DEFINING A PHYLOGENETIC TREE WITH THE MINIMUM
NUMBER OF r-STATE CHARACTERS*
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Abstract. Semple and Steel (2002) showed that if 7 is a phylogenetic X-tree and C is a collection
of r-state characters that defines 7, then |C| > [(n — 3)/(r — 1)], where n = |X|. In this paper, we
show that, provided n is sufficiently large, this lower bound is sharp. Furthermore, we show that,
for all n > 13, there exists a collection of 4-state characters of size [(n — 3)/3] that defines T, but
there is a phylogenetic X-tree with n = 12 which is not defined by any set of 3 characters.
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1. Introduction. A central task in evolutionary biology is the reconstruction of
phylogenetic (evolutionary) trees. Such trees represent the ancestral history of a col-
lection of present-day species. In biology, characters describe attributes of the species
under consideration and are the typical data used for reconstructing phylogenetic
trees. Characters can be morphological or genetic, such as the nucleotide at a certain
position on a DNA sequence. A natural question to ask is how many characters are
required to recover the correct phylogenetic tree? More precisely, given an arbitrary
phylogenetic tree T, how small can a collection C of characters be so that 7 is the
only phylogenetic tree consistent with C? If each character is allowed an unbounded
number of ‘states’, Semple and Steel [8] showed that |C| < 5. Huber et al. [6] improved
this upper bound to |C| < 4 and this result is sharp. However, in practice, characters
with an unbounded number of states are unrealistic. In this paper, we derive the
analogous sharp result for characters with a bounded number of states.

Throughout the paper, X is always a finite set with |X| > 3. A phylogenetic
X-tree T is an unrooted tree with no degree-two vertices and whose leaf set is X. In
addition, 7 is binary if every interior vertex has degree three. A character x on X is
a function from X into a set of character states. If |x(X)| < r, then x is an r-state
character. For example, if y is the character that assigns one of the four nucleotides
at a certain position on a DNA sequence, then y is a 4-state character.

Let 7 be a phylogenetic X-tree and let x be a character on X into a set C of
character states. For each a € x(X), let 7 () denote the minimal subtree of 7 whose
leaf set is x~!(a). We say that x is convexr on T if the subtrees in {T(a) : o € C}
are vertex disjoint. More generally, for a collection C of characters on X, we say C is
convex on T if each character in C is convex on 7. A collection C of characters on
X defines a phylogenetic X-tree T if, up to isomorphism, 7 is the only phylogenetic
X-tree for which C is convex, in which case, 7 is necessarily binary. The relevance of
convexity to biology is discussed at the end of this section.

To illustrate, consider the binary phylogenetic X-tree 7 shown in Figure 1.1(a),
where X = {1,2,...,12}, and the 4-state character y : X — {«, 3,7, 0} defined by

x(1) = x(2) = x(3) = x(4) = a, x(5) = x(6) = 3, x(7) = x(8) = x(11) = x(12) = v,
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(a) (b)

FiG. 1.1. (a) A binary phylogenetic tree T on {1,2,...,12} that is not defined by a collection
of three 4-state characters. (b) A binary phylogenetic tree on {1,2,...,12} for which the characters
displayed by {e1,ea,e7}, {e2,e5,es}, and {e3, es,e9} are also conver.

and x(9) = x(10) = 4. Ignoring the edge labels for now, it is easily checked that
T(a), T(B), T(v), and T(d) are vertex disjoint, and so x is convex on T.

Semple and Steel [8] showed that if T is a binary phylogenetic X-tree and C is a
collection of r-state characters that defines 7, then

n—3
C|l> ,
1= L‘ - 1—‘
where n = |X|. In this paper, we show that, provided n is large enough, this lower
bound on the size of C is sharp. In particular, we establish the following theorem.
THEOREM 1.1. Let r be a positive integer exceeding one. Then there exists a

positive integer n, such that, for all binary phylogenetic X -trees T with n = | X| > n,,
there is a collection C of r-state characters of size

n—3
1= [r - 1—‘

that defines T .
When r = 2, Theorem 1.1 reduces to a result of Buneman [2]. Here ny = 3.

In addition to establishing Theorem 1.1 for all » > 2, we derive the exact result
for when r = 4.

THEOREM 1.2. Let T be a binary phylogenetic X -tree and let n = | X|. If n > 13,
then there is a collection C of 4-state characters of size

= "5

that defines T. Moreover, if n = 12, then there is a binary phylogenetic X -tree that
is not defined by any collection of 3 = [%1 characters.

Throughout the paper, notation and terminology follows Semple and Steel [10].
The paper is organised as follows. The next section contains some preliminaries. In
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Section 3 we establish two lemmas, both of which are used in the proofs of the main
results. Theorem 1.1 is proved in Section 4, while Theorem 1.2 is proved in Section 5.

Relevance of convexity to biology. Let 7 be a phylogenetic X-tree, and
suppose that we subdivide an edge of T to create a degree-two vertex p. We call p the
root vertex of T, and refer to the resulting tree, denoted 77, as a rooted phylogenetic
X -tree.

Phylogenetic trees (and their rooted counterparts) provide a convenient represen-
tation of evolutionary relationships in biology. In particular, viewing the edges of 77
as directed away from the root p, we regard 7° as describing the evolution of the
set X of extant species from an ancestral species at p. The remaining interior vertices
of T+7 correspond to other hypothetical ancestral species descended from the species
at p.

