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Abstract. A standard matrix representation of a matroid M repre-
sents M relative to a fixed basis B, where contracting elements of B and
deleting elements of E(M)−B correspond to removing rows and columns
of the matrix, while retaining standard form. If M is 3-connected and
N is a 3-connected minor of M , it is often desirable to perform such a
removal while maintaining both 3-connectivity and the presence of an
N -minor. We prove that, subject to a mild essential restriction, when
M has no 4-element fans with a specific labelling relative to B, there are
at least two distinct elements, s1 and s2, such that for each i ∈ {1, 2},
si(M/si) is 3-connected and has an N -minor when si ∈ B, and co(M\si)
is 3-connected and has an N -minor when si ∈ E(M)−B. We also show
that if M has precisely two such elements and P is the set of elements
that, when removed in the appropriate way, retain the N -minor, then
(P,E(M)− P ) is a sequential 3-separation.

1. Introduction

Two classical results in matroid theory are Tutte’s Wheels-and-Whirls
Theorem [7] and Seymour’s Splitter Theorem [6]. For a 3-connected matroid
M that is neither a wheel nor a whirl, the former says that M has a single-
element deletion or a single-element contraction that is 3-connected. The
latter strengthens this result and says that if N is a 3-connected minor of M ,
then M has a single-element deletion or a single-element contraction that
is 3-connected with an N -minor. These theorems are important tools that
enable inductive arguments to be made for 3-connected matroids in order
to derive matroid structure results.

In the context of matroid representation theory, it is common practice
to work with a standard matrix representation; that is, a representation
[Ir|D] where the columns of Ir correspond to a basis B of M . In this
case, deleting an element of E(M) − B corresponds to removing a column
of the matrix, and contracting an element of B corresponds to removing
a row and column; both operations maintain a matrix in standard form.
When an element is removed in this way, we say it is removed relative to B.
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Moreover, when removing elements in any other way, a pivot operation needs
to be performed to remain in standard form, which can result in the loss of
visible information in the original representation. In this paper we prove an
analogue of the Splitter Theorem where elements are removed relative to a
fixed basis.

Let M be a 3-connected matroid, let B be a basis of M , and let N be a
3-connected minor of M . We say that an element e ∈ E(M) is (N,B)-robust
if either

(i) e ∈ B and M/e has an N -minor, or
(ii) e ∈ E(M)−B and M\e has an N -minor.

Oxley et al. [4] proved that M has an element that can be removed relative
to B where the resulting matroid maintains 3-connectivity and retains an
N -minor, provided M has no 4-element fans and has an element that is
(N,B)-robust. They demonstrated that the presence of an (N,B)-robust
element is necessary, as there exist M , N , and B such that M has no
(N,B)-robust elements.

Whittle and Williams [9] extended this result in one direction when con-
sidering 3-connectivity up to simplification or cosimplification. Following
their example, we say that an element e ∈ E(M) is removable with respect
to B if either

(i) e ∈ B and si(M/e) is 3-connected, or
(ii) e ∈ E(M)−B and co(M\e) is 3-connected.

Whittle and Williams [9] proved that when |E(M)| ≥ 4, the matroid M has
at least four elements that are removable with respect to B. This result is
an analogue of the Wheels and Whirls Theorem [7].

In this paper we prove Theorem 1.1, an extension of the result by Oxley
et al. [4]. We say an element e ∈ E(M) is (N,B)-strong if either

(i) e ∈ B, and si(M/e) is 3-connected and has an N -minor, or
(ii) e ∈ E(M)−B, and co(M\e) is 3-connected and has an N -minor.

Theorem 1.1. Let M be a 3-connected matroid with no 4-element fans such
that |E(M)| ≥ 5, let N be a 3-connected minor of M , and let B be a basis of
M . If M has two distinct (N,B)-robust elements, then M has two distinct
(N,B)-strong elements.

This result resolves Whittle and Williams’ conjecture [9, Conjecture 6.1].
It is worth noting that the theorem differs from the conjecture in that M
is required to have at least five elements, and two distinct (N,B)-robust
elements. These are both necessary assumptions. To see that M must have
at least five elements, consider the matroid U2,4 with minor U1,3 or U2,3.
Furthermore, we give an example, in Section 5, of a 3-connected matroid
with a 3-connected proper minor N that has only one (N,B)-robust element.

The requirement that M has no 4-element fans is consistent with the work
of Oxley et al. [4] and Whittle and Williams [9], but is not strictly necessary
when taking into account which elements of the fan are in the basis B.
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Indeed, we prove a stronger result, Theorem 4.9, which demonstrates that M
still has the two desired elements when a 4-element fan is present, unless the
fan has a particular labelling relative to B. In Section 5 we give an example
illustrating that, when a matroid has a 4-element fan with this particular
labelling, we cannot guarantee the presence of even a single (N,B)-strong
element.

Having established a lower bound on the number of strong elements, it
is natural to consider what can be said about matroids that have the min-
imum number of such elements. An exactly 3-separating partition (X,Y )
of M is sequential if there is an ordering (e1, e2, . . . , ek) of X or Y such
that {e1, e2, . . . , ei} is 3-separating for all i ∈ {1, 2, . . . , k}. A matroid has
path-width three if its ground set is sequential; that is, there is an order-
ing (e1, e2, . . . , en) of E(M) such that {e1, e2, . . . , ei} is 3-separating for all
i ∈ {1, 2, . . . , n}. Whittle and Williams [9] proved that a matroid with
precisely four removable elements with respect to some fixed basis has path-
width three. In the latter part of the paper, we prove the following theorem.

Theorem 1.2. Let M be a 3-connected matroid with no 4-element fans such
that |E(M)| ≥ 5, let N be a 3-connected minor of M , and let B be a basis of
M . Let P denote the set of (N,B)-robust elements of M . If M has precisely
two (N,B)-strong elements, then (P,E(M)−P ) is a sequential 3-separation.

As with Theorem 1.1, we are able to generalise Theorem 1.2 by considering
the 4-element fans’ labellings relative to the fixed basis. The stronger result
is presented as Theorem 6.5.

The paper is structured as follows. The next section contains some nec-
essary preliminaries regarding connectivity and fans. In Section 3, we find
the minimum number of removable elements in the absence of 4-element
fans that have either of two particular labellings relative to a fixed basis.
In Section 4, we restrict our view to removable elements that also retain a
copy of a specified minor, culminating in Theorem 4.9, a generalisation of
Theorem 1.1. In Section 5, we give two examples illustrating the necessity
of the conditions in the statement of the theorems. Finally, in Section 6, we
prove Theorem 6.5, a generalisation of Theorem 1.2.

The notation and terminology in the paper follow Oxley [2]. We write

x ∈ cl(∗)(Y ) to denote that either x ∈ cl(Y ) or x ∈ cl∗(Y ). The phrase
by orthogonality refers to the fact that a circuit and a cocircuit cannot
intersect in exactly one element. Lastly, we remark that the 3-connectivity
conclusions in the theorems of this paper are up to parallel and series classes.
However, with the help of Lemma 2.7 in the next section, it is easily seen
that these conclusions are really up to parallel and series couples, where a
parallel couple (respectively, series couple) is a parallel (respectively, series)
class of size two.
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2. Preliminaries

Connectivity. Let M be a matroid with ground set E. The connectivity
function of M , denoted by λM , is defined on all subsets X of E by

λM (X) = r(X) + r(E −X)− r(M).

A subset X or a partition (X,E − X) of E is k-separating if λM (X) ≤
k− 1. A k-separating partition (X,E −X) is a k-separation if |X| ≥ k and
|E − X| ≥ k. A k-separating set X, a k-separating partition (X,E − X)
or a k-separation (X,E − X) is exact if λM (X) = k − 1. The matroid M
is n-connected if, for all k < n, it has no k-separations. When a matroid is
2-connected, we simply say it is connected.

The following lemma is a consequence of the easily verified fact that the
connectivity function is submodular. The subsequent corollary follows by a
routine induction argument.

Lemma 2.1. Let M be a 3-connected matroid, and let X and Y be 3-
separating subsets of E(M).

(i) If |X ∩ Y | ≥ 2, then X ∪ Y is 3-separating.
(ii) If |E(M)− (X ∪ Y )| ≥ 2, then X ∩ Y is 3-separating.

Corollary 2.2. Let M be a 3-connected matroid, and let X be a finite set of
3-separating subsets of E(M). If

∣∣E(M)−
(⋃

X∈X X
)∣∣ ≥ 2, then

⋂
X∈X X

is 3-separating.

The following two lemmas are used frequently in the paper. The first is
well-known (see, for example, [2, Proposition 2.1.12]) and is a consequence
of orthogonality; the second is a consequence of the first.

Lemma 2.3. Let e be an element of a matroid M , and let X and Y be
disjoint sets whose union is E(M) − {e}. Then e ∈ cl(X) if and only if
e /∈ cl∗(Y ).

