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Abstract. The Nature Reserve Selection Problem is a problem

that arises in the context of studying biodiversity conservation.

Subject to budgetary constraints, the problem is to select a set of

regions to conserve so that the phylogenetic diversity of the set

of species contained within those regions is maximized. Recently,

it was shown in a paper by Moulton et al. that this problem

is NP-hard. In this paper, we establish a tight polynomial-time

approximation algorithm for the Nature Reserve Section Problem.

Furthermore, we resolve a question on the computational complex-

ity of a related problem left open in Moulton et al.
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1. Introduction

A central task in conservation biology is measuring, predicting, and

preserving biological diversity as species face extinction. In this regard,

individual species are often the focus of attention. However, as pointed

out by Rodrigues et al. [13], this is not necessarily the best way to

conserve diversity:

Although conservation action is frequently targeted to-

wards single species, the most effective way of preserving

overall species diversity is by conserving viable popu-

lations in their natural habitats, often by designating

networks of protected areas.

In this paper, we consider a natural computational problem in the

context of conserving whole habitats instead of individual species.

Dating back to Faith (1992) [1], phylogenetic diversity is a promi-

nent quantitative tool for measuring the biodiversity of a collection of

species. This measure is based on the evolutionary distance amongst

the species in the collection. Loosely speaking, if T is a phyloge-

netic tree whose leaf set X represents a set of species and whose edges

have real-valued lengths (weights), then the phylogenetic diversity (PD
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score) of a subset S of X is the sum of the weights of the edges of the

minimal subtree of T connecting the species in S. The standard PD

optimization problem is to find a subset of X of a given size that max-

imizes the PD score amongst all subsets of X of that size. Perhaps

surprisingly, the so-called greedy algorithm solves this problem exactly

[1, 10, 16].

A canonical extension of the standard problem allows for the consid-

eration of conserving various regions such as nature reserves at some

cost. In particular, as well as an edge-weighted phylogenetic tree T

with leaf set X, we have a collection A of regions or areas containing

species in X with each region having an associated cost of preservation.

Given a fixed budget B, the PD optimization problem for this exten-

sion is to find a subset of the regions in A to preserve that maximizes

the PD score of the species contained within at least one preserved

region while keeping within the budget. This problem is called the

Budgeted Nature Reserve Selection problem (BNRS) and generalizes

the analogous unit cost problems described in [9, 11, 12, 13]. Allow-

ing the cost of conserving each region to vary provides additional cost

structure that is important in practice but which, as commented in

[2, 5], is often omitted from such problems in conservation biology. For

applications of BNRS with unit costs and using the maximum PD
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score across areas to make assessments in conservation planning see,

for example, [8, 12, 15].

Moulton et al. [9] showed that a particular instance of BNRS (and

therefore BNRS itself) is NP-hard, that is, there is no polynomial-

time algorithm for solving it unless P=NP. Despite this negative re-

sult, in this paper we show that there is a polynomial-time (1− 1/e)-

approximation algorithm for this problem. That is, an efficient algo-

rithm that generates a solution which has at least a (1− 1/e) fraction

(≈ 63%) of the phylogenetic diversity of the optimal solution. More-

over, this approximation ratio is the best possible.

The paper is arranged as follows. Section 2 contains a formal defi-

nition of BNRS and a discussion of related work. Section 3 contains

the description of the approximation algorithm, and the statement of

the main theorem, the proof of which is established in Section 4. In

Section 5, we answer a computational complexity question on a related

problem that was left open in [9]. Throughout most of the paper, we

restrict ourselves to phylogenetic diversity in the setting of unrooted

trees. However, in the last section of the paper, we extend our earlier

results to the rooted analogue of BNRS. The notation and terminology

in the paper follows [14].
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2. Budgeted Nature Reserve Selection

In order to define BNRS formally, we require the following defini-

tions. A phylogenetic X-tree T is an (unrooted) tree with no degree-2

vertices and whose leaf set is X. Let T be a phylogenetic X-tree with

edge set E and let λ : E → R
≥0 be an assignment of lengths (weights)

to the edges of T . Ignoring the dashed edges, Fig. 1 illustrates a

phylogenetic X-tree with non-negative real-valued edge weights, where

X = {a, b, c, d, e, f, g}.

For a subset S of X, the phylogenetic diversity (PD) of S on T is the

sum of the edge lengths of the minimal subtree of T that connects S.