Now suppose each extant and ancestral species has an associated character state
lying in some set C of character states. In this way, we regard the character state
as also “evolving” from p towards the species in X. This leads to a concept of
evolutionary “innovation”, namely, that each time a species changes its character
state, the new state it aquires is arising for the first time in the tree. Formalising this
concept, let ¢ be the map from the vertices of 717 into C so that ¢(v) is equal to the
character state assigned to vertex v. Then the “innovation” concept corresponds to
the requirement that neither of the following two events occur, in which case we say
that ¢ is homoplasy-free.

(i) If vivg -+ - vy is a path in 717 directed away from the root p and, for some
1€{2,3,...,k—1},

c(vy) = elvg) # e(v;),

then ¢ exhibits a reverse transition. Informally, this corresponds to a new
state arising, but then reverting to an earlier state.

(ii) If vivs - - - vy and wyws - - - w; are distinct directed paths in 717 directed away
from the root p with v; = wy, vo # ws, and

c(og) = c(wr) # e(v),

then ¢ exhibits a convergent transition. Informally, this corresponds to the
same state arising in different parts of the tree.
Reverse and convergent transitions do happen in biology, but such events are consid-
ered relatively rare.

To explain the connection between these biologically motivated concepts and con-
vexity, we use the following lemma, whose straightforward proof is omitted.

LEMMA 1.3. Let x be a character on X, taking values in a set C, and let T be
a phylogenetic X -tree. Then x is a conver on T if and only if there is a function
X : V(T) — C satisfying the following properties:

(C1) X|X =x; and
(C2) if a« € C, then the subgraph of T induced by {v € V(T) : x(v) = a} is
connected.

Let 7 be a rooted phylogenetic X-tree, and suppose that each vertex v of
717 has an associated character state c(v) that is an element of a set C' of character
states. Consider the associated phylogenetic X-tree 7. Restricting our attention to
the values that c¢ takes at the leaves of 7, we obtain an induced character y on X by
setting x(z) = ¢(z) for all x € X. If ¢ is homoplasy-free, then x is convex on 7 since
X : V(T) — C defined by x(u) = c(u), for all u € V(T), satisfies (C1) and (C2).
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On the other hand, if a character y; is convex on a phylogenetic X-tree 7; with a
corresponding function xi : V(7;) — C satisfying (C1) and (C2), then, for all choices
of a root p, we can extend x7 to a map from V(71) U{p} to C that is homoplasy-free.

Note that if ¢ is not homoplasy-free on a rooted phylogenetic tree 77, it is still
possible that the associated character may be convex on 7.

2. Preliminaries. We begin by generalising phylogenetic X-trees to X-trees.
An X-tree T = (T'; ¢) is an ordered pair consisting of a tree T' and a mapping ¢ from
X to the vertex set V of T with the property that if v € V and v has degree at most
two, then v € ¢(X). Now, let x be a character on X and let T = (T'; ¢) be an X-tree.
We denote the partition of X induced by x by m(x), that is,

m(x) = {x ") : a; € x(X)}.

Generalising the notion of convexity to X-trees, we say x is convexr on 7T if, for all
a € x(X), the subtrees in {7 (a) : € C} are vertex disjoint, where 7 («) denotes
the minimal subtree of 7 connecting the vertices in x ~(«). An equivalent definition
is that y is convex on 7T if there is a subset F' of edges of 7 whose deletion from T
gives a graph with the property that, for all A, B € 7(x), there are two components
where ¢(A) is a subset of the vertex set of one component and ¢(B) is a subset of
the vertex set of the other component. In this case, we say that x is displayed by F.
More generally, a collection C of characters on X is convex on T if each character in
C is convex on T, in which case, C is compatible. For a compatible collection C of
characters on X, we say that C infers a character x if x is convex on every X-tree on
which C is convex.

Let e be an edge of an X-tree T = (T; ¢), and let V4 and V5 be the vertex sets of
the components of T'\e. Then the bipartition {¢~1(V1),¢71(Va)} of X, denoted o,
is an X-split of T. If T is a phylogenetic tree and e is an interior edge, we refer to
oe as a non-trivial X -split of T. The following theorem is well-known and is simply
a rephrasing of the previously mentioned result of Buneman [2] in the language of
X-splits.

THEOREM 2.1. Let T be a binary phylogenetic X -tree. The collection % of non-
trivial X -splits of T defines T, that is, up to isomorphism, T is the only phylogenetic
X -tree whose collection of X -splits contains X.

An X-tree T is a refinement of an X-tree T if each X-split of T is an X-split
of T’. A collection C of characters identifies an X-tree 7T if C is convex on T and
every X-tree on which C is convex is a refinement of 7. Note that if C identifies a
binary phylogenetic tree 7, then C defines 7. Furthermore, a compatible collection
C of characters on X infers an X-split {X;, Xo} if {X1, X5} is an X-split on every
X-tree on which C is convex.