Lemma 2.4. Let X be an exactly 3-separating set in a 3-connected matroid
M , and suppose that e ∈ E(M)−X. Then X∪{e} is 3-separating if and only

if e ∈ cl(∗)(X). Moreover, X∪{e} is exactly 3-separating if and only if e is in
exactly one of cl(X)∩cl(E(M)−X−{e}) and cl∗(X)∩cl∗(E(M)−X−{e}).

A k-separation (X,E −X) of a matroid M with ground set E is vertical
if r(X) ≥ k and r(E−X) ≥ k. We also say a partition (X, {e}, Y ) of E is a
vertical 3-separation when (X ∪ {e}, Y ) and (X,Y ∪ {e}) are both vertical
3-separations and e ∈ cl(X) ∩ cl(Y ). The next three lemmas will be used
frequently; a proof of the first is in [4], the second follows from a result
established in [3], while the third is elementary.

Lemma 2.5. Let M be a 3-connected matroid and let z ∈ E(M). If si(M/z)
is not 3-connected, then M has a vertical 3-separation (X, {z}, Y ).

Lemma 2.6. Let (X, {z}, Y ) be a vertical 3-separation of a 3-connected
matroid M . Then there exists a vertical 3-separation (X ′, {z}, Y ′) such that
X ′ ⊆ X, and Y ′ ∪ {z} is closed.
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Lemma 2.7. Let M be a 3-connected matroid and let L be a rank-2 subset
with at least four elements. If l ∈ L, then M\l is 3-connected.

The next four lemmas are more technical; proofs for the first three are
given elsewhere. The first will be referred to as Bixby’s Lemma [1]; the
second is due to Whittle and Williams [9]; and the third was proved by
Whittle [8].

Lemma 2.8. Let e be an element of a 3-connected matroid M . Then either
si(M/e) or co(M\e) is 3-connected.

A segment in a matroid M is a subset L of E(M) such that M |L ∼= U2,k

for some k ≥ 2, while a cosegment of M is a segment of M∗.

Lemma 2.9. Let M be a 3-connected matroid with a triad {a, b, c} and a
circuit {a, b, c, d}. Then at least one of the following holds:

(i) either co(M\a) or co(M\c) is 3-connected, or
(ii) there exist elements a′, c′ ∈ E(M) such that {a, a′, b} and {b, c, c′}

are triangles, or
(iii) there exists an element z ∈ E(M) − {a, b, c, d} such that {a, b, c, z}

is a cosegment.

Lemma 2.10. Let C∗ be a rank-3 cocircuit of a 3-connected matroid M . If
e ∈ C∗ has the property that clM (C∗)−{e} contains a triangle of M/e, then
si(M/e) is 3-connected.

Lemma 2.11. Let (X,Y ) be a 3-separation of a 3-connected matroid M . If
X∩cl(Y ) 6= ∅ and X∩cl∗(Y ) 6= ∅, then |X∩cl(Y )| = 1 and |X∩cl∗(Y )| = 1.

Proof. Let x ∈ X ∩ cl∗(Y ), and consider M\x. Since x ∈ cl∗(Y ), it follows
by Lemma 2.3 that x 6∈ cl(X − {x}). Therefore, as M is 3-connected,

r(X − {x}) + r(Y )− r(M\x) = r(X)− 1 + r(Y )− r(M) = 1,

and so (X−{x}, Y ) is a 2-separation of M\x. Hence, as M has no 2-circuits,
|X ∩ cl(Y )| ≤ 1. Thus |X ∩ cl(Y )| = 1.

Now suppose that |X ∩ cl∗(Y )| ≥ 2, and let x′ ∈ X ∩ cl∗(Y ) such that
x′ 6= x. Then, as x ∈ cl∗(Y ) and x′ ∈ cl∗(Y ∪ {x}), it follows by Lemma 2.3
that x 6∈ cl(X − {x}) and x′ 6∈ cl(X − {x, x′}). Thus, as M is 3-connected,

r(X − {x, x′}) + r(Y )− r(M\{x, x′}) = r(X)− 2 + r(Y )− r(M) = 0.

In particular, X−{x, x′} is a separator of M\{x, x′}. But X ∩ cl(Y ) is non-
empty in M and contains neither x nor x′; otherwise, M has a 2-separation.
Therefore (X − {x, x′})∩ cl(Y ) is non-empty in M\{x, x′}; a contradiction.
Hence |X ∩ cl∗(Y )| = 1, completing the proof of the lemma. �

Fans. Let M be a 3-connected matroid. A subset F of E(M) having at
least three elements is a fan if there is an ordering (f1, f2, . . . , fk) of the
elements of F such that
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(i) for all i ∈ {1, 2, . . . , k − 2}, the triple {fi, fi+1, fi+2} is either a tri-
angle or a triad, and

(ii) for all i ∈ {1, 2, . . . , k − 3}, if {fi, fi+1, fi+2} is a triangle, then
{fi+1, fi+2, fi+3} is a triad, while if {fi, fi+1, fi+2} is a triad, then
{fi+1, fi+2, fi+3} is a triangle.

An ordering of F satisfying (i) and (ii) is a fan ordering of F . If F has a
fan ordering (f1, f2, . . . , fk) where k ≥ 4, then f1 and fk are the ends of F ,
and f2, f3, . . . , fk−1 are the internal elements of F .

Let F be a fan with ordering (f1, f2, . . . , fk) where k ≥ 5, and let i ∈
{1, 2, . . . , k}. An element fi is a spoke element of F if {f1, f2, f3} is a triangle
and i is odd, or if {f1, f2, f3} is a triad and i is even; otherwise fi is a rim
element. For a fan F with ordering (f1, f2, f3, f4), the element f1 is a spoke
element of F if {f1, f2, f3} is a triangle, otherwise it is a rim element ; while
f4 is a spoke element if {f1, f2, f3} is a triad, otherwise it is a rim element.

The next lemma is a variant on a well-known result, which follows easily
from Bixby’s Lemma.

Lemma 2.12. Let M be a 3-connected matroid such that |E(M)| ≥ 7.
Suppose M has a fan F of at least four elements, and let f be an end of F .

(i) If f is a spoke element, then co(M\f) is 3-connected and si(M/f)
is not 3-connected.

(ii) If f is a rim element, then si(M/f) is 3-connected and co(M\f) is
not 3-connected.

In what follows, a key difference from the prior work of Oxley et al. and
Whittle and Williams is that we relax the assumption that no 4-element fans
are present. However, a 4-element fan with one of two particular labellings,
relative to a fixed basis, requires special attention. We now define these
fans.

Let M be a matroid and let B be a basis of M . We define a Type I fan
relative to B in M as a 4-element fan F with ordering (f1, f2, f3, f4) where
{f1, f2, f3} is a triangle and F ∩ B = {f1, f3}. We define a Type II fan
relative to B in M as a 4-element fan F with ordering (f1, f2, f3, f4) where
{f1, f2, f3} is a triangle and F ∩B = {f1, f3, f4}.

3. The Existence of Removable Elements

In this section we prove Lemma 3.4, which will turn out to be the crux
of the proofs of Theorem 1.1 and Theorem 1.2.

Lemma 3.1. Let M be a 3-connected matroid with r(M) ≥ 4. Suppose that
C∗ is a rank-3 cocircuit of M such that |C∗| ≥ 4.

(i) If there is no T ⊆ C∗ such that T is a triangle, then co(M\d) is
3-connected for all d ∈ C∗.

(ii) If T ⊆ C∗ such that T is a triangle, then co(M\d) is 3-connected for
all d ∈ T .
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Proof. Suppose co(M\d) is not 3-connected for some d satisfying the hy-
pothesis of either (i) or (ii). Then M\d has a 2-separation (U, V ) in which
neither U nor V is a series class. Clearly, d /∈ cl(U) and d /∈ cl(V ); other-
wise, M has a 2-separation. Thus U ∩ C∗ and V ∩ C∗ are both non-empty.
Furthermore, either U or V contains two distinct elements x1, x2 ∈ C∗ such
that C∗ ⊆ cl({x1, x2, d}). Without loss of generality, we may assume that
{x1, x2} ⊆ U . The set U ∪ {d} is exactly 3-separating. Therefore, by re-
peated applications of Lemma 2.4, for each subset D of V ∩ C∗, the set
D ⊆ cl(V −D) provided |V −D| ≥ 2. Let H = E(M)−C∗. If |V ∩H| ≥ 2,
then cl(H)∩C∗ is non-empty, contradicting the fact that H is a hyperplane.
Thus |V ∩H| ≤ 1. If |V ∩H| = 0, then H ⊆ U and so, as U ∩ C∗ is non-
empty, r(U) = r(M). This implies that V is a parallel class; a contradiction
as M is 3-connected. Hence |V ∩H| = 1 and r(V ) = 2. Let V ∩H = {h}.
If |V ∩ C∗| ≥ 2, then h ∈ cl(C∗) and so, by Lemma 2.4, h ∈ cl(H − {h}).
In particular, H ⊆ cl(U) and so r(U) = r(M); a contradiction. There-
fore |V ∩ C∗| = 1, and so V is a 2-element cocircuit, a contradiction. This
completes the proof of the lemma. �

Let M be a matroid with a basis B where there exists an element b ∈ B
that is not removable with respect to B, and let (X, {b}, Y ) be a vertical
3-separation of M . We say that X ∪ {b} is minimal in (X, {b}, Y ) when,
for every bz ∈ X ∩ B such that si(M/bz) is not 3-connected, a vertical
3-separation (Xz, {bz}, Yz) has neither Xz nor Yz contained in X ∪ {b}.

