,52,..., 5362}
Using an argument similar to that just used, it is straightforward to deduce that
x € {S36p2—18p+1;- - - » Sz6p2 }. But then, by comparing 7 and 77, the 18p — 1 other
elements in {S3ep2_18p+1,---,S36p2 } appear as singletons in F. Since the label set
of no component of F contains a label in A; and a label in {t1,%s,...,%21p¢} and
since the label set of A; is not a subset of the label set of a single component of
F, we again deduce that F contains at least 18p 4+ 2 components; a contradiction.
Effectively, this means that to obtain F from 7 each edge joining an A; to the rest
of T is deleted. Using this last fact, the result for £(7;) N L(B,) # 0 follows easily

by similar reasoning.

Now suppose that F is an agreement forest of size 1+8k+9(2p—k) = 18p—k+1.
Fixing ¢, consider A;. By the argument above, there is a subset of the components
of F in which the union of the label sets is the label set of A;. Since no component
can contain labels from more than one B,., a routine check shows that this subset
must have at least 8 elements and, moreover, this subset has exactly 8 elements
only if the partition of £(A;) induced by the label sets is

{{wz}a {:I"’L}7 {y1}5 {21}5 {ui,’u}iv Ui,wi}; {ui,miv vi,:b-;}v {ui,yi; Ui,yi}; {Ui,zia Ui,zi}}-

It now follows that each A; contributes at least 8 components to F. An important
observation at this point is that regardless of the composition of F, it is always an
acyclic-agreement forest.

Since F has 1 4 8k 4+ 9(2p — k) components, it follows from the last paragraph
that at least k of the A;’s are ‘partitioned’ into 8 parts as described above. Let
A; and A; be two such subtrees, and consider the associated tuples (w;, ;, yi, 2i)
and (wj,x;,y;,2;). Suppose that one of the components agree. Without loss of
generality, we may assume that x; = z;. Since A; and A; are both partitioned
into 8 parts, {u; e, Vi.e, } is the label set of one component of F and {uw; 4, v, }
is the label set of another component of F. But then, in 7', the minimal subtree
connecting u; ,; and v; o, and the minimal subtree connecting u; ,, and v; ., are not
disjoint; a contradiction. Thus (w;, z;, y;, 2;) and (w;, x5, y;, 2;) have no coordinates
in common. We conclude that @) contains a 4-dimensional matching of size k. This
establishes both (ii) and the sufficient direction of (i). O

Theorem 3.4. The optimization problem MAXIMUM-ACYCLIC-AGREEMENT FOR-
EST is APX-hard. In particular, unless P=NP, there is no polynomial-time approz-
imation scheme for MAXIMUM-ACYCLIC-AGREEMENT FOREST.

Proof. To establish the result, we show that there is an L-reduction from MAX-
4DM-2 to MAXIMUM-ACYCLIC-AGREEMENT FOREST. First note that by picking
any m in @ and removing all other tuples which agree with m in at least one
coordinate (thus removing at most 5 members including the one originally picked),
and then picking another member from the resulting set and continuing this process,
we observe that opt(Q) > 25—}’; that is

(1) 2p < 50pt(Q).
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Let I be an instance of MAX-4DM-2, and let f(I) be the function that maps I to
T and 7', an instance of MAXIMUM-ACYCLIC-AGREEMENT FOREST as described
prior to Lemma 3.3. Clearly, this mapping is computable in polynomial time in the
size of I. Furthermore, by Lemma 3.3 and (1),

maq(T,7T") = 18p — opt(Q)
< 9(50pt(Q)) — opt(Q)
= 44 0pt(Q).
It now follows that (i) in the definition of an L-reduction holds with o = 44.

To see that (ii) holds, let F be an agreement forest for 7 and 7" of size Sy +1 =
18p — k + 1. Let g be the function that maps F to the feasible solution of I of
size S1 = k as described at the end of the proof of Lemma 3.3. Again, g can be
computed in polynomial time. Then S = 18p — 57, and so

18p — opt(Q) = ma(T,T")
= 18p — S1 — (18p — opt(Q)) = S2 — ma(7,T")
o opt(Q) — S1 = S — mu(7,77).