Distinguishing and strongly distinguishing. Let 7 be a binary phylogenetic
X-tree and let C be a collection of characters on X. If e = {u,u2} is an interior edge
of T, then e is distinguished by C if there is a character x in C with A, Ay € 7(x)
such that u; but not us is contained in the minimal subtree of 7 connecting elements
in Ay, and us but not u; is contained in the minimal subtree connecting elements in
As. We say T is distinguished by C if every interior edge of T is distinguished by a
character in C. As we shall see below, the notion of distinguish has basic links with
defining. However, for identifying, we need a stronger notion.

Let T = (T;¢) be an X-tree and let e = {uj,us} be an edge of 7. Then e is
strongly distinguished by a character x on X if there exist A;, Ay € w(x) such that,
for each i € {1, 2}, the following hold:



(i) ¢(A4;) is a subset of the vertex set of the component of T\ e containing w;;
(ii) the vertex set of each component of T\u;, except for the one containing the
other end-vertex of e, contains an element of ¢(4;); and

(iii) ¢~'(u;) is a subset of A;.
We say T is strongly distinguished by a collection C of characters if every edge of T is
strongly distinguished by some character in C.

Intersection graphs. Let C be a collection of characters on X’ and let T =
(T; @) be an X'-tree. If X C X', the minimal subtree of 7 connecting the vertices in
¢(X) is denoted by T(X). We next define two graphs each of which has vertex set

ve)=J{xnA) :Aer(x)}

x€C

(I) The partition intersection graph of C, denoted int(C), is the graph with vertex

set V(C) and an edge joining (x1, A) and (x2, B) if AN B is non-empty.

(IT) The subtree intersection graph of T induced by C, denoted int(C,T), is the
graph with vertex set V(C) and an edge joining (x1, 4) and (x2, B) if x1 # x2
and T (A) N T(B) is non-empty.

It is well-known that if a graph G is the subtree intersection graph of subtrees of a
tree, then G is chordal [3, 4, 11]. Thus, in (II), the intersection graph int(C,7T) is
chordal.

A graph is chordal if every cycle with at least four vertices has an edge connecting
two non-consecutive vertices. For a collection C of characters on X, a chordal graph G
is a restricted chordal completion, also called a proper triangulation, of int(C) if G can
be obtained from int(C) by adding only edges joining vertices whose first components
are distinct. If G is a restricted chordal completion of int(C), but there is no restricted
chordal completion G’ of int(C) in which F(G) is a proper subset of E(G’), we say
that G has no non-trivial restricted chordal completions.

Past results. A number of results have been established equating the compat-
ibility of a collection C of characters with the intersection graph int(C) of C. For
example, Buneman [3] showed that C is compatible if and only if int(C) has a re-
stricted chordal completion. Furthermore, if C is a collection of 2-state characters,
then C is compatible if and only if int(C) is chordal [10], and more recently Lam et
al. [7] have characterised the compatibility of a collection of 3-state characters C in
terms of int(C). The intersection graph of a collection of characters, and restricted
chordal completions of it, have also been used in algorithmic approaches to determin-
ing compatibility, see for example Gysel and Gusfield [5].

The following results will be used to prove Theorem 1.1 and 1.2. The first result
is one direction of the main result in [9]. For a collection C of characters on X, a
restricted chordal completion G of int(C) is minimal if, for every non-empty subset F'
of E(G) — E(int(C)), the graph G\ F is not chordal.

THEOREM 2.2. Let T be a binary phylogenetic X -tree and let C be a collection of
characters on X. Then C defines T if

(i) each character is conver on T and every edge of T is distinguished by a
character in C, and

(i) there is a unique minimal restricted chordal completion of int(C).

For a collection C of characters on X, let G(C) denote the set

G(C) = {G : there is an X-tree T in which C is convex and G = int(C,T)}

of chordal graphs. Note that G(C) is a subset of the collection of restricted chordal
completions of int(C). We obtain a partial order < on G(C) by setting G1 < Gq if
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E(G1) C E(Gy) for all G1,G5 € G(C). The next theorem is one direction of the main
result in [1].

THEOREM 2.3. Let T be an X-tree and let C be a collection of characters on X.
Then C identifies T if

(i) each character in C is convex on T and every edge of T is strongly distin-

guished by a character in C, and

(i) there is a unique mazimal element in G(C).
In reference to Theorem 2.3, if int(C) has no non-trivial restricted chordal completions,
then there is precisely one graph in G(C), namely, int(C), in which case, this is the
unique maximal element in G(C). In particular, we have the following corollary, which
we make frequent use.

COROLLARY 2.4. Let T be an X-tree and let C be a collection of characters on
X. Then C identifies T if
(i) each character in C is convex on T and every edge of T is strongly distin-
guished by a character in C, and
(#) int(C) has no non-trivial restricted chordal completions.

3. Two Lemmas. In this section, we prove two lemmas. Both lemmas are used
in the proofs of Theorems 1.1 and 1.2.

Let T = (T;¢) be an X-tree, let e = {u,v} be an edge of 7 and let T /e be
the X-tree obtained from 7T by contracting e, that is, letting w denote the identified
vertex in T'/e, the X-tree (T'/e; ¢') where, for all y € X,

S = {¢<y> it 6(y) # {u, v}
w otherwise.

Furthermore, let F' be a subset of edges of T. Let Vi, V5, ..., Vi denote the vertex
sets of the components of T\ F'. The partition of X displayed by F is the partition

{o7'(Vy) :ie{1,2,...,k}}.