The next lemma is extracted from proofs by both Oxley et al. [4, Lemma
3.2], and Whittle and Williams [9, Lemma 3.1].

Lemma 3.2. Let M be a 3-connected matroid with a basis B. Suppose there
exists an element b1 ∈ B that is not removable with respect to B, and let
(X1, {b1}, Y1) be a vertical 3-separation of M such that Y1 ∪ {b1} is closed
and X1 ∪ {b1} is minimal in (X1, {b1}, Y1). If (X2, {b2}, Y2) is a vertical
3-separation of M with Y2 ∪ {b2} closed, b2 ∈ X1 ∩ B and b1 ∈ Y2, then all
of the following hold:

(i) X1 ∩X2, X1 ∩ Y2, Y1 ∩X2 and Y1 ∩ Y2 are all non-empty,
(ii) r((X1 ∩X2) ∪ {b2}) = 2, and
(iii) if |Y1 ∩X2| ≥ 2, then r((X1 ∩ Y2) ∪ {b1, b2}) = 2.

The next lemma is straightforward, but is used frequently in the proof of
Lemma 3.4.

Lemma 3.3. Let M be a matroid with distinct elements f1, f2, f3 and f4.
If the only triangle containing f3 is {f1, f2, f3} and the only triad containing
f2 is {f2, f3, f4}, then si(M/f3) ∼= co(M\f2).

Lemma 3.4. Let M be a 3-connected matroid and let B be a basis of M .
Suppose M has no Type I fans relative to B, suppose there exists an element
b ∈ B such that si(M/b) is not 3-connected, and let (X, {b}, Y ) be a vertical
3-separation of M . Then one of the following holds:
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(i) there exist distinct elements s1, s2 ∈ X that are removable with re-
spect to B, or

(ii) there exist distinct removable elements s1 ∈ X and s2 ∈ cl∗(X)∩B,
and a vertical 3-separation (X ′, {b′}, Y ′) of M such that X ′ ∪ {s2}
is a 4-element cosegment containing s1, the element b′ ∈ B is not
removable with respect to B, and X ′ ∪ {b′} ⊆ X ∪ {b}, or

(iii) there exist distinct elements s1 ∈ X and s2, s3 ∈ cl(X)∩(E(M)−B)
that are removable with respect to B, or

(iv) M has a Type II fan relative to B contained in X ∪ {b}.

Proof. By Lemma 2.6, there exists a vertical 3-separation (X ′, {b}, Y ′) such
that Y ′ ∪ {b} is closed and X ′ ⊆ X. If the lemma holds for the vertical
3-separation (X ′, {b}, Y ′), then clearly it holds for the vertical 3-separation
(X, {b}, Y ); so we may assume that Y ∪{b} is closed. Note that |X∩B| ≥ 1.
If X∩B contains two or more elements that are removable with respect to B,
then (i) holds; so we assume this is not the case. As a result, it is sufficient
to consider the following two cases:

(I) X ∩B = {bc} and bc is removable with respect to B, or
(II) there exists an element bx ∈ X ∩ B such that bx is not removable

with respect to B.

We first show that in case (I), one of (i), (ii) or (iii) holds. More generally,
we prove the following:

3.4.1. If there exists a vertical 3-separation (X1, {b1}, Y1) such that X1∩B =
{bc}, where bc is removable with respect to B, the element b1 ∈ B is not
removable with respect to B, and X1 ∪ {b1} ⊆ X ∪ {b}, then (i), (ii) or (iii)
holds.

Since |X1 ∩B| = 1 and Y1 ∪ {b1} is closed, Y1 ∪ {b1} is a hyperplane and
X1 is a rank-3 cocircuit. If |X1| ≥ 4, then, by Lemma 3.1, there exists a
removable element in X1 ∩ (E(M) − B), so (i) holds. Thus, assume that
|X1| = 3, and let X1 = {a, bc, c}. If a or c is removable with respect to B,
then (i) is satisfied, so we may also assume neither co(M\a) nor co(M\c) is
3-connected.

Suppose that X1∪{b1} is not a 4-element fan. Then X1∪{b1} is a circuit.
As neither co(M\a) nor co(M\c) is 3-connected, it follows by Lemma 2.9
that either {a, bc, c} are the internal elements of a 5-element fan, or there
exists an element z ∈ E(M)−(X1∪{b1}) such that X1∪{z} is a cosegment.
If the latter, then (ii) holds by the dual of Lemma 2.7. If the former, then
both ends of the 5-element fan, a′ and c′ say, are in E(M) − B, otherwise
we have a Type I fan. It follows, by Lemma 2.12, that a′ and c′ are both
removable. Since bc ∈ X is also removable, (iii) holds.

Now consider the case where X1 ∪ {b1} is a 4-element fan. Then, up
to relabelling, either {a, bc, b1} or {a, c, b1} is a triangle. If {a, bc, b1} is a
triangle, then X1 ∪ {b1} is a Type I fan; a contradiction. Thus {a, c, b1}
is a triangle. If c is contained in a triad T ∗ that is not {a, bc, c}, then, by
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orthogonality, T ∗ contains either a or b1. But if it contains a, then X1 ∪ T ∗
is a cosegment of four elements, so by the dual of Lemma 2.7, (ii) holds. If
instead {b1, c} is contained in T ∗, then a is a spoke and an end element of a
4-element fan, so co(M\a) is 3-connected by Lemma 2.12; a contradiction.
It follows that the only triad containing c is {a, bc, c}.

If the only triangle containing a is {a, c, b1}, then si(M/a) ∼= co(M\c) by
Lemma 3.3, so si(M/a) is not 3-connected. But co(M\a) is not 3-connected,
contradicting Bixby’s Lemma, so a is contained in a triangle other than
{a, c, b1}. By orthogonality, such a triangle contains either {a, bc} or {a, c},
but the latter is not possible since {a, c, b1} is a triangle and Y1 ∪ {b1} is
closed. So a is contained in a triangle {a, bc, a′} say. Since si(M/bc) is 3-
connected but co(M\a) is not 3-connected, either bc is contained in a triangle
other than {a, bc, a′}, or a is contained in a triad other than {a, bc, c}, by
Lemma 3.3. But {b1, c, a, bc, a′} is a 5-element fan and r(M) ≥ 4, so, by [5,
Lemma 3.4], the only triad containing a is {a, bc, c}. Thus, by orthogonality
and since Y1 ∪ {b1} is closed, {bc, c} is contained in a triangle {bc, c, c′}
say. Now (a′, a, bc, c, c

′) is a fan ordering of a 5-element fan. The elements
a′, c′ ∈ cl(X) are both in E(M) − B, or this fan contains a Type I fan. It
follows, by Lemma 2.12, that a′ and c′ are both removable, so (iii) holds,
completing the proof of 3.4.1.

Now consider (II). We show that when 3.4.1 does not hold, we have the
following:

3.4.2. There exists a vertical 3-separation (X1, {b1}, Y1) such that X1 ∪
{b1} ⊆ X ∪ {b}, the subset Y1 ∪ {b1} is closed, X1 ∪ {b1} is minimal in
(X1, {b1}, Y1), and there exists an element b2 ∈ X1 ∩ B such that si(M/b2)
is not 3-connected.

If X ∪ {b} is minimal in (X, {b}, Y ), then 3.4.2 holds. So assume there
exists an element bz ∈ X ∩ B such that si(M/bz) is not 3-connected, and
a vertical 3-separation (Xz, {bz}, Yz) such that, without loss of generality,
Xz ⊆ (X − {bz}) ∪ {b}. By Lemma 2.6 we can assume Yz ∪ {bz} is closed.
Now, if Xz = (X − {bz}) ∪ {b}, then Yz = Y , but this implies that bz ∈
cl(Yz) = cl(Y ); a contradiction. So Xz $ (X − {bz}) ∪ {b}. If Xz ∪ {bz}
is not already minimal in (Xz, {bz}, Yz), then, by repeating this procedure,
we eventually obtain a vertical 3-separation (X1, {b1}, Y1) where X1 ∪ {b1}
is minimal in (X1, {b1}, Y1). If X1 ∩ B = {bc} where bc is removable with
respect to B, then 3.4.1 holds, so the lemma holds. Otherwise, X1 ∩ B
contains an element, b2 say, that is not removable with respect to B.