This sum is denoted as PD(T ,λ)(S), however, if there is no ambiguity,

we usually shorten it to PD(S). Referring to Fig. 1, if S = {a, b, f},

then PD(S) is equal to the sum of the weights of the minimal subtree

(dashed edges) that connects a, b, and f , in particular, PD(S) = 12.

BNRS is formally defined as follows.

Problem: BNRS

Instance: A phylogenetic X-tree T , a non-negative (real valued)

weighting λ on the edges of T , a collection A of subsets of X, a cost

function c on the sets in A, and a budget B.
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Figure 1. A phylogenetic X-tree with edge lengths,

where X = {a, b, c, d, e, f, g}.

Question: Find a subset A′ of A that maximizes the PD score of

⋃

A∈A′ A on T such that
∑

A∈A′ c(A) ≤ B.

Referring to the informal discussions in the introduction, in the state-

ment of BNRS, A is the collection of regions and A′ is an optimal sub-

set of regions that we wish to conserve that maximizes the PD score

of the species contained in at least one of the preserved regions. Of

course, the total cost of the preserving the regions in A′ is at most B.

Example 2.1. As an example of an instance of BNRS, take T be the

edge-weighted phylogenetic X-tree shown in Fig. 1, choose A to be

{

{b}, {f, c}, {c, d}, {a, b}, {a, g}, {e}, {g, e}
}

,
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and set c be the cost function on A defined by c({b}) = 4, c({f, c}) = 8,

c({c, d}) = 6, c({a, b}) = 10, c({a, g}) = 4, c({e}) = 4, and c({g, e}) =

5. By setting B = 24, we now have an instance of BNRS.

A feasible solution of this instance is
{

{f, c}, {a, b}
}

as c({f, c}) +

c({a, b}) = 8 + 10 = 18, which is within budget. Note that the PD

score on T associated with this feasible solution is

PD({f, c} ∪ {a, b}) = 15.

An optimal solution is
{

{b}, {f, c}, {c, d}, {e, g}
}

. In this case c({b})+

c({f, c}) + c({c, d}) + c({e, g}) = 4 + 8 + 6 + 5 = 23 and

PD({b} ∪ {f, c} ∪ {c, d} ∪ {e, g}) = 21.

The problem BNRS extends the problem Optimizing Diversity

via Regions described in [9]. The extension from the latter to the

former is that, instead of each region having a unit cost, the cost of

conserving each region is allowed to vary. Moulton et al. [9] showed

that Optimizing Diversity via Regions is NP-hard and so, con-

sequently, BNRS is also NP-hard. BNRS also extends the problem

Budgeted Maximum Coverage, in which each element of X has

a weight and the objective is to maximize the total weight of
⋃

A∈A′ A

without the additional structure imposed by a tree [7]. An instance of
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the latter problem may be realized as a BNRS instance by taking T to

be a star tree with leaf set X and assigning the weight of each element

in X to be the length of the incident edge in T . (Note that a star tree is

a phylogenetic tree with a single interior vertex.) The approximation

algorithm and its proof presented here closely follow those in [7] for

the restricted ‘star tree problem’, but must be extended to cover the

more complicated interactions of PD score rather than a simple sum

of weights. Lastly, BNRS is the “0
cr→ 0/1 Nature Reserve Problem”

briefly discussed in the appendix in [11].

3. The Approximation Algorithm

In this section, we describe a tight polynomial-time approximation

algorithm for BNRS called ApproxBNRS. The fact that it is such an

algorithm is established in the next section. For a subset G of A,

the notations c(G) and PD(G) denote
∑

A∈G c(A) and PD(∪A∈GA),

respectively.

We begin with an informal overview of ApproxBNRS and its sub-

routine Greedy (see Figs 2 and 3). By considering all possibilities,

ApproxBNRS initially finds a feasible solution of size at most two that

maximizes the PD score on T . The resulting solution is called H1.
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Next, the algorithm, in turn, considers every subset of A of size three

and applies the subroutine Greedy to each of these subsets. The algo-

rithm Greedy is a greedy-like algorithm that takes a subset G0 of size

three of A and sequentially adds sets from A − G0. The only criteria

for which set is selected is that, amongst all available sets, the ratio of

incremental diversity to cost is maximized and we keep within budget.

The resulting feasible solution that maximizes the PD score is called

H2. Finally, ApproxBNRS compares the two feasible solutions H1 and

H2, and returns the one with the biggest PD score.