LEMMA 3.1. Let r > 2 and let T be a phylogenetic X-tree, and suppose
that T has a path containing (in order) 2r — 2 interior edges e1,ea,...,ea—o. Let
{X1,Xs,...,Xo,_1} be the partition of X displayed by E' = {ey, ea,...,ea._2} where,
for alli e {1,2,...,2r — 2}, the edge e; is the only edge in E' in the minimal subtree
of T connecting the elements in X; U X;11. Then any two r-state characters x1 and
X2 with

7T(X1) = {X17X2 U X3, X4 U )(57 e 7)(27»_2 U XQT»_I}
and
m(xe) = {X1U X2, X3U Xy,..., Xop 53U Xor2, Xop 1}

infer the X -splits 0¢,,0eyy -y 0cq,_o-
Proof. Let T’ be the X-tree obtained from 7 by contracting each of the edges
in E(T) — {e1,e2,...,e2,—2}. Let e; be an edge of T'. First suppose e; is not a
pendant edge of 7'. Then, for some j € {1,2}, there is a character x; such that
X, 1UX; € ’/T(Xj) and XiJrl U Xi+2 € W(Xj). Using X;,_1 UX; and XiJrl U Xi+2, it
is easily checked that x; strongly distinguishes e;. Now suppose that e; is a pendant
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edge of 7'. Then e; is either e; or es._o. If it is ey, then x; strongly distinguishes
e; using X1 and Xy U X3, while if it is eg,._o, then x2 strongly distinguishes e; using
Xor_3UXo,_o and Xo,._1. Now consider the partition intersection graph int({x1, x2})-
A routine check shows that int({x1,x2}) is a path in which every second vertex has
the same first coordinate. It follows that int({x1, x2}) has no non-trivial restricted
chordal completions and so, by Corollary 2.4, x1 and X2 identify 7’. In particular,
x1 and x2 infer the X-splits o¢,,0¢,, ..., 06, ,. O

Let e be an edge of an X-tree T = (T; ¢), and let V4 and V5 be the vertex sets of
the components of T\e. Let x. denote the character x. : X — {a., .} defined, for
all y € X, by

[ e
Be otherwise.

LEMMA 3.2. Let T = (T;¢) be an X-tree and let x be a character on X that is
convex on T, where w(x) = {Y1,Ya,...,Y,}, where r > 2. Let {f1, fa,..., fr—1} be a
set of edges that displays x. Let E' = {e1,ea,...,es} be a subset of edges of T with
E' 0 {f1, fa,.-., fr—1} empty satisfying the following two properties:

(i) for all distinct i,j € {1,2,...,r — 1}, there is an interior edge e € E' on the

path from an end vertex of f; to an end vertex of f;; and

(ii) for each e = {u,v} € E', there is a path from u (resp. v) to a vertex w of T

avoiding v (resp. u) and f1, fa,..., fr_1, and ¢~ 1(w) is non-empty.
Then the collection

{X7X€1?X€2?"')Xes}

of characters on X infers each of the X-splits o¢,,04,,...,07,_,.
Proof. Let T' = (T; ¢') be the X-tree obtained from T by contracting each edge
not in

E'"U{f1, f2s- -, fr1hs

and consider the collection

C={X)Xers Xear-- > Xes

of characters on X. We next show that C identifies 7.

Clearly, C is convex on 7'. Now let e be an edge of T'. If e € E’, then . strongly
distinguishes e. Suppose that e = f; = {u1,us} for some i € {1,2,...,7 — 1}. Since
E’ satisfies (i), every edge in 7" adjacent to f; is in E’. Together with (ii), this implies
that there exist Z1, Zs € 7(x) such that, for each ¢ € {1,2}, we have the following:
¢'(Z;) is a subset of the vertex set of the component of 7'\ f; containing u;; the vertex
set of each component of T'\u; (except for the one containing the other end vertex
of f;) contains an element of ¢’(Z;); and ¢~ (u;) is a subset of Z;. Thus y strongly
distinguishes f;.

Consider int(C). We will show that int(C) has no non-trivial restricted chordal
completions. Let e and e’ be distinct elements in E’, and let m(x.) = {4, B} and
m(xe) = {A’, B'}. Now exactly one of the intersections AN A’, AN B, BNA’, and
B N B’ is empty. Without loss of generality, we may assume that AN A’ is empty.
Then {(xe,A4), (xer, A')} is not an edge in int(C). Indeed, no non-trivial restricted
chordal completion contains this edge; otherwise (xe, A), (xer, A'), (Xe, B), (xer, B')
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are the vertices of a 4-cycle in such a completion. But it is not possible for two
non-consecutive vertices in this cycle to be joined by an edge as they have the same
first component. Hence any non-trivial restricted chordal completion of int(C) must
contain an edge of the form {(x,Yi), (xe;, 4;)}, where Y;N A; is empty. Suppose there
exists such a completion G containing such an edge. Since E’ satisfies (i) and (ii), there
is a Y}, € m(x) with Yz N A; and Y, N B; both non-empty, where m(x.,) = {4;, B;}.
Note that, as Y3, N A; is non-empty, Y; and Y}, are distinct. Furthermore, as Y; N A;
is empty, Y; N B; is non-empty. Therefore (x,Y3), (xe;> 45), (X; Y&), (Xe,, Bj) are the
vertices of a 4-cycle of G. But again it is not possible for two non-consecutive vertices
in this cycle to be joined by an edge; a contradiction. Thus there is no non-trivial
restricted chordal completion of int(C). Therefore, by Corollary 2.4, C identifies 77,
which in turn implies that every X-tree on which C is convex is a refinement of 7.
In particular, oy, ,0y,,...,0y,_, are X-splits of such an X-tree. This completes the
proof of the lemma. O