By Lemma 2.5, M has a vertical 3-separation (X2, {b2}, Y2) where b2 ∈
X1. Without loss of generality, let b1 ∈ Y2 where, due to Lemma 2.6, we
can assume Y2 ∪ {b2} is closed. By Lemma 3.2, each of X1 ∩X2, X1 ∩ Y2,
Y1∩X2, and Y1∩Y2 is non-empty, and r((X1∩X2)∪{b2}) = 2. We consider
two subcases: |Y1 ∩X2| ≥ 2, and |Y1 ∩X2| = 1.

3.4.3. The lemma holds when |Y1 ∩X2| ≥ 2.
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If |Y1 ∩X2| ≥ 2, then, by Lemma 3.2(iii), r((X1 ∩ Y2)∪ {b1, b2}) = 2. Let
L1 = (X1 ∩ Y2) ∪ {b1} and L2 = (X1 ∩ X2) ∪ {b2}. If |L2| ≥ 4, then, by
Lemma 2.7, (i) holds. Similarly, if |cl(L1)| ≥ 4, then L1 contains at least two
removable elements, and these elements are in X1 since Y1 ∪ {b1} is closed,
thereby satisfying (i). Hence, since X1 ∩ Y2 is non-empty, we may assume
|cl(L1)| = 3 and |L2| ∈ {2, 3}.

Let X1∩Y2 = {a} and c ∈ X1∩X2. Note that a ∈ E(M)−B. If |L2| = 2,
then |X1 ∩ X2| = 1, X1 = {a, b2, c} is a triad and cl(L1) = {b1, a, b2} is a
triangle, so {b1, a, b2, c} is a 4-element fan. If c ∈ E(M)−B, then X1 ∪{b1}
is a Type I fan; a contradiction. But if c ∈ B, then X1 ∪ {b1} is a Type II
fan, in which case (iv) holds.

Now suppose |L2| = 3 and, in particular, X1∩X2 = {c, d}. Since r(L2) =
2, we may assume without loss of generality that d ∈ E(M) − B. By
Lemma 3.1(ii), co(M\d) and co(M\c) are 3-connected. If c ∈ E(M) − B,
then (i) holds. Furthermore, if c ∈ B, then (i) also holds as si(M/c) is
3-connected by Lemma 2.10. Thus 3.4.3 holds.

It remains to prove that the lemma holds when |Y1 ∩X2| = 1. First, we
show that, in such a situation, if there is an element of B in X1 ∩X2, then
the lemma holds.

3.4.4. If, for some bz ∈ B such that si(M/bz) is not 3-connected,
(Xz, {bz}, Yz) is a vertical 3-separation of M where |Y1 ∩Xz| = 1 and there
exists an element p ∈ (X1 ∩Xz) ∩B, then (i) holds.

By Lemma 3.2, r((X1 ∩ Xz) ∪ {bz}) = 2, so if |(X1 ∩ Xz) ∪ {bz}| ≥ 4,
then (i) holds by Lemma 2.7. So let X1 ∩ Xz = {p, q} where p ∈ B and
q ∈ E(M) − B, and let Y1 ∩ Xz = {y}. First, suppose that si(M/p) is
not 3-connected. Then, by Lemmas 2.5 and 2.6, there exists a vertical
3-separation (Xp, {p}, Yp) such that b1 ∈ Yp and Yp ∪ {p} is closed. By
Lemma 3.2, (X1 ∩ Xp) ∪ {p} is a rank-2 set, and if |Y1 ∩ Xp| ≥ 2, then
r((X1 ∩ Yp) ∪ {b1, p}) = 2. If, indeed, |Y1 ∩Xp| ≥ 2, then r(X1) = 3 and it
follows, by Lemmas 2.10 and 3.1(ii), that p and q are removable, satisfying
(i). So assume that |Y1 ∩Xp| = 1. Then (X1 ∩Xp) ∪ {p} is a rank-2 set of
at least three elements. If this set has four or more elements, then (i) holds
by Lemma 2.7, so assume |X1 ∩Xp| = 2. Now (X1 ∩Xp) ∪ {p} is a triangle
contained in X1, but since Yz ∪{bz} is closed, this triangle contains q. Then
either (X1 ∩ Xp) ∪ {bz, p} is a rank-2 set of four elements, so (i) holds by
Lemma 2.7, or X1 ∩ Xp = {q, bz}. Since Xp is a triad, if Y1 ∩ Xp = {y},
then {y, p, q, bz} is a 4-element cosegment, and si(M/p) is 3-connected by
the dual of Lemma 2.7; a contradiction. So Y1 ∩ Xp = {y′} where y′ 6= y,
and {y, y′} ⊆ cl∗(X1). But, recalling that b1 ∈ cl(X1), this contradicts
Lemma 2.11.

Now suppose that si(M/p) is 3-connected. If co(M\q) is also 3-connected,
then (i) holds, so assume this is not the case. Now, si(M/p) � co(M\q),
so, by Lemma 3.3, either p is contained in a triangle other than {p, q, bz},
or q is contained in a triad other than {p, q, y}. Consider the former; by
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orthogonality and since Yz ∪ {bz} is closed, {p, y} is contained in a triangle
T . Let T−{p, y} = {y′}. Note that y ∈ B, otherwise Xz∪{bz} is a 4-element
fan. Since Y1∪{b1} is closed, and due to the rank of T , y′ ∈ X1∩(E(M)−B).
By Lemma 2.12, y′ is removable so (i) holds. Now consider when q is in a
triad T ∗ other than {p, q, y}. By orthogonality, T ∗ contains p or bz. If {q, bz}
is contained in T ∗, then p is a spoke element and an end of a 4-element fan,
so si(M/p) is not 3-connected by Lemma 2.12; a contradiction. So assume
that {p, q} is contained in T ∗. By Lemma 2.11, T ∗ ⊆ X1. If bz ∈ cl∗(T ∗),
then bz is removable by the dual of Lemma 2.7; a contradiction. It follows,
by Lemma 2.3, that (T ∗, {bz}, E(M)−(T ∗∪{bz})) is a vertical 3-separation,
contradicting that X1 ∪ {b1} is minimal in (X1, {b1}, Y1). Thus 3.4.4 holds.

3.4.5. The lemma holds when |Y1 ∩X2| = 1.

As |X2| ≥ 3 and b1 /∈ X2, it follows that |X1 ∩X2| ≥ 2. By Lemma 3.2,
r((X1 ∩ X2) ∪ {b2}) = 2. If |X1 ∩ X2| ≥ 3, then (i) holds by Lemma 2.7.
Therefore we may assume that |X1∩X2| = 2. At most one element inX1∩X2

is in B, but if there is precisely one such element, then (i) holds by 3.4.4.
So let X1 ∩X2 = {p, q}, where {p, q} ⊆ E(M) − B, and let Y1 ∩X2 = {y}
where y ∈ B.

We first show that either (i) holds, or there exists an element b3 ∈ X1∩Y2
that is not removable with respect to B. If r(X1) = 3, then p and q are
removable by Lemma 3.1(ii), satisfying (i). So assume that r(X1) ≥ 4, in
which case r(Y1∪{b1}) ≤ r(M)−2, so |X1∩B| ≥ 2. Let b3 ∈ X1∩B−{b2},
in which case b3 ∈ Y2. If si(M/b3) is not 3-connected, we have one of
the desired outcomes. So assume b3 is removable. If either p or q is also
removable, then (i) holds. Suppose neither p nor q is removable. Then, by
Bixby’s Lemma, si(M/p) is 3-connected, so si(M/p) � co(M\q). It follows,
by Lemma 3.3, that either p is contained in a triangle other than {p, q, b2}
or q is contained in a triad other than {p, q, y}. If the latter, then, as in the
last paragraph of 3.4.4, this leads to a contradiction. If the former, then
by orthogonality and since Y2 ∪ {b2} is closed, such a triangle is {p, y, y′}
where y′ ∈ X1 since Y1 ∪ {b1} is closed. Furthermore (y′, y, p, q, b2) is a fan
ordering. By Lemma 2.12, if y′ ∈ B, then y′ is not removable, and choosing
b3 = y′ we have a desired outcome. So assume y′ ∈ E(M) − B, in which
case y′ is removable, thereby satisfying (i).