It now follows that (ii) in the definition of an L-reduction also holds with § = 1.
This completes the proof of the theorem. O

Theorem 2.1 immediately follows from Corollary 3.2 and Theorem 3.4. Moreover,
because @« = 6 = 1 in the L-reduction from MAXIMUM-ACYCLIC-AGREEMENT
FOREST to MINIMUM HYBRIDIZATION, Corollary 2.2 is an immediate consequence
of Corollaries 3.2 and 3.5.

Chlebik and Chlebikova [6] recently showed that, unless P=NP, there is no
polynomial-time approximation algorithm for MAaX-4DM-2 with an approxima-
tion ratio better than %. Using the L-reduction in the proof of Theorem 3.4 and,

in particular, the values a = 44 and 3 = 1, we get Corollary 3.5.

Corollary 3.5. Unless P=NP, there is no polynomial-time approzimation algo-
rithm for MAXIMUM-ACYCLIC-AGREEMENT FOREST with an approximation ratio

2113
better than 5115 -

Proof. Suppose that there is such an algorithm and suppose that P # NP. Then
using the notation and terminology in the proof of Theorem 3.4, we have

Sy 2113

(1,7~ 2112
- So—ma(T.T) 2118 | 1
ma(T,T") 2112 2112

But mq(7,7") < 44 0pt(Q), and so
1 1
< .
440pt(Q) — ma(T,77)
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Furthermore, Sy — mq(7,7’) = opt(Q) — S1. Therefore

(opt(Q) = S1) < 5753

LM s
2112  opt(Q)

47 S1
— < .
48 opt(Q)

1
44 0pt(Q)

This last inequality implies that MAX-4DM-2 has a polynomial-time approxima-
tion algorithm with an approximation ratio better than j—?, contradicting Chlebik
and Chlebikova’s result. This completes the proof of the corollary. O

Remark. The proof of the L-reduction used could also be applied to give an L-
reduction from MAX-3DM-2 to MAXIMUM-ACYCLIC-AGREEMENT FOREST with
the corresponding values o/ = 27 and 3 = 1. Although o’ is much smaller than
the o obtained for MAX-4DM-2, the resulting inapproximability ratio is worse
since the best known inapproximability result for MAX-3DM-2 is only g—i [6].

4. THE ROOTED SUBTREE PRUNE AND REGRAFT OPERATION

Historically, one of the main tools for understanding and modelling reticulate
evolution is a graph-theoretic operation called ‘rooted subtree prune and regraft’.
The reason for this is that a single rooted subtree prune and regraft operation can
be used to model a single reticulation event (see [2, 10, 13, 14, 18]). Moreover, for
a pair of rooted binary phylogenetic X-trees, the ‘rooted subtree prune and regraft
distance’ between the two trees provides a lower bound to h(7,7") (see [3, 19]).
It is stated, but not verified, in [11] that computing this distance is APX-hard.
In this section, we verify this result and also show that, unless P=NP, there is
no polynomial-time approximation algorithm for computing this distance with an

2113

approximation ratio better than 5335. As we will soon see, it is no coincidence that

this ratio is the same as that in Corollary 2.2.