4. Proof of Theorem 1.1. This section consists of the proof of Theorem 1.1.

Proof. [Proof of Theorem 1.1] We assume that | X| > ng, where ny will be chosen
sufficiently large so that we can choose our initial characters without worrying about
the topology of T. We select a set Ey of interior edges e1,es,...,e, on a path in T
with the properties that

(i) k is a multiple of 2r — 2 and is at least 4r® + r, and

(ii) each of the components of T\ Ey contains at least [logr]| vertices.

By applying Lemma 3.1 k times, there is a set Cy of Tfl r-state characters which
infers the X-splits o¢,,0c,,...,0¢,.

We now proceed iteratively to construct the remaining characters. Set i = 1. In
step i, select a set F; of » — 1 interior edges of 7 such that each edge in Fj; is in a
different component of T\F;_;. Define x; to be a character for which m(x;) is the
partition of X displayed by F;. Let E; = E;_1 UF;. By induction and Lemma 3.2, the
collection C; = C;—1 U {x;} infers each of the X-splits in {0, : e € F;}. Now, increase
i by 1 and repeat.

In order to ensure that we do not exhaust the supply of edges in distinct com-
ponents too early, we shall always select the edges in F; to be in the r — 1 largest
components (measured by the number of interior edges of T') of T\ E;_1, and to select
the interior edge within each such component that as closely as possible results in two
subsequent components of equal size on its deletion. By doing so, we will show that
we can continue the process until the final step, [ say, in which there may be less than
r — 1 interior edges of 7 not yet selected. However, these edges will be in distinct
components of T\E;_; and we generate the final character y;, for which 7(x;) is the
partition of X displayed by the remaining interior edges of T not yet selected. We
end with a set C; of r-state characters that infers every non-trivial X-split of 7 and

therefore, by Theorem 2.1, defines 7, where [ = [”_3

r—1|"

Let ¢ > 1. Our first claim is that if a component 7' of T\ F;_; has m > 4 interior
edges of T, then we can select such an interior edge e of T’ for which each of the two
components, T{ and T3 say, of T'\e has greater than m/10 interior edges of T, and
with one component having at least m /3 interior edges of 7. To see this, choose e that
maximises the minimum number of interior edges of 7{ and 7. For the purposes of
obtaining a contradiction, we may assume, without loss of generality, 7 has at most
m/10 interior edges of T, and so 73 has at least 9m /10 — 1 interior edges of 7. Now
T3 has at least one interior edge of T adjacent to e. If 75 has exactly one such edge
f, then the components of 7'\ f each have (strictly) more interior edges of 7 than

8



T/, contradicting the choice of e. Therefore, 75 has two such edges, f; and fy say.
Let f € {f1, fo} be the edge such that the component of TJ\{f1, fo} pendant to f
has the most interior edges of 7. This component must have at least [9m /20 — 3/2]
interior edges of T which is greater than m/10 for m > 4. Again, the components of
T'\f each have (strictly) more interior edges of T than 77, contradicting the choice
of e. For the second part of the claim, it follows by the pigeonhole principle that at
least one of the two components must have at least (m — 1)/2 > m/3 interior edges
of T.

Our second claim is that if we have performed ¢ iterations and the largest remain-
ing component has

my >4 - g(logﬂ

interior edges of 7, then, for all k& < min{2%,r — 1}, the k-th largest component
(measured by the number of interior edges of 7') has at least

me

gllogk]

interior edges of 7. We prove this claim by induction on ¢t. For ¢t = 0, the claim
trivially holds since k£ < 1 and the largest component has at least mg interior edges of
T. Now suppose that the claim holds for the first ¢ iterations. The largest component
after t + 1 iterations arose either from a component that was divided in the (¢ + 1)-th
iteration, in which case, by the first claim, m;y1 < 9m;/10, or was not divided in the
(t + 1)-th iteration, in which case, it was at most the r-th largest component at the
start of that iteration. In the first case, for k < min{2*! r — 1}, there were at least
k/2 components of size at least
my - my

Mog(k/2)] ~ gliogh]—1

at the start of the (¢t + 1)-th iteration. By the first claim, each of these components
generate two components of size at least

my > mMi41
10 - 9Mogkl—1 = g[logk]’

and so the inductive step holds. In the second case, for k¥ < min{2!*! r — 1}, there
were at least k components of size at least m;41 at the start of the (¢4 1)-th iteration
and, by the first claim, each of these generated a component with more than m;y1/3
interior edges of 7. For k > 2, this is at least

mi41
9llogk] "

Furthermore, for £k = 1, the claim holds trivially. This completes the proof of the
second claim.