Now, by Lemmas 2.5 and 2.6, there exists a vertical 3-separation
(X3, {b3}, Y3) such that b1 ∈ Y3 and Y3∪{b3} is closed. By Lemma 3.2, (X1∩
X3)∪{b3} is a rank-2 set, and if |Y1∩X3| ≥ 2, then r((X1∩Y3)∪{b1, b3}) = 2.
But if the latter holds, then p and q are removable by Lemma 3.1(ii), satisfy-
ing (i). Furthermore, if |(X1∩X3)∪{b3}| ≥ 4, then (i) holds by Lemma 2.7.
So we may assume |Y1 ∩X3| = 1 and |X1 ∩X3| = 2. Since X2 and X3 are
triads each with two elements contained in X1, both y and the single element
in Y1 ∩X3 are in the coclosure of X1. But b1 ∈ cl(X1), so by Lemma 2.11,
Y1 ∩X3 = {y}. If there exists an element p′ ∈ (X1 ∩X3)∩B, then (i) holds
by 3.4.4. It remains to consider when X1 ∩X3 ⊆ E(M)−B. If {p, q} ⊆ X3,
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then p and q are removable by Lemma 2.7, satisfying (i). Otherwise, since
Y3 ∪ {b3} is closed, {p, q, b2} ⊆ Y3. Let X1 ∩X3 = {p′, q′}. The two triads
{p, q, y} and {p′, q′, y} intersect only at y, so {p, q, y, q′, p′} is a corank-3 set.
But this set contains four cobasis elements; a contradiction. So 3.4.5 holds.

We deduce that the lemma holds. �

We now give two corollaries that will be of use in proving generalisations
of Theorems 1.1 and 1.2 that relax the requirement that no 4-element fans
are present. For the first corollary, the outcome is slightly stronger than is
required.

Corollary 3.5. Let M be a 3-connected matroid, where |E(M)| ≥ 3, and
let B be a basis of M . Suppose M has no Type I fans relative to B. Then
M has at least three distinct elements that are removable with respect to B.

Proof. If every element e ∈ E(M) is removable, then the corollary holds.
Therefore, by duality, we may assume that there exists an element b ∈ B
such that si(M/b) is not 3-connected. By Lemmas 2.5 and 2.6, there exists
a vertical 3-separation (X, {b}, Y ) of M such that Y ∪ {b} is closed. By
Lemma 2.6, there also exists a vertical 3-separation (Y ′, {b}, X ′) of M such
that X ′∪{b} is closed, X ⊆ X ′ and Y ′ ⊆ Y . By Lemma 3.4, X and Y ′ each
contain a removable element. Thus if Lemma 3.4(i) or Lemma 3.4(iii) holds
for either vertical 3-separation, the corollary holds.

We may now assume that either Lemma 3.4(ii) or Lemma 3.4(iv) holds
for each of the vertical 3-separations. When Lemma 3.4(ii) holds for either
vertical 3-separation, there are two removable elements s1, s2 ∈ B by the
dual of Lemma 2.7. On the other hand, if Lemma 3.4(iv) holds for both
vertical 3-separations, again there are two removable elements s1, s2 ∈ B by
Lemma 2.12. There exists an element b∗ ∈ E(M) − B, as |E(M)| ≥ 3 and
M is 3-connected. If b∗ is removable, the corollary holds. Otherwise, by
the dual of Lemma 2.5, there is a vertical 3-separation (P, {b∗}, Q) in M∗.
Next we apply Lemma 3.4 to (P, {b∗}, Q). If Lemma 3.4(i) or Lemma 3.4(iii)
holds, then the corollary holds, noting in the former case that there is also a
removable element in Q by an application of Lemma 3.4 to (Q, {b∗}, P ). But
when Lemma 3.4(ii) or Lemma 3.4(iv) holds for (P, {b∗}, Q), there exists a
removable element s∗1 ∈ E(M)− B, which is distinct from s1 and s2. Thus
the corollary holds. �

Corollary 3.6. Let M be a 3-connected matroid, where |E(M)| ≥ 4, and
let B be a basis of M . Suppose M has no Type I or Type II fans relative
to B. Then M has at least four distinct elements that are removable with
respect to B.

Proof. If every element e ∈ E(M) is removable with respect to B, then the
corollary holds. Therefore, by duality, we may assume that there exists an
element b ∈ B such that si(M/b) is not 3-connected. By Lemmas 2.5 and
2.6, there exists a vertical 3-separation (X, {b}, Y ) of M such that Y ∪ {b}



A SPLITTER THEOREM RELATIVE TO A FIXED BASIS 13

is closed. There also exists a vertical 3-separation (X2, {b}, Y2) of M such
that X2 ∪ {b} is closed, X ⊆ X2 and Y2 ⊆ Y .

We can now apply Lemma 3.4 using each of the two vertical 3-separations
in turn, where Lemma 3.4(iv) cannot hold since M has no Type II fans. If
Lemma 3.4(iii) holds for (X, {b}, Y ), then there exist distinct removable
elements s1 ∈ X and s2, s3 ∈ cl(X). By an application of Lemma 3.4 to
(Y2, {b}, X2), there is at least one removable element in Y2, and {s2, s3} ⊆ X2

since X2∪{b} is closed, so the corollary holds in this case. By symmetry, we
can now assume Lemma 3.4(iii) doesn’t hold for either vertical 3-separation.
If Lemma 3.4(i) holds for both vertical 3-separations, then clearly the corol-
lary holds, so it remains to consider when Lemma 3.4(ii) holds for at least
one of the vertical 3-separations.

Now we may assume there exists a vertical 3-separation (X ′, {b′}, Y ′) and
removable elements s1 ∈ X ′ and s2 ∈ cl∗(X ′), where X ′ ∪ {s2} is a 4-
element cosegment. If b′ ∈ cl∗(X ′ ∪ {s2}), then b′ is removable by the dual
of Lemma 2.7; a contradiction. So b′ ∈ cl(Y ′ − {s2}) by Lemma 2.3. It
follows, by Lemma 2.4, that when r(Y ′ − {s2}) ≥ 3, the partition (X ′ ∪
{s2}, {b′}, Y ′ − {s2}) is a vertical 3-separation. Then, by an application of
Lemma 3.4 to (Y ′ − {s2}, {b′}, X ′ ∪ {s2}), the corollary holds unless there
exists an element s′2 ∈ (X ′∪{s2})∩B such that (Y ′−{s2})∪{s′2, b′} contains
a 4-element cosegment. This cosegment must contain s′2 and cannot contain
b′, by the dual of Lemma 2.7, as it is not removable. Thus, the two 4-
element cosegments intersect at a single element s′2, so the union of these
two cosegments has corank three. But s′2 ∈ B, so this union contains four
elements of the cobasis E(M) − B; a contradiction. Now consider the case
where r(Y ′−{s2}) = 2. If |Y ′−{s2}| ≥ 3, then, recalling b′ ∈ cl(Y ′−{s2}),
there are two elements in Y ′ − {s2} that are removable by Lemma 2.7, so
the corollary holds. It remains to consider when |Y ′| = 3. Since r(M) = 4,
precisely one element of Y ′ − {s2} is in B. But then Y ′ ∪ {b1} is a Type II
fan; a contradiction. So the corollary holds. �

4. The Existence of Strong Elements

In this section, we prove Theorem 1.1. The proofs of the next two lemmas
are straightforward.

Lemma 4.1. Let e and f be distinct elements of a 3-connected matroid M ,
and suppose that si(M/e) is 3-connected. Then either

(i) M/e\f is connected, or
(ii) si(M/e) ∼= U2,3 and M has no triangle containing {e, f}.

Moreover, if no non-trivial parallel class of M/e contains f , then M/e/f is
connected.

Lemma 4.2. Let (X,Y ) be a 2-separation of a connected matroid M and
let N be a 3-connected minor of M . Then {X,Y } has a member U such
that |U ∩ E(N)| ≤ 1. Moreover, if u ∈ U , then
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(i) M/u has an N -minor if M/u is connected, and
(ii) M\u has an N -minor if M\u is connected.

In the arguments that follow, we initially restrict our attention to a 3-
connected N -minor with |E(N)| ≥ 4, so that the minor N is simple and
cosimple. The next lemma, whose trivial proof has been omitted, illustrates
this. We handle the case where |E(N)| ≤ 3 in Lemma 4.7.

Lemma 4.3. Let N be a 3-connected matroid such that |E(N)| ≥ 4. If M
has an N -minor, then si(M) has an N -minor.

Lemma 4.4. Let N be a 3-connected minor of a 3-connected matroid M
with |E(N)| ≥ 4. Let (X, {z}, Y ) be a vertical 3-separation of M such that
M/z has an N -minor, where Y ∪ {z} is closed and |X ∩ E(N)| ≤ 1. If
s ∈ cl∗(X) − X, then (X ′, {z}, Y ′) = (X ∪ {s}, {z}, Y − {s}) is a vertical
3-separation such that Y ′ ∪ {z} is closed, and |X ′ ∩ E(N)| ≤ 1.

Proof. Since X and X ∪ {z} are exactly 3-separating in M , and s ∈ cl∗(X),
it follows by Lemma 2.4 that X ′ and X ′∪{z} are 3-separating. In particular,
as r(Y ′) ≥ 2,

r(X ′) + r(Y ′ ∪ {z}) = r(X ′ ∪ {z}) + r(Y ′).