Let 7 be a rooted binary phylogenetic X-tree. As in the definition of an agree-
ment forest, for the purposes of the upcoming definition, we regard the root of 7
as a vertex p at the end of a pendant edge (called the root edge) adjoined to the
original root. Let e = {u, v} be an edge of 7 that is not the root edge, where u is
the vertex that is in the path from the root of 7 to v. Let 7’ be the rooted binary
phylogenetic tree obtained from 7 by deleting e and then adjoining a new edge f
between v and the component C,, that contains u as follows. Create a new vertex u’
which subdivides an edge in C,,, and adjoin f between u’ and v, and then contract
the degree-two vertex u. We say that 7’ has been obtained from 7 by a rooted sub-
tree prune and regraft (rSPR) operation. We define the rSPR distance between two
arbitrary rooted binary phylogenetic X-trees 7 and 7" to be the minimum number
of rooted subtree prune and regraft operations that is required to transform 7 into
7’. This distance is denoted by dyspr(7,7"). It is well-known that, for any such
pair of trees, one can always obtain one from the other by a sequence of single rSPR,
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operations. Thus this distance is well-defined. We formally state the optimization
problem of computing rSPR distance between 7 and 7" as follows.

MINIMUM RSPR

Instance: A finite set X, and two rooted binary phylogenetic X-trees 7 and 7".
Goal: Find a minimum length sequence of single rSPR operations that transforms
7 into 7.

Measure: The length of this sequence.

We remark here the following. Originally thought to be proved in [11], the NP-
hardness of MINIMUM RSPR is established in [5] using the original reduction from
“Exact Cover by 3-Sets (X3C)” and revising the definition of maximum-agreement
forest given in [11] to that described in this paper. This reduction takes an instance
of X3C and converts it into a pair of rooted binary phylogenetic trees with the same
label sets for which the instance has an exact cover if and only if the two trees has an
agreement forest of a certain size. The reduction used in the proof of Theorem 4.3
(see below) closely follows this original reduction with MAX-4DM-2 replacing the
closely related problem X3C.

Analogous to the APX-hardness proof of MINIMUM HYBRIDIZATION, we prove
the APX-hardness of MINIMUM RSPR in two steps. The first step is by showing
that there is an L-reduction from MAX-4DM-2 to MAXIMUM-AGREEMENT FOR-
EST.

MAXIMUM-AGREEMENT FOREST

Instance: A finite set X, and two rooted binary phylogenetic X-trees 7 and 7".
Goal: Find a maximum-agreement forest F for 7 and 7.

Measure: The number of components in F minus one.

Note that there is no reference to “acyclic” in this problem. The second step
is by showing that there is an L-reduction from MAXIMUM-AGREEMENT FOR-
EST to MINIMUM RSPR. Because of Lemma 3.3(ii) and the necessary direction of
Lemma 3.3(i) for agreement forests, the proofs used to establish Theorem 3.1 and
Corollary 3.2 can be used to establish the first step and in particular the following
theorem.

Theorem 4.1. The optimization problem MAXIMUM-AGREEMENT FOREST is APX-
hard. Furthermore, unless P=NP, there is no polynomial-time approximation algo-

rithm for MAXIMUM- AGREEMENT FOREST with an approximation ratio better than
2113
2112

Now for the second step. Like the value h(7,7"), the value d,spr(7,7’) can
be written in terms of agreement forests. Recall that m(7,7") denotes the size of
an agreement forest with the smallest number of components over all agreement
forests for 7 and 7’ minus one. The following theorem is established in [5].

Theorem 4.2. Let T and T’ be two rooted binary phylogenetic X -trees. Then

(i) dispr(T,T") = m(T,T").
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(ii) If we have a sequence of single rSPR. operations that transforms T into T',
then there is a polynomial-time algorithm for converting this sequence into
an agreement forest F for T and T'. Furthermore, if this sequence has
length s, then

(|FI = 1) —=m(T,T") < s —dyspr(7,7T").

Remark. Part (ii) in Theorem 4.2 is not explicitly stated in [5], but it is essentially
a consequence of the inductive proof of [5, Theorem 2.1].

As a consequence of Theorem 4.2, there is an L-reduction from MAXIMUM-
AGREEMENT FOREST to MINIMUM RSPR with o = 1 and 8 = 1. Together with
Theorem 4.1, this implies the next theorem, the first part of which verifies a result
that is stated without proof in [11].