We now fill in the argument outlined earlier. There are at least 4r° +r > (r —
1) [log r] components in T\E, with at least [logr] interior edges of 7. Hence, we
do the first [logr] iterations without ever selecting an edge in a component which
only has one interior edge of 7. The endgame is reached when we first have to select
an edge from a component consisting of only one interior edge of 7. From here, the
number of components starts decreasing. At this point, the number of components is
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still at least 4r° + r. Since the (r — 1)-th largest component has 1 interior edge of T,
it follows by the second claim that

me < 4- 9871 < 404,

Furthermore, as the (r — 1)-th largest component has 1 interior edge of T, there are
at least 4r° components that have exactly one interior edge of 7. After at most 4%
further iterations, there will be no components with more than 1 interior edge of T
remaining and, for each of these iterations, we will have always selected a set of r — 1
interior edges of 7 from distinct components since there are sufficient components
consisting of at least one such edge. We can now select the remaining interior edges
of T in sets of r — 1 until we are left with the final set of size at most r — 1. Because
we always selected a full set of 7 — 1 interior edges of T, apart from possibly the final
set, and there are n — 3 interior edges in total, our resulting collection of characters

has size [%’ﬂ This completes the proof of the theorem. O

5. Four-State Characters. In this section, we prove Theorem 1.2. We begin
with an example to show that when n = 12 there is a binary phylogenetic X-tree that
is not defined by three 4-state characters.

Consider the binary phylogenetic tree 7 shown in Figure 1.1(a). Suppose for
contradiction that three 4-state characters define 7. Since these characters define
T, each interior edge of 7 must be distinguished by one of the characters, and so
no character is displayed by a subset of edges containing two adjacent edges. Thus
we may assume by symmetry that these characters are displayed, respectively, by
the subsets {e1,eq,e7}, {€2,e5,es}, and {es, e, e9} of edges of T. In particular, the
partitions of {1,2,...,12}, namely,

{{1,2,3,4},{5,6},{7,8,11,12},{9,10} },
{{1,2},{3,4,9,10},{5,6,7,8},{11,12} },

and

{{1,2,5,6},{3,4},{7.8},{9,10,11,12} }

induced by the characters define 7. But the same collection of characters is also convex
on the binary phylogenetic tree shown in Figure 1.1(b); a contradiction. Thus, for
n = 12, Theorem 1.2 does not hold.

The rest of the proof of Theorem 1.2 is by induction on n. For this induction,
it is the base case that requires the most work. The base case consists of directly
establishing the result for n = 13,14 (Corollary 5.9) and n = 15 (Corollary 5.8). We
begin with several lemmas which will eventually be used to establish these corollaries.
Once the base case is established, Lemma 5.10 deals with binary phylogenetic trees
of a special structure (caterpillar-like trees) and, in all remaining binary phylogenetic
trees, we identify three leaves that may be removed to give an easy inductive step.

LEMMA 5.1. Let C be a compatible collection {x1,X2,---, Xk} of characters, and
suppose that G is a restricted chordal completion of int(C). If, for each i and j, the
subgraph of G induced by those vertices whose first coordinate is either x; or x; s a
tree, then there is no non-trivial restricted chordal completion of G.

Proof. Suppose that G has the desired tree property for each pair of characters
in C, but there is a non-trivial restricted chordal completion G’ of G. Let e be an
edge of G’ that is not an edge of G. Then e joins two vertices v; and v; whose first
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coordinates are distinct, say x; and x;. By the tree property in G, there is a path
in G’ from v; to v; avoiding e whose first coordinates alternate between x; and x;.
In particular, there is a cycle in G’ with at least four vertices whose first coordinates
alternate between x; and x;. But then, for each four successive vertices in the cycle,
there is no edge connecting two non-consecutive vertices, so G’ is not chordal. This
contradiction completes the proof of the lemma. O

Let 77 be a phylogenetic X’-tree and let 7 be a phylogenetic X-tree with X C X'.
The next lemma will show that a set of characters that defines 7 can be extended to
a set of characters on X’ that infer the same structure. We say 7 is a restriction of T’
if T can be obtained from the minimal subtree of 7’ connecting the elements in X by
suppressing degree-two vertices. A bipartition {A4’, B’} extends another bipartition
{A, B} if, for some choice of A and B, we have A C A’ and B C B’. Observe that T
is a restriction of 7 if and only if, for all interior edges e in T, there is an edge f in
T’ such that the bipartition corresponding to f in T’ extends that corresponding to
ein T.

Suppose that T is a restriction of 7’. A subset F of interior edges of 7' is T -
representable if, for each interior edge e in 7, there is precisely one edge f in F' such
that oy extends o.. Now let C be a collection of characters that are convex on 7. Let
X be a character in C, and suppose that x is displayed by the subset E, of edges in
T. For each x € C, let xr be a character on X’ displayed in 7’ by the subset

{f :0s extends o, e € E,, f € F}

of F. Furthermore, let Cr = {xr : x € C}.

LEMMA 5.2. Let T’ be a phylogenetic X'-tree and let T be a binary phylogenetic
X-tree with X C X'. Suppose T is a restriction of T'. Let F be a T -representable
subset of interior edges of T'. If C is a collection of characters on X that defines T,
then the collection Cr of characters on X' infers each of the X'-splits of T' induced
by the edges in F.