So, as z ∈ cl(X ′), we have z ∈ cl(Y ′). Now, since |Y ′| ≥ 2, the partition
(X ′, Y ′) is a 2-separation of M/z. Since s ∈ cl∗(X), we have s /∈ cl(Y ′)
by Lemma 2.3. Therefore, Y ′ ∪ {z} is closed in M . By Lemma 4.2, either
|X ′ ∩ E(N)| ≤ 1 or |Y ′ ∩ E(N)| ≤ 1. Suppose |X ′ ∩ E(N)| ≥ 2. Then
|X ∩ E(N)| = 1 and |Y ∩ E(N)| ≤ 2, so |E(N)| ≤ 3; a contradiction. So
|X ′ ∩ E(N)| ≤ 1.

To see that r(Y ′) ≥ 3, suppose that r(Y ′) = 2. Then Y ′ ∪ {z} is a line of
at least three elements. But |E(N)| ≥ 4, so N is simple. Thus si(M/z) has
an N -minor. Since |X ′ ∩E(N)| ≤ 1, the matroid N is isomorphic to U1,1 or
U1,2; a contradiction. Therefore, r(Y ′) ≥ 3 and the lemma holds. �

Let M be a 3-connected matroid with a 3-connected minor N . An element
x of M is doubly N -labelled if M\x has an N -minor and M/x has an N -
minor.

Lemma 4.5. Let N be a 3-connected minor of a 3-connected matroid M .
Let (X, {z}, Y ) be a vertical 3-separation of M such that M/z has an N -
minor, where |X∩E(N)| ≤ 1. If Y ∪{z} is closed, then there is at most one
element of X that is not doubly N -labelled. Moreover, if such an element x
exists, then x ∈ cl∗(Y ) and z ∈ cl(X − {x}).

Proof. The matroid M/z is the 2-sum of two matroids, MX and MY with
basepoint z′ say. Note that (M/z)|X = MX\z′ and (M/z)|Y = MY \z′. Let
x ∈ X. Let Cx and C∗x be a maximum-sized circuit and a maximum-sized
cocircuit of MX containing {x, z′}. If |Cx| > 2, then M/z/x, and hence
M/x, has an N -minor. Dually, if |C∗x| > 2, then M\x has an N -minor.
Thus x is doubly N -labelled unless |Cx| = 2 or |C∗x| = 2. But if |Cx| = 2,
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then x ∈ clM/z(Y ), so x ∈ clM (Y ∪{z}), contradicting the fact that Y ∪{z}
is closed. We deduce that x is doubly N -labelled unless |C∗x| = 2. Moreover,
E(MX)−{z′} cannot contain distinct elements s and t that are not doubly
N -labelled otherwise {z′, s, t} is contained in a series class of MX and so
{s, t} is a cocircuit of M ; a contradiction. Thus X contains at most one
element that is not doubly N -labelled. Moreover, when such an element x
exists, {x, z′} is a cocircuit of MX , so x ∈ cl∗M/z(Y ) and x /∈ clM/z(X−{x}).
Hence x ∈ cl∗M (Y ) and x /∈ clM ((X−{x})∪{z}). As z ∈ clM (X), it follows
from the MacLane-Steinitz exchange condition that z ∈ clM (X − {x}). �

Lemma 4.6. Let M be a 3-connected matroid, let N be a 3-connected minor
of M such that |E(N)| ≥ 4, and let B be a basis of M with an element
b ∈ B such that b is (N,B)-robust, but not (N,B)-strong. Let (X, {b}, Y ) be
a vertical 3-separation of M such that Y ∪{b} is closed and |X∩E(N)| ≤ 1.
If s ∈ X is removable, then s is (N,B)-strong.

Proof. Let s be a removable element of X. By Lemma 4.5, at most one
element in X is not doubly N -labelled, so we may assume s is the only
element that is not (N,B)-robust in X, in which case s ∈ cl∗(Y ) and b ∈
cl(X − {s}). Therefore (X − {s}, Y ∪ {b}) is a 2-separation of M\s. If
s ∈ E(M)−B, then co(M\s) is 3-connected, so X − {s} is a series class in
M\s. But b ∈ cl(X − {s}), so co(M\s) contains a non-trivial parallel class;
a contradiction. Thus s ∈ B.

Suppose s and b are contained in a triangle {s, b, q} say. If q ∈ X, then
s ∈ cl((X − {s}) ∪ {b}), so s /∈ cl∗(Y ) by Lemma 2.3; a contradiction. But
if q ∈ Y , then s ∈ cl(Y ∪ {b}) = cl(Y ). Then {b, s} ⊆ cl(Y ) − Y and
s ∈ cl∗(Y )− Y , contradicting Lemma 2.11. Since s and b are not contained
in a triangle of M , no non-trivial parallel class of M/s contains b, and thus
by Lemma 4.1, M/s/b is connected. Since |X ∩ E(N)| ≤ 1 and s ∈ X, by
Lemma 4.2, M/s/b has an N -minor, and therefore M/s has an N -minor.
Thus, by Lemma 4.3, the lemma holds. �

Lemma 4.7. Let M be a 3-connected matroid with |E(M)| ≥ 5, let B be a
basis of M , and suppose M has a 3-connected N -minor such that |E(N)| ≤
3. If s ∈ E(M) is removable, then either

(i) s is an (N,B)-strong element, or
(ii) there exist distinct (N,B)-strong elements s1, s2 ∈ E(M), and at

least one of the following holds:
(a) r(M) = 2,
(b) r∗(M) = 2,
(c) s ∈ B and si(M/s) ∼= U2,3, or
(d) s ∈ E(M)−B and co(M\s) ∼= U1,3.

Proof. Since |E(N)| ≤ 3, N is a minor of U1,3 or U2,3. Thus, by duality,
we may assume N is a minor of U2,3. First assume s ∈ B, in which case
si(M/s) is 3-connected. If si(M/s) has a U2,3-minor, then (i) holds, so
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assume si(M/s) does not have such a minor. Then r(M) = 2. In particular,
M ∼= U2,n, where n ≥ 5, in which case (ii) holds by Lemma 2.7.

Now assume s ∈ E(M)−B, and so co(M\s) is 3-connected. If co(M\s)
has a circuit of at least three elements, it has a U2,3-minor, so (i) holds.
Assuming otherwise, first consider the case where co(M\s) does not have a
circuit of one or two elements. Then co(M\s) ∼= U1,1, so si(M∗/s) ∼= U0,1; a
contradiction.

Consider the case where co(M\s) has a loop or a 2-circuit. If co(M\s)
has a loop, then co(M\s) ∼= U0,1. That is, M∗ ∼= U2,n, where n ≥ 5. For
each element e ∈ E(M), M∗\e is 3-connected and contains a U1,3-minor.
In particular, for each e ∈ B, M/e is 3-connected and contains a U2,3-
minor. Since |B| ≥ 2, (ii) holds. If co(M\s) has a 2-circuit, then either
co(M\s) ∼= U1,2 or co(M\s) ∼= U1,3. If co(M\s) ∼= U1,2, then si(M∗/s) ∼=
U1,2; a contradiction. Thus co(M\s) ∼= U1,3, that is, si(M∗/s) ∼= U2,3.

Now, in M∗, every element lies on one of three lines intersecting at s
and, as M∗ is 3-connected, at least two of the lines contain three or more
elements. Thus |E(M)| ≥ 6. If one of the lines, L say, containing s has
at least four elements, then, for each e ∈ L, we have M∗\e is 3-connected
by Lemma 2.7, and it is straightforward to check that M∗\e contains a
U1,3-minor. Since at least two elements in L are in B, we deduce that (ii)
holds. Therefore each of the lines containing s has at most three elements,
so |E(M)| ≤ 7. A routine check shows that (ii) holds. �

Lemma 4.8. Let M be a 3-connected matroid, let N be a 3-connected minor
of M such that |E(N)| ≥ 4, and let B be a basis of M . Suppose M has no
Type I fans relative to B, and there exists an element b ∈ B that is (N,B)-
robust but not (N,B)-strong. Let (X, {b}, Y ) be a vertical 3-separation of
M such that |X ∩ E(N)| ≤ 1. Then one of the following holds:

(i) there exist distinct (N,B)-strong elements s1, s2 ∈ X, or
(ii) there exist distinct (N,B)-strong elements s1 ∈ X and s2 ∈ cl∗(X)∩

B, or
(iii) there exist distinct (N,B)-strong elements s1 ∈ X and s2, s3 ∈

cl(X) ∩ (E(M)−B), or
(iv) X ∪ {b} contains a Type II fan F and an (N,B)-strong element

s ∈ F ∩B.

Proof. By Lemma 2.6, there exists a vertical 3-separation (X ′, {b}, Y ′) such
that Y ′ ∪ {b} is closed and X ′ ⊆ X. If the lemma holds for the vertical
3-separation (X ′, {b}, Y ′), then clearly it holds for the vertical 3-separation
(X, {b}, Y ); so we may assume that Y ∪ {b} is closed. If X ∪ {b} contains
a Type II fan F , then, by Lemma 2.12, there exists a removable element in
F ∩B. By Lemma 4.6, such a removable element is (N,B)-strong, satisfying
(iv).