Theorem 4.3. The optimization problem MINIMUM RSPR is APX-hard. Fur-
thermore, unless P=NP, there is no polynomial-time approzimation algorithm for
2113

MINIMUM RSPR with an approzimation ratio better than 5375 .

We end this section by considering what approximation ratios can be achieved in
polynomial time for MINIMUM HYBRIDIZATION and MINIMUM RSPR. Currently,
we do not know of any polynomial-time approximation algorithm for MiNiMuM Hy-
BRIDIZATION. However, based upon ideas in [11, 16], the current best polynomial-
time approximation algorithm for MINIMUM RSPR is a 5-approximation algorithm
by Bonet et al. [4]. Intuitively, this algorithm builds an agreement forest locally.
One might hope that this algorithm extends to MINIMUM HYBRIDIZATION, but, due
to the additional global condition on a acyclic-agreement forest, it seems unlikely
that such an approach will work.

5. PERFECT PHYLOGENETIC NETWORKS WITH RECOMBINATION

Perfect phylogenetic network with recombination is a problem that has a very
similar flavour to that of MINIMUM HYBRIDIZATION, and has been studied by Gus-
field et al. [8] and Wang et al. [20]. Like MINIMUM HYBRIDIZATION, the goal of
this problem is to compute the minimum number of hybridization events that is
required to explain a given input, where in this case the input is a collection of
binary sequences. It is shown in [20] that perfect phylogeny with recombination is
NP- and APX-hard, however, an assertion in the NP-hardness proof is incorrect.
In terms of the language used in this paper, this assertion states that if the rooted
subtree prune and regraft distance of two rooted binary phylogenetic trees is k,
then there is a hybrid phylogeny with k& hybridization vertices each of in-degree two
that displays both trees. In [3], explicit examples are given to show that this does
not always hold. In this section, we verify the NP- and APX-hardness of the per-
fect phylogenetic network with recombination problem using the hardness results
of MINIMUM HYBRIDIZATION.

Although perfect phylogenetic network with recombination could be stated in
terms of hybrid phylogenies, we formally state the problem in the language given in
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0000

1001 1000 1010 0110
FIGURE 6. A phylogenetic network.

[8, 20]. An (n, m)-phylogenetic network N is a rooted acyclic digraph with exactly
n vertices of out-degree zero in which each vertex other than the root has either one
or two incoming edges, and each vertex of N is labelled with a binary sequence of
length m. A vertex with two incoming edges is called a recombination vertex. Each
integer in {1,2,...,m} is assigned to exactly one edge of N that is not directed
towards a recombination vertex. Beginning with the root which is labelled with
the all-0 sequence, each of the binary sequences labelling the other vertices is based
on the binary sequence of its parent and the incoming edge (in the case it is a
non-recombination vertex) or its parents (in the case it is a recombination vertex).
In particular, the sequences satisfy the following properties:

(I) If v is a non-recombination vertex with incoming edge e, then the sequence
labelling v is obtained from the sequence labelling its parent by changing
the i-th element from 0 to 1 for each integer i assigned to e. If no integer
is assigned to e, then the sequence labelling v is the same as its parent.

(IT) If v is a recombination vertex, then, for some positive integer p strictly
between 1 and m (that is, 1 < p < m), the sequence labelling v is the
concatenation of the first p elements of the sequence labelling one of its
parents and the last m — p elements of its other parent.

As an example, a phylogenetic network is shown in Fig. 6. For each recombination
vertex in this example, the first two elements in the associated sequence come from
its ‘left” parent and the second two elements come from its ‘right’ parent.

Let B be a collection of n binary sequences of length m. An (n, m)-phylogenetic
network N explains B if the n vertices of out-degree zero are bijectively labelled
with the elements of B. For example, the phylogenetic network in Fig. 6 explains
the collection {1001, 1000,1010,0110} of binary sequences.

Over all phylogenetic networks that explain B, we are interested in finding one
with the smallest number of recombination vertices. We denote this smallest num-
ber by r(B). The perfect phylogenetic network with recombination problem is
formally stated as follows:

PERFECT PHYLOGENY WITH RECOMBINATION

Instance: A set B of n binary sequences of length m.