Greedy(G0, U):

G ← G0

Repeat

select A ∈ U that maximizes
PD(G∪A)−PD(G)

c(A)

if c(G) + c(A) ≤ B then

G ← G ∪ {A}

U ← U\A

Until U = ∅

Return G

Figure 2. The greedy algorithm Greedy.



10 MAGNUS BORDEWICH
1

AND CHARLES SEMPLE
2

ApproxBNRS(T , λ,A, c, B):

Find G′ in {G : G ⊆ A, c(G) ≤ B, |G| ≤ 2} that maximizes PD

H1 ← G
′

H2 ← ∅

For all G0 ⊆ A, such that |G0| = 3 and c(G0) ≤ B do

U ← A\G0

G ←Greedy(G0, U)

if PD(G) > PD(H2) then H2 ← G

If PD(H1) > PD(H2) then Return H1, otherwise Return H2

Figure 3. The approximation algorithm ApproxBNRS.

The main result of this paper is the following theorem whose proof

is given in the next section.

Theorem 3.1. ApproxBNRS is a polynomial-time (1−1/e)-approximation

algorithm for BNRS. Moreover, for any ǫ > 0, BNRS cannot be ap-

proximated with an approximation ratio of (1− 1/e + ǫ) unless P=NP.

In terms of the running time of ApproxBNRS, running the greedy

subroutine is very efficient, however, repeating this for all subsets of A

of size three incurs a multiplicative overhead of O(|A|3). Typically the
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number of regions or nature reserves under consideration will be small,

and hence this overhead is minor. Nevertheless, it is worth noting in

the special case that all regions have the same cost, this term can be

removed from the running time. In this situation, the greedy algorithm

starting from a subset G0 of A of size two that maximizes the PD score

amongst all 2-element subsets of A achieves the approximation ratio

(1− 1/e). The proof of this fact is a routine extension of [6], using the

same insights regarding the difference between PD and the ordinary

weight function as we have used in the proof of Theorem 3.1 given in

the next section.

4. Proof of Theorem 3.1

This section consists of the proof of Theorem 3.1. Let Sopt denote a

subset of A that is an optimal solution to BNRS. If |Sopt| ≤ 2, then

ApproxBNRS finds a feasible solution whose PD score is equal to the PD

score of Sopt. Therefore, we may assume that |Sopt| ≥ 3, in which case

it suffices to show that there is a subset G0 of A with |G0| = 3 whose

input to Greedy (together with A− G0) results in a subset of A whose

PD score is within the approximation ratio stated in the theorem.
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Let G0 be the subset {S1, S2, S3} of Sopt such that S1 and S2 are cho-

sen to maximize PD(S1∪S2) amongst all subsets of Sopt of size two, and

S3 maximizes PD(S1∪S2∪S3) amongst all sets in Sopt\{S1, S2}. Now

consider Greedy applied to (G0,A−G0). Let p denote the first iteration

in which a member, Al+1 say, of Sopt−G0 is considered but, because of

budgetary reasons, is not added to the current greedy solution. Up to

iteration p, let, in order, A1, A2, . . . , Al denote the members of A− G0

that are added to G0 and, for i = 1, . . . , l, let Gi = G0∪{A1, A2, . . . , Ai}.

Observe that Gl is a feasible solution, and a subset of the final output

G∗ of the greedy subroutine, and hence PD(G∗) ≥ PD(Gl). For con-

venience, we also let Gl+1 = Gl ∪ {Al+1}, but note that Gl+1 is not a

feasible solution as c(Gl+1) > B. Furthermore, for all i, let ci denote

c(Ai). For a subset S of A, denote the minimal subtree of T that con-

nects the elements of X that are contained in at least one member of

S by T (S). Also, let E(T (S)) denote the edge set of T (S). We begin

the proof with two lemmas.

Lemma 4.1. For all i ∈ {1, 2, . . . , l + 1},

PD(Gi)− PD(Gi−1) ≥
ci

B − c(G0)
(PD(Sopt)− PD(Gi−1)).
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Proof. One crucial point to observe in order for the approach of [7]

to be applicable in our setting is that the incremental diversity from

adding the entire optimal solution to the current partial greedy solution

is bounded by the sum of the increments that would be obtained from

adding each set in the optimal solution individually. We formalize this

as follows. Let i be any element in {1, 2, . . . , l + 1}. Let F denote

the set of edges in E(T (Sopt ∪ Gi−1)) − E(T (Gi−1)). Observe that

PD(Sopt ∪ Gi−1)− PD(Gi−1) is equal to
∑

e∈F λ(e). Since Gi−1 is non-

empty, there is, for each e ∈ F , an element in
⋃

A∈(Sopt−Gi−1)
A, such

that e is on the path from that element to a vertex in T (Gi−1). In

particular, there is a set Ae in Sopt − Gi−1 such that T (Gi−1 ∪ Ae)