Now assume X∪{b} does not contain a Type II fan. By Lemma 3.4, there
is an element s1 ∈ X and either a distinct element s2 ∈ X, a distinct element
s2 ∈ cl∗(X) ∩ B, or distinct elements s2, s3 ∈ cl(X) ∩ (E(M) − B), where
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each si is removable with respect to B for i ∈ {1, 2, 3}. By Lemma 4.6,
the element s1 is (N,B)-strong, and if si ∈ X for i ∈ {2, 3}, then si is
also (N,B)-strong, in which case (i) holds. Consider the case where s2 ∈
cl∗(X)∩B. By Lemma 4.4, (X∪{s2}, {b}, Y −{s2}) is a vertical 3-separation
where |(X∪{s2})∩E(N)| ≤ 1 and (Y −{s2})∪{b} is closed. By Lemma 4.6,
s2 is (N,B)-strong, so (ii) holds. It remains to consider the case where
s2, s3 ∈ (cl(X) −X) ∩ (E(M) − B). Now, {b, s2, s3} ⊆ cl(X) ∩ cl(Y ), and,
by submodularity, r(cl(X) ∩ cl(Y )) ≤ 2, so r({b, s2, s3}) = 2. The matroid
M/b has an N -minor, and N has no 2-circuits, but s2 and s3 are in parallel
in M/b. It follows that M/b\s2 and M/b\s3 have N -minors, so s2 and s3
are (N,B)-strong by Lemma 4.3, satisfying (iii). We deduce that the lemma
holds. �

We are now in a position where we can prove Theorem 1.1. In particular,
it is a special case of the next theorem.

Theorem 4.9. Let M be a 3-connected matroid such that |E(M)| ≥ 5, let
N be a 3-connected minor of M , and let B be a basis of M . Suppose M has
no Type I fans relative to B. If M has at least two distinct (N,B)-robust
elements, then M has at least two distinct (N,B)-strong elements.

Proof. Since M has no Type I fans, M has at least three removable elements
by Corollary 3.5. If |E(N)| ≤ 3, then it follows, by Lemma 4.7, that the
theorem holds. So assume that |E(N)| ≥ 4. Let p1 and p2 be distinct
(N,B)-robust elements. If p1 and p2 are both (N,B)-strong elements, then
the theorem holds; so assume otherwise. By duality, we may assume that
p1, say, is not (N,B)-strong, and is a member of B. Since si(M/p1) is
not 3-connected, by Lemmas 2.5 and 4.2 there exists a vertical 3-separation
(X, {p1}, Y ) such that |X ∩ E(N)| ≤ 1. Then, by Lemma 4.8, the theorem
holds unless X ∪ {p1} contains a Type II fan F .

Let (f1, f2, f3, f4) be a fan ordering of F such that {f2, f3, f4} ⊆ X,
f2 ∈ E(M)−B, and f4 ∈ B is (N,B)-strong. We next show that co(M\f2)
has an N -minor. We may assume, by Lemma 2.6, that Y ∪{p1} is closed. By
Lemma 4.5, at most one element of {f2, f3, f4} is not doubly N -labelled. If
f2 is doubly N -labelled, then co(M\f2) has an N -minor. If f2 is not doubly
N -labelled, then f3 is doubly N -labelled and so si(M/f3) ∼= si(M/f3\f2)
has an N -minor. But then co(M\f2) again has an N -minor. If co(M\f2) is
3-connected, then the theorem holds. So assume f2 is not strong, where f2
is a member of the basis E(M) − B of M∗. By Lemmas 2.5 and 4.2 there
exists a vertical 3-separation (P, {f2}, Q) in M∗ such that |P ∩ E(N)| ≤ 1.
By Lemma 4.8, either M∗ has at least two (N∗, E(M)−B)-strong elements,
in which case the theorem holds, or M∗ has a Type II fan F ∗ containing an
(N∗, E(M)−B)-strong element. But, in the latter case, the (N∗, E(M)−B)-
strong element in M∗ is an (N,B)-strong element in M , and is a member
of the basis of M∗; that is, it is a member of E(M) − B. Since f4 ∈ B is
also (N,B)-strong, the theorem holds. �
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5. Two Examples

In this section we give two examples to illustrate that Theorem 4.9 is
best possible in two senses; firstly, that it is a necessary condition that the
matroid have at least two robust elements, and secondly, it is necessary the
matroid does not have a Type I fan.

For the first example, we describe a 3-connected matroid M2 with a ba-
sis B and an N -minor, where both the size of the ground set of M2 and the
difference in sizes of the ground sets of M2 and N can be made arbitrarily
large, yet M2 has only a single (N,B)-robust element.

Let M and M+ be matroids such that M = M+\e where e ∈ E(M+).
Recall that M+ is the free extension of M if M+ has the same rank as M
and every circuit of M+ containing e is spanning. In what follows, the N -
minor is the Fano matroid F7, but any sufficiently structured matroid would
do. Our example is of a similar nature as that given by Oxley et al. [4], to
demonstrate the tightness of their result. As in that example, we make use
of the following lemma.

Lemma 5.1. Let M+ be a free extension of M .

(i) If an element a of M is not a coloop of M , then M+\a is a free
extension of M\a and M+/a is a free extension of M/a.

(ii) If M has no F7-minor, then M+ has no F7-minor.

Let k be a positive integer and let M1 be a matroid obtained by coex-
tending F7 k times such that r(M1) = k + 3 and M1 is 3-connected. One
way to obtain such a matroid M1 is to freely coextend F7 k times. Note
that r∗(M1) = r∗(F7) so that, for all a ∈ E(M1), the matroid M1\a does
not have an F7-minor. Let M2 be the matroid obtained by freely extending
M1 k + 2 times.

Let x ∈ E(M1)− E(F7) and let B = (E(M2)− E(M1)) ∪ {x}. We show
that B is a basis of M2. Suppose it is not. Then, since |B| = k + 3, the set
B contains a circuit C. If C contains an element in E(M2) − E(M1), then
since every circuit containing this element is spanning, C is spanning, and
thus |C| = k+ 4; a contradiction. But then C ⊆ E(M1), and so C = {x}; a
contradiction. So B is indeed a basis of M2.

We can contract x and retain the F7-minor, since x ∈ E(M1) − E(F7)
and M2/(E(M1) − E(F7))\(E(M2) − E(M1)) = F7. Thus x is (F7, B)-
robust. However, as M1\a has no F7-minor for all a ∈ E(M1), it follows
by Lemma 5.1 that M2\d has no F7-minor for all d ∈ E(M2)−B. Now let
b ∈ B − {x}. To obtain a 7-element rank-3 minor of M2/b, we must delete
an element in E(M1) − {x}. But we have seen that if we delete such an
element then the matroid has no F7-minor. Thus M2/b has no F7-minor
for all b ∈ B − {x}. We conclude that M2 has only a single (F7, B)-robust
element.

For the second example, we describe a 3-connected matroid M2 with
an N -minor, a fixed basis B, and containing a Type I fan relative to B.
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However, even though M2 has more than two (N,B)-robust elements, it
has no (N,B)-strong elements. Again, we base our argument on the Fano
matroid F7, but any sufficiently structured matroid with a 3-point line would
work.

Let L = {x1, x2, x3} be a 3-point line of F7. Add three elements x′1, x
′
2,

and x′3, in parallel with x1, x2 and x3, respectively. Perform a ∆-Y exchange
on {x′1, x′2, x′3}. In the resulting matroid M1, let {x1, y2, y3}, {y1, x2, y3}
and {y1, y2, x3} be distinct lines, where E(M1)− E(F7) = {y1, y2, y3}. Add
an element x′′1 in parallel with x1, and an element y′2 in parallel with y2.
Perform a ∆-Y exchange on {x′′1, y′2, y3}. It is straightforward to show that
the resulting matroid M2 is 3-connected. Let E(M2)−E(M1) = {z1, z2, z3},
such that {z1, y2, z3} and {x1, z2, z3} are distinct 3-point lines. M2 has a 7-
element fan with fan ordering (x3, y1, y2, z1, z3, z2, x1). For clarity, we relabel
these elements such that the same fan ordering is (f1, f2, f3, f4, f5, f6, f7).

Let B be a basis of M such that fi ∈ B when i is odd, and fi ∈ E(M)−B
when i is even. Note that {f3, f4, f5, f6} is a Type I fan relative to B, for
example. Evidently, fi is an (F7, B)-robust element for all i ∈ {2, 3, . . . , 6},
but every other element of M is not (F7, B)-robust. By Lemma 2.12, none
of the elements {f2, f3, . . . , f6} are (F7, B)-strong. Thus, even though M
has at least two distinct (F7, B)-robust elements, M has no (F7, B)-strong
elements.

6. Matroids with a Minimum Number of Strong Elements

In this section, we consider the structure of matroids that have the mini-
mum number of strong elements. In particular, we establish Theorem 1.2.