Proof. Let S be the phylogenetic tree obtained from 7" by contracting each of
its interior edges not in F. We will show that Cr identifies S, thus showing that Cp
infers each of the X’-splits of 7’ induced by the edges in F'. Suppose that there is a
phylogenetic X’-tree 77 that is not a refinement of S but Cg is convex on 7T;. Since
Cr is convex on 71, and so T1|X = T = S|X, it follows that there is an element z in
X’ — X such that {AU{z}, B} is an (X U {z})-split of S|(X U{z}) but {4, BU{z})
is an (X U {z})-split of T1|(X U{z}). Here X is the disjoint union of A and B. Now,
consider §|(XU{z}), and let e be the edge of S|(XU{z}) such that o, = {AU{z}, B}.
Since C defines T, there is a character x in C with Ay, By € 7(x), where 4; C A and
B; C B, and aj,as € Ay and by, by € By such that the path in S|(X U{z}) from a;
to ag passes through one end vertex of e, while the path in S|(X U{z}) from by to by
passes through the other end vertex of e. Thus the character xyz in Cg corresponding
to x has the property that there are parts Ap, Br € n(xp) with A; U{z} C Ar and
B; C Bp. But then, as §|X is isomorphic to 7;|X, it follows that xz is not convex
on T1|(X U {z}), and therefore not convex on 7;. It follows from this contradiction
that Cr identifies S. 00

An internal pseudo-path of length t in a phylogenetic tree T is a set of ¢ interior
edges that lie on a path in 7. In particular, the interior edges need not be consecutive.

LEMMA 5.3. Let T be a phylogenetic X-tree with X = {1,2,...,15} and no
internal pseudo-path of length 6. Then there is a collection of four 4-state characters
that defines T .
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Fic. 5.1. The unique binary phylogenetic tree on {1,2,...,15} with no internal pseudo-path of
length 6.

Proof. By attempting to construct such a tree, it is easily checked that there is
no binary phylogenetic tree with 15 leaves whose maximum length internal path is
at most 4. Furthermore, another check shows that, up to isomorphism, the binary
phylogenetic tree, 7’ say, shown in Figure 5.1 is the only binary phylogenetic tree on
{1,2,...,15} whose maximum length internal path is 5. Consider the phylogenetic
tree T on {1,2,...,12} shown in Figure 5.2 and a collection C = {x1, X2, x3} of 4-state
characters on {1,2,...,12}, where

m(x1) = {{1,2},{3,12},{4,5,6,7,8,9}, {10, 11} },
m(x2) = {{1,2,3},{4,5},{6,10,11,12},{7,8,9} },

and

m(xs) = {{1.2,3,9}, {4,5,6},{7,8},{10,11,12} }.

Observe that C is convex on 7. The intersection graph int(C) is not chordal but,
as (x1,{3,12}), (x3,{1,2,3,9}), (x1,{4,5,6,7,8,9}), (x2,{6,10,11,12}) is a cycle in
int(C), every restricted choral completion of int(C) must include an edge joining
(x2,{6,10,11,12}) and (xs,{1,2,3,9}). Let G denote int(C) with this additional
edge. Now G is the intersection graph int(C,7) and so it is chordal. Thus G is the
unique minimal restricted chordal completion of int(C). Hence, as T is distinguished
by C, it follows by Theorem 2.2 that C defines 7. Since T is a restriction of 77, it fol-
lows by Lemma 5.2 that any collection F' of T-representable edges infers the X-splits
of 7" induced by the edges of F. It now follows by Lemma 3.2 that a collection of
four 4-state characters {x, x5, x4, x4} on {1,2,...,15}, where

m(x1) = {{1,2},{3,12,13},{4,5,6,7,8,9,14,15},{10,11} },
m(xy) = {{1,2,3,13},{4,5},{6,10,11,12,14},{7,8,9,15} },
m(xs) = {{1,2,3,9,13,15},{4,5,6,14},{7,8}, {10, 11,12} },

and

m(x4) = {{1,2,4,5,7,8,10,11,12},{3,13}, {6, 14}, {9, 15} },
12
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Fi1c. 5.2. A binary phylogenetic tree on {1,2,...,12}.

defines 7’. This completes the proof of the lemma. O

Let F be a subset of edges of a phylogenetic tree T and let C1, Cs, ..., C) denote
the components of T\F. For all i, let E; denote the set of interior edges of T in C;.
Note that, for some i, the set F; may be empty. We say that F' separates the interior
edges of 7 not in F into sets Ey, Es, ..., Fy.

LEMMA 5.4. Let T be a binary phylogenetic X -tree with 15 leaves and an internal
pseudo-path P of length 6. If P separates the interior edges of T not in P into sets
of size at most two, then there is a collection of four 4-state characters that defines
T.

Proof. Suppose that P separates the interior edges of 7 not in P into sets of size
at most two. In order, let e, €9, ..., e denote the edges of P. Let {X1, Xs,..., X7}
be the partition of X displayed by {eq,es,...,es} where, for all i € {1,2,...,6}, the
edge e; is the only edge in the set in the minimal subtree of 7 connecting the elements
in X; UX,;;1. By Lemma 3.1, any two 4-state characters x; and yo with

m(x1) = {X1, X2 U X3, X4 U X5, X6 U X7}
and
m(x2) = {X1 U Xy, X3U Xy, X5 U Xg, X7}

infer the X-splits of 7 induced by eq,ea, ..., es. We next describe two further char-
acters which, together with y; and xo, infer the remaining X-splits of 7 induced by
its interior edges.