contains e. Since Ai is chosen so that PD(Gi)−PD(Gi−1)
ci

is maximized, we

have, for all A ∈ Sopt − Gi−1,

PD(Gi−1 ∪ A)− PD(Gi−1)

c(A)
≤

PD(Gi)− PD(Gi−1)

ci

.
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Therefore, as the total cost of the elements in Sopt − Gi−1 is at most

B − c(G0),

PD(Sopt)− PD(Gi−1) ≤ PD(Sopt ∪ Gi−1)− PD(Gi−1)

=
∑

e∈F

λ(e)

≤
∑

A∈(Sopt−Gi−1)





∑

{e∈F : e∈T (Gi−1∪A)}

λ(e)





=
∑

A∈(Sopt−Gi−1)

PD(Gi−1 ∪ A)− PD(Gi−1)

c(A)
c(A)

≤
∑

A∈(Sopt−Gi−1)

PD(Gi)− PD(Gi−1)

ci

c(A)

≤
PD(Gi)− PD(Gi−1)

ci

(B − c(G0)).

Rearrangement now gives the inequality in the statement of the lemma

and the result follows. �

Lemma 4.2. For all i ∈ {1, 2, . . . , l + 1},

PD(Gi)−PD(G0) ≥

[

1−
i

∏

k=1

(

1−
ck

B − c(G0)

)

]

(PD(Sopt)−PD(G0)).

Proof. The proof is by induction on i. The result for i = 1 immediately

follows from Lemma 4.1.
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Now assume that i ≥ 2 and that the result holds for all j, where

j < i. Then, by Lemma 4.1 (for the first inequality) and induction (for

the second inequality), we have

PD(Gi)− PD(G0) = PD(Gi−1)− PD(G0) + PD(Gi)− PD(Gi−1)

≥ PD(Gi−1)− PD(G0) +
ci

B − c(G0)
(PD(Sopt)− PD(Gi−1))

= PD(Gi−1)− PD(G0)

+
ci

B − c(G0)
(PD(Sopt)− PD(G0)− (PD(Gi−1)− PD(G0)))

=

(

1−
ci

B − c(G0)

)

(PD(Gi−1)− PD(G0)) +
ci

B − c(G0)
(PD(Sopt)− PD

≥

(

1−
ci

B − c(G0)

)

[

1−
i−1
∏

k=1

(

1−
ck

B − c(G0)

)

]

(PD(Sopt)− PD(G0))

+
ci

B − c(G0)
(PD(Sopt)− PD(G0))

=

[

1−
i

∏

k=1

(

1−
ck

B − c(G0)

)

]

(PD(Sopt)− PD(G0)).

This completes the proof of the lemma. �

Proof of Theorem 3.1. Since c(Gl+1) > B, we have that
∑l+1

k=1 ck =

c(Gl+1)− c(G0) > B − c(G0). Furthermore, the function

l+1
∏

k=1

(

1−
ck

∑

k ck

)

,
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has a maximum at ck =
P

k ck

(l+1)
for all k. Therefore

1−
l+1
∏

k=1

(

1−
ck

B − c(G0)

)

≥ 1−
l+1
∏

k=1

(

1−
ck

∑

k ck

)

≥ 1−

(

1−
1

l + 1

)l+1

≥ 1− 1/e.

Hence, by Lemma 4.2, we have

(1) PD(Gl+1)− PD(G0) ≥ (1− 1/e)(PD(Sopt)− PD(G0)).

Recalling that G0 = {S1, S2, S3}, we now show that

(2) PD(S1 ∪ S2 ∪ S3)− PD(S1 ∪ S2) ≤ PD(G0)/3.

Let Aj = E(T (S1∪S2∪S3))−E(T ((S1∪S2∪S3)−Sj)) for j = 1, 2, 3.

Since

PD(S1 ∪ S2 ∪ S3) = PD(S1 ∪ S2) +
∑

e∈A3

λ(e)

= PD(S1 ∪ S3) +
∑

e∈A2

λ(e)

= PD(S2 ∪ S3) +
∑

e∈A1

λ(e),
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and since S1 and S2 were chosen to maximize PD(S1 ∪ S2), it follows

that

∑

e∈A3

λ(e) ≤
∑

e∈Aj

λ(e) j = 1, 2.