Goal: Find a (n,m)-phylogenetic network N that explains B with the minimum
number of recombination vertices.

Measure: The number of recombination vertices in N.
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The motivation for PERFECT PHYLOGENY WITH RECOMBINATION is similar
to that for MINIMUM HYBRIDIZATION except that, rather than having an input
collection consisting of rooted binary phylogenetic trees, we now have an input
collection consisting of binary sequences. Each sequence represents a present-day
species and, in such a sequence, each coordinate represents some attribute (or
character) of the species. A 1 usually indicates that the species under consideration
has this particular attribute, while a 0 indicates that the species does not have this
attribute. Observe that 0 — 1 is the only allowable transition. The reason for the
wording “perfect phylogeny” is that the classical perfect phylogeny problem can be
interpreted as the problem of deciding if there is a phylogenetic network with no
recombination vertices that explains B.

As mentioned at the beginning of this section, the proof in [20] that establishes
the NP-hardness of PERFECT PHYLOGENY WITH RECOMBINATION uses an incor-
rect assertion. However, the result itself is correct as we next show.

To prove the NP-hardness of PERFECT PHYLOGENY WITH RECOMBINATION, we
use a reduction from MINIMUM HYBRIDIZATION. We remark here that, even if the
NP-hardness proof in [20] was correct, it appears that there is no simple reduction
from PERFECT PHYLOGENY WITH RECOMBINATION to MINIMUM HYBRIDIZATION.
Let 7 and 7’ be two rooted binary phylogenetic X-trees, where |X| = n. For T
and 77, bijectively label the edges with the elements of C = {x1,X2,.--, X2(n-1)}
and C' = {x}, x5, -, X/Q(n—l)}’ respectively. Note that both 7 and 7’ have 2(n—1)
edges. Each of the elements in C and C’ represent a binary character with states 0
and 1. For each vertex v and v’ of 7 and 7, respectively, we associate the binary
sequence in which the i-th element is 1 if and only if x; (resp. x}) labels an edge
on the path from v to the root of 7 (resp. 7’). For each z in X, concatenate the
sequence labelling z in 7 with the sequence labelling z in 7’. Let B be the resulting
collection of n binary sequences of length 4(n — 1). This construction is the same
as that originally used in [20]. The following lemma is central to proving the NP-
hardness (and APX-hardness) of PERFECT PHYLOGENY WITH RECOMBINATION.

Lemma 5.1. Let T and T’ be two rooted binary phylogenetic X -trees, and let B be
a collection of binary sequences that is constructed from T and T’ as above. Then

r(B) = (T, T).

Proof. We first show that r(B) < h(7,7"'). Let H be a hybrid phylogeny on X
that displays 7 and 7, and has the property that h(H) is minimized. Let p denote
the root of H. Because of minimality and the fact that we have only two trees, each
hybridization vertex of H has in-degree two. By deleting and contracting edges if
necessary, we may assume that all the edges of H are used in some simultaneous
displaying of 7 and 7'. Furthermore, by refining vertices if necessary, we may
also assume that if a vertex in H has in-degree two, then it has out-degree one.
Now colour each vertex and edge of H green or red depending upon whether it
is used by 7 or 7, respectively, under the simultaneous displaying of 7 and 7.
Every vertex and edge is coloured with at least one colour. We will call a vertex
or edge monochromatic if it is only coloured with one colour; otherwise we call it



18 MAGNUS BORDEWICH AND CHARLES SEMPLE

bichromatic. We force the root of H to be bichromatic as follows. In the case that
the root of one of the trees, 7’ say, is identified with a non-root vertex of H, we
will colour p and the edges of a directed path from p to this non-root vertex of H
red, and view this path as part of 7’. The reason for this will be made clear soon.
We next assign a binary sequence to each vertex of H based on this colouring.