A path of 3-separations in a matroid M is an ordered partition
(P0, P1, . . . , Pk) of E(M) with the property that λ(P0 ∪ P1 ∪ · · · ∪ Pi) = 2
for all i ∈ {0, 1, . . . , k − 1}. Note that a vertical 3-separation (X, {z}, Y ) is
a path of 3-separations. The following lemma is elementary.

Lemma 6.1. A partition (X,Y ) of a matroid M such that |X|, |Y | ≥ 2 is a
sequential 3-separation if and only if, for some U ∈ {X,Y }, there is a path
of 3-separations (P0, P1, . . . , Pk, U) in M such that |P0| = 2, and |Pi| = 1
for all i ∈ {1, 2, . . . , k}.

We also make use of the following result [9, Corollary 5.3]:

Lemma 6.2. Let P = (P0, . . . , Pr) be a path of 3-separations in a matroid
M . Suppose i ∈ {1, 2, . . . , r − 1}, e ∈ Pi, and that there exists a path of
3-separations (X, {e}, Y ) in M with P0 ⊆ X and Pr ⊆ Y . Then P refines
to a path of 3-separations (P0, . . . , Pi−1, P

′
i , {e}, P ′′i , Pi+1, . . . , Pr) where P ′i ∪

{e} ∪ P ′′i = Pi.

Lemma 6.3. Let M be a 3-connected matroid with ground set E, and let
s1 and s2 be distinct elements of M . Let Z be a subset of E − {s1, s2}
where |E − (Z ∪ {s1, s2})| ≥ 2 and, for each z ∈ Z, there exists a path of
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3-separations (Xz, {z}, Yz) in M such that {s1, s2} ⊆ Xz and Xz ⊆ Z ∪
{s1, s2}. Then

({s1, s2}, {z1}, {z2}, . . . , {zk}, E − (Z ∪ {s1, s2}))
is a path of 3-separations in M .

Proof. Let S = {s1, s2}. If Z is empty, the result holds immediately. So
assume that Z is non-empty. Let Z = {z1, z2, . . . , zk} be a subset of E − S
as described in the statement of the lemma. Now, for all i ∈ {1, 2, . . . , k},
the tuple (Xzi , {zi}, Yzi) is a path of 3-separations in M . Since S ⊆ Xzi

for all i, it follows that S ⊆ E − (Yz1 ∪ Yz2 ∪ · · · ∪ Yzk). In particular,
|E−(Yz1∪Yz2∪· · ·∪Yzk)| ≥ 2 and so, by Corollary 2.2, Yz1∩Yz2∩· · ·∩Yzk =
E−(Z∪S) is 3-separating. Since |S| ≥ 2 and |E−(Z∪S)| ≥ 2, the partition
(S,Z,E − (Z ∪ S)) is a path of 3-separations in M . By repeatedly applying
Lemma 6.2, we deduce that the lemma holds. �

Lemma 6.4. Let M be a 3-connected matroid, let B be a basis of M , and
let N be a 3-connected minor of M such that |E(N)| ≥ 4. Suppose M has
no Type I or Type II fans relative to B, and suppose there are precisely
two distinct elements s1 and s2 that are (N,B)-strong in M . Let P denote
the set of (N,B)-robust elements of M . Then, for every z ∈ P − {s1, s2},
there exists a path of 3-separations (Xz, {z}, Yz) such that {s1, s2} ⊆ Xz and
Xz ⊆ P .

Proof. Let S = {s1, s2}. Consider an element z ∈ P − S. By duality, we
may assume that z ∈ B. First we show the following:

6.4.1. There exists a vertical 3-separation (X ′, {z}, Y ′) such that s1, s2 ∈
X ′, |X ′ ∩ E(N)| ≤ 1, and Y ′ ∪ {z} is closed.

Since si(M/z) is not 3-connected, it follows by Lemmas 2.5 and 2.6 that
there exists a vertical 3-separation (X, {z}, Y ) such that Y ∪ {z} is closed.
By Lemma 4.2, either |X ∩E(N)| ≤ 1 or |Y ∩E(N)| ≤ 1. If the latter, then
by applying Lemma 2.6 and relabelling, we can obtain a vertical 3-separation
(X, {z}, Y ) such that Y ∪{z} is closed and |X ∩E(N)| ≤ 1. By Lemma 3.4,
there is an element s1 ∈ X and either a distinct element s2 ∈ cl∗(X)∩B, or
distinct elements s2, s3 ∈ cl(X) ∩ (E(M) − B), where each si is removable
with respect to B for i ∈ {1, 2, 3}.

In the first case, there exists a vertical 3-separation (X ′, {z}, Y ′) such that
{s1, s2} ⊆ X ′, |X ′ ∩ E(N)| ≤ 1, and Y ′ ∪ {z} is closed by Lemma 4.4. By
Lemma 4.6, s1 and s2 are (N,B)-strong, satisfying 6.4.1. In the second case,
as M has precisely two (N,B)-strong elements, it follows by Lemma 4.6 that
{s2, s3} * X. If exactly one of s2 and s3 is in X, then this element is strong,
and s1 and this element satisfies 6.4.1. So we can assume {s2, s3} ⊆ cl(X)−
X. It follows that {z, s2, s3} ⊆ cl(X) ∩ cl(Y ), and so r({z, s2, s3}) = 2.
Recall that {s2, s3} ⊆ E(M) − B, the matroid M/z has an N -minor, and
N has no 2-circuits. Now s2 and s3 are parallel in M/z, thus M/z\s2 and
M/z\s3 have N -minors, and, by Lemma 4.3, s2 and s3 are (N,B)-strong.
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But s1 is also (N,B)-strong by Lemma 4.6; a contradiction. We deduce that
6.4.1 holds.

Now, by Lemma 4.5, at most one element in X ′ is not doubly N -labelled,
and if such an element x exists, then x ∈ cl∗(Y ′). Suppose such an x exists,
and x is not (N,B)-robust. By Lemma 2.4, Y ′ ∪ {x} and Y ′ ∪ {x, z} are
3-separating. Since |X ′| ≥ 3, these 3-separating sets are exact. It follows
that (X ′′, {z}, Y ′′) = (X ′ − {x}, {z}, Y ′ ∪ {x}) is a path of 3-separations
such that S ⊆ X ′′ and X ′′ ⊆ P . Otherwise, when no such x exists or x is
(N,B)-robust, every element in X is robust, so X ′ ⊆ P . This completes the
proof of the lemma. �

Theorem 1.2 is an immediate consequence of the next theorem.

Theorem 6.5. Let M be a 3-connected matroid such that |E(M)| ≥ 5, let
B be a basis of M , and let N be a 3-connected minor of M . Suppose M has
no Type I or Type II fans relative to B, and let P denote the set of (N,B)-
robust elements of M . If M has precisely two (N,B)-strong elements, then
(P,E(M)− P ) is a sequential 3-separation.

Proof. Let S = {s1, s2} denote the set of (N,B)-strong elements of M . First
suppose that |E(N)| ≥ 4. By Lemma 6.4, for every z ∈ P − S there exists
a path of 3-separations (Xz, {z}, Yz) such that S ⊆ Xz and Xz ⊆ P . By
Corollary 3.6, M has at least four elements that are removable with respect
toB. However, only two of these elements are (N,B)-strong, and so |E(M)−
P | ≥ 2. It follows, by Lemma 6.3, that (S, {z1}, {z2}, . . . , {zk}, E(M)−P ) is
a path of 3-separations, where P−S = {z1, z2, . . . , zk}. Thus, by Lemma 6.1,
(P,E(M)− P ) is a sequential 3-separation.

It remains to consider when |E(N)| ≤ 3. We show that, in this case, M
has more than two (N,B)-strong elements, thereby resulting in a contradic-
tion. If r(M) ≤ 2, then M ∼= U2,n where n ≥ 5, and it is easily checked
that M has at least three (N,B)-strong elements. Thus, by duality, we can
assume that r(M) ≥ 3 and r∗(M) ≥ 3. By Lemma 4.7 and Corollary 3.6,
either

(i) there are at least three (N,B)-strong elements, or
(ii) up to duality, there is a removable element s ∈ B and si(M/s) ∼= U2,3.

If (i) holds, then we obtain a contradiction. So assume (ii) holds. Then
M consists of three lines that intersect at the element s, at least two of
which contain three or more elements, since M is 3-connected. If one of
these lines, L say, consists of at least four elements, then, by Lemma 2.7,
L contains two elements in E(M) − B that are removable with respect to
B, and retain a U1,3- or a U2,3-minor. Furthermore, there exists at least
one element b ∈ B ∩ (E(M)− L) such that si(M/b) ∼= U2,n for some n ≥ 4.
Thus, b is (N,B)-strong, so M has more than two (N,B)-strong elements;
a contradiction. If |E(M)| ∈ {6, 7}, then it is straightforward to check that
M has at least three (N,B)-strong elements for every B and N such that
|E(N)| ≤ 3; a contradiction. This completes the proof of the theorem. �
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