It is easily seen that each edge in E(T (S1∪S2∪S3)) occurs in at most

one Aj . Hence

PD(S1 ∪ S2 ∪ S3) ≥
3

∑

j=1

∑

e∈Aj

λ(e)

≥ 3
∑

e∈A3

λ(e),

and so

PD(S1 ∪ S2 ∪ S3)− PD(S1 ∪ S2) =
∑

e∈A3

λ(e) ≤ PD(G0)/3,

giving Eqn (2).

Next,

PD(Gl+1)− PD(Gl) ≤ PD(S1 ∪ S2 ∪ Al+1)− PD(S1 ∪ S2),

and so

(3)

PD(Gl+1)− PD(Gl) ≤ PD(S1 ∪ S2 ∪ S3)− PD(S1 ∪ S2) ≤ PD(G0)/3;
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otherwise Al+1 would have been chosen instead of S3 to be in G0.

Putting together Eqns (1) and (3), we get

PD(Gl) ≥ PD(Gl+1)− PD(G0)/3

≥ (1− 1/e)(PD(Sopt)− PD(G0)) + (1− 1
3
)PD(G0)

> (1− 1/e)PD(Sopt).

This proves the first part of the theorem.

For the proof of the second part, we begin by defining the problem

Maximum k-Coverage:

Problem: Maximum k-Coverage

Instance: A collection A of subsets of X and an integer k.

Question: Find a subset A′ = {A1, A2, . . . , Ak} of A of size k that

maximizes the size of the set A1 ∪ A2 ∪ · · · ∪ Ak.

Feige [3] showed that no polynomial-time approximation algorithm for

Maximum k-Coverage can have an approximation ratio better than

(1 − 1/e) unless P=NP. Observing that BNRS is a generalization of

Maximum k-Coverage (see below), it follows that no approximation

algorithm can exist for BNRS with ratio better than (1 − 1/e) unless

P=NP.
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Given an instance of Maximum k-Coverage, take T to be the star

tree on leaf set X in which each edge has weight 1. Assign a cost of 1

to each element of A and take the budget B = k. Under this set-up, it

is clear that Maximum k-Coverage can be interpreted as a special

case of BNRS. Hence a polynomial-time approximation algorithm for

BNRS with approximation ratio α would yield an approximation algo-

rithm for Maximum k-Coverage with approximation ratio α. By [3],

no such algorithm can exist for α = (1− 1/e + ǫ) unless P=NP. �

5. Optimizing Diversity with Coverage

The problem Optimizing Diversity with Coverage was de-

fined in [9], where a very restricted version was shown to have a polynomial-

time algorithm. While superficially this problem is similar to BNRS,

the problem behaves very differently. Loosely speaking, we are given an

edge-weighted phylogenetic X-tree T and a collection A of subsets of

X. Here the members of A represent some attributes that the species

possess. For example, A = {A1, A2, . . . , As} may be a collection of

taxonomic groups and each Ai contains the species in X that belong

to the group. Given a fixed positive integer k and positive integers

n1, n2, . . . , ns, the PD optimization problem is to find a subset X ′ of

X of size k that contains, for all i, at least ni species with attribute Ai
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and maximizes the PD score amongst all such subsets of X of size k.

Formally, we have the following problem.

Problem: Optimizing Diversity with Coverage

Instance: A phylogenetic X-tree T , a non-negative real-valued weight-

ing λ on the edges of T , a collection A of subsets of X, a threshold nA

for each A ∈ A, and a positive integer k.

Question: Find a subset X ′ of X that maximizes the PD score of X ′

on T such that |X ′| ≤ k and, for each A ∈ A, at least nA species from

A are included in X ′.

The restricted case solved in [9] is when each element of X appears

in exactly one set A ∈ A and the subtrees in {T (A) : A ∈ A} are

vertex disjoint. While this restricted version is shown to be solvable

in polynomial time, the question of the computational complexity of

the problem under less stringent or no restrictions is left open. We

end this section by observing that determining if there is even a fea-

sible solution to the general problem Optimizing Diversity with

Coverage is NP-hard, let alone finding an optimal solution. This is

because determining if there is a feasible solution is equivalent to the

classic NP-complete decision problem Hitting Set [4].
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Problem: Hitting Set

Instance: A collection A of subsets of X and an integer k.