As in the case of the sequences in B, the labelling comes in two parts. The root
p is given the all-0 sequence. Consider the restriction of H to the green vertices
and edges. For each green vertex v # p, assign it the first part of the sequence
labelling the vertex of 7 corresponding to v. If v has degree two in this restriction,
assign it the labelling of the first vertex ‘above’ it that has degree three or, in the
case this vertex is the root, degree two. Now consider the restriction of H to the
red vertices and edges. For each red vertex v # p, assign it the second part of the
sequence labelling the vertex of 7’ corresponding to v. If v has degree two in this
restriction, assign it the labelling of the first vertex ‘above’ it that has degree three
or, in the case this vertex is the root, degree two. After this labelling, all of the
bichromatic vertices of H have been assigned a sequence with both parts. If v is
a monochromatic vertex of H coloured green, then the second part of its sequence
label is the same as the second part of the sequence labelling the first bichromatic
vertex that is met on the unique green path from v to p. Furthermore, if v is a
monochromatic vertex of H coloured red, then the first part of its sequence label
is the same as the first part of the sequence labelling the first bichromatic vertex
that is met on the unique red path from v to p. Since p is bichromatic, this is
well-defined.

This direction of the proof is completed by showing that H with this sequence
labelling of the vertices is a phylogenetic network N that explains B. Clearly, there
is a one-to-one correspondence between the elements of B and the vertices of A/ of
out-degree zero. Furthermore, as H has the property that the out-degree of each
hybridization vertex v is one, and the edges directed into v are different colours and
monochromatic, the sequence assigned to v is of the type described in (IT) of the
definition of a phylogenetic network. Because of the way in which the elements in
B are constructed and the way in which the sequences are assigned to the vertices
of H from the sequences labelling the vertices of 7 and 7”, it is now easily seen
that A is a phylogenetic network that explains B. Hence r(B) < h(7,7").

To show that r(B) > h(7,7’), we can use Claim 2 in the second part of the
proof of Theorem 1 in [20] which implies that if there is a phylogenetic network
N that explains B and has k recombination vertices, then the underlying rooted
acyclic digraph can be modified to give a rooted acyclic digraph that displays 7
and 7', and has k recombination vertices, where each recombination vertex has
in-degree two. In particular, there is a hybrid phylogeny H on X that displays 7°
and 7' with h(H) = k. Thus r(B) > h(7,T"). O

The NP-hardness of PERFECT PHYLOGENY WITH RECOMBINATION follows im-
mediately from the next theorem.

Theorem 5.2. The optimization problem PERFECT PHYLOGENY WITH RECOM-
BINATION 4s APX-hard.
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Proof. Because of the strength of Lemma 5.1, the proof is straightforward. Let
7 and 7’ be an instance I of MINIMUM HYBRIDIZATION, and let f(I) be the
function that maps 7 and 7’ to B, an instance of PERFECT PHYLOGENY WITH
RECOMBINATION as described prior to Lemma 5.1. Evidently, this mapping takes
polynomial time in the size of 7 and 7’. Furthermore, by Lemma 5.1, r(B) =
h(7T,T’) and so (i) in the definition of an L-reduction holds with o = 1.

Now let N be a phylogenetic network that explains B with S recombination
vertices. Let g be the function that maps N to the feasible solution of 7 and 7~
of size S; = S, as described in the last paragraph of the proof of Lemma 5.1. Note
that, as detailed in [20], this mapping can be computed in polynomial time. As
r(B) = h(T,T'), it follows that

S1—h(T,T") =Sy —r(B).
Thus (ii) in the definition of an L-reduction holds with 8 = 1. (]

The proof of Corollary 5.3 is analogous to that used to prove Corollary 2.2. We
omit the details.

Corollary 5.3. Unless P=NP, there is no polynomial-time approzimation algo-

rithm for PERFECT PHYLOGENY WITH RECOMBINATION with an approximation

. 2113
ratio better than 5115 -
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