Question: Does there exist a subset X ′ of X of size at most k such

that A ∩X ′ 6= ∅ for all A ∈ A.

For an instance of Hitting Set as above, consider the instance of

Optimizing Diversity with Coverage by taking the same sets

X and A, and integer k. Now take nA = 1 for all A ∈ A and let T

be an arbitrary phylogenetic X-tree. Then a subset of X is a feasible

solution to the latter problem if and only if it is a feasible solution

to the former problem. Conversely, for an instance of Optimizing

Diversity with Coverage, consider the instance of Hitting Set

by taking the ground set to be X, the bound to be k, and choosing the

collection of subsets of X to be

{B : ∃A ∈ A, B ⊆ A, |B| = |A| − nA + 1}.

In words, this collection consists of, for each A ∈ A, all subsets of A

of size |B| = |A| − nA + 1. It is now easily seen that a subset of X is

a feasible solution to this instance of Hitting Set if and only if it is

a feasible solution to the original instance of Optimizing Diversity

with Coverage.
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The above equivalence suggests that the restrictions required to make

Optimizing Diversity with Coverage solvable, or even approx-

imable, must be fairly severe. Certainly they must at least make the

associated restricted version of Hitting Set tractable. One example

could be to restrict k to be at least
∑

A∈A nA. In this case, Hitting

Set is trivial, and hence a feasible solution to Optimizing Diver-

sity with Coverage can be found easily. However, it is still not

clear whether the optimal solution can be found efficiently.

6. Rooted Phylogenetic Trees

In practice, one frequently wants to work with the rooted analogue

of phylogenetic diversity. In this short section, we briefly describe how

ApproxBNRS can be applied to the rooted analogue of BNRS and the

consequences of Theorem 3.1 for this problem.

A rooted phylogenetic X-tree T is a rooted tree with no degree-2 ver-

tices except perhaps the root and whose leaf set is X. Let E denote

the edge set of T and let λ : E → R
≥0 be an assignment of lengths

(weights) to the edges of T . For a subset S of X, the rooted phylo-

genetic diversity (rPD) of S on T is the sum of the edge lengths of

the minimal subtree of T that connects S and the root of T . The
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rooted analogue of the Budgeted Nature Reserve Selection problem,

denoted rBNRS, is the same as that in the unrooted setting but with

the rooted phylogenetic tree replacing the unrooted phylogenetic tree

and using rPD instead of PD. In particular, it is formally defined as

follows.

Problem: rBNRS

Instance: A rooted phylogenetic X-tree T , a non-negative (real val-

ued) weighting λ on the edges of T , a collection A of subsets of X, a

cost function c on the sets in A, and a budget B.

Question: Find a subset A′ of A that maximizes the rPD score of

⋃

A∈A′ A on T such that
∑

A∈A′ c(A) ≤ B.

We can interpret an instance of rBNRS as an instance of BNRS

in the following way. Given an instance of rBNRS, let Tρ denote the

unrooted phylogenetic tree obtained from T by adjoining a new leaf ρ

via a new edge to the root of T and then viewing the resulting tree

as an unrooted phylogenetic tree with leaf set X ∪ ρ. Let Aρ denote

the set {{A ∪ ρ} : A ∈ A}, and let cρ denote the cost function on Aρ

by setting cρ(A ∪ ρ) = c(A) for all A ∈ A. Furthermore, let λρ be the

weighting on the edges of Tρ by setting the weight of the edge incident

with ρ to be 0 and λρ(e) = λ(e) for all e ∈ E(T ).
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With the above set-up, let G be a feasible solution to rBNRS, and

let Gρ = {A ∪ ρ : A ∈ G}. Then Gρ is a feasible solution to the above

instance of BNRS and rPD(G) = PD(Gρ). Similarly, if G′ρ is a feasible

solution of the above instance of BNRS, then G′ = {A : A∪ ρ ∈ G′ρ} is

a feasible solution of rBNRS and PD(G′ρ) = rPD(G′). It is now easily

seen from this equivalence that ApproxBNRS provides a polynomial-

time (1 − 1/e)-approximation algorithm for rBNRS. Moreover, the

argument at the end of the proof of Theorem 3.1, showing that Maxi-

mum k-Coverage can be interpreted as a special case of BNRS, still

works for rBNRS but using a rooted star tree instead of an unrooted

star tree. Thus no approximation algorithm for rBNRS exists with a

ratio better than (1− 1/e) unless P=NP.
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