Let FEq,FEs,...,E; denote the sets of interior edges of 7T separated by
{e1,€2,...,es}. By our initial assumption, |E;| < 2 for all i. Now select edges
fi, fo, and f3 in Fy U E5 U -+ - U E7 such that no two are from the same E; and an
edge is selected from each E; of size 2. Let x3 denote any character displayed by
{f1, f2, f3}. By Lemma 3.2, it follows that x1, x2, and x3 infer the X-splits of T
induced by f1, fo and f3. Now select the remaining interior edges of T, say fi, f5,
and fg in By UEyU---UE7; — {f1, f2, f3}, and let x4 denote any character displayed
by {f4, f5, fe}- Since |E;| < 2 for all i, it follows by another application of Lemma 3.2
that x1, x2, x3, and x4 infer the X-splits of 7 induced by f4, f5, and fg. Hence,
as all non-trivial X-splits of T are inferred by the collection {x1, X2, X3, X4}, we have
our desired collection of four 4-state characters. O
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Fic. 5.3. The phylogenetic trees T1, T2, and T3.

LEMMA 5.5. Let T1, T2, and T3 be the three phylogenetic X -trees, where X =
{1,2,...,12}, shown in Figure 5.3. Then, for each s € {1,2,3}, there is a collection
of three 4-state characters that defines T.

Proof. Let C1 = {x11,X12,X13} be a collection of characters on {1,2,...,12},
where

m(xn1) = {{1,2},{3,4,12},{5,6,7,8},{9,10,11} },

7T(X12) = {{17 27 3}7 {47 7a S}a {5a 6}7 {97 107 117 12}}7

(x13) = {{1,2,3,4},{8,11,12},{5,6,7},{9,10} },
Co = {xa1, X22, X23} be a collection of characters on {1,2,...,12}, where

(x21) = {{1,2},{3,4,9,10},{5,6,7,8}, {11,12} },

m(x22) = {{1,2,3},{4,7,8},{5,6},{9,10,11,12} },

(x23) = {{1,2,3,4},{8,11,12},{5,6,7},{9,10} },

14
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and C3 = {x31, X32, X33} be a collection of characters on {1,2,...,12}, where

m(xs1) = {{1.2},{3,4,9,10}, {5,6,7,8}, {11, 12} },
m(xs2) = {{1,2,3},{4,7,8},{5,6},{9,10,11,12} },
m(xss) = {{1,2,3,4},{5,6,11,12},{7,8},{9, 10} }.

For all s € {1,2,3}, it is easily checked that Cs is convex on T, and distinguished by
Cs.

The intersection graph int(C;) is chordal and so it is the unique minimal restricted
chordal completion of int(Cy). Therefore, by Theorem 2.2, C; defines 7;. Now int(Cz)
is not chordal, but any restricted chordal completion of int(Cs) must include the edge
joining (x21,{3,4,9,10}) and (x23,{8,11,12}). The graph int(Cs2) together with this
edge is chordal and so it is the unique minimal restricted chordal completion of int(Cs).
Thus, by Theorem 2.2, C5 defines 75. For Cs, the situation is similar to that for Cy
except that, for any restricted chordal completion of int(Cs), two specific edges and not
one must be included. These edges join (x31,{3,4,9,10}) and (x33, {5, 6, 11,12}), and
join (xs2,{4,7,8}) and (xss,{5,6,11,12}). This completes the proof of the lemma. O

LEMMA 5.6. Let T be a binary phylogenetic X -tree with 15 leaves and an internal
pseudo-path P of length 6. If P separates the internal edges of T not in P into sets
of size at most 3, then there is a collection of four 4-state characters that defines T .

Proof. Suppose that P separates the interior edges of 7 not in P into sets of size
at most three. In order, let eq,es,...,es denote the edges of P. Let Ey, Es, ..., Er
denote the sets of interior edges of T separated by {ej,es,...,es}. By Lemma 5.4,
we may assume that |F;| = 3 for some i. First suppose that E; is the only set of
size three. If E; contains an edge that can extend P to an internal pseudo-path of
length 7, then it is easily checked we can choose another internal path of length 6
and that this path has the property of separating the interior edges of 7 not in it
into sets of size at most two. In this instance, by Lemma 5.4, there is a collection
of four 4-state characters that defines 7. Thus we may assume that there is no such
edge in F;. By symmetry, we may assume that ¢ € {1,2,3,4}. If (i) i =1, (ii) i = 2
and |F1] < 1, or (iii) ¢ = 3 and |Ey| = |E2| = 0, then it is easily seen that we can
choose another internal path of length 6 whose first two edges are in F; with the
property that it separates the internal edges not in it into sets of size at most two. If
(i) i =2 and |E4| =2, (ii) ¢ = 3 and |E7 U Eo| € {1,2}, or (iii) ¢ = 4, then, for some
s € {1, 2,3}, the binary phylogenetic tree 7, in Figure 5.3 is a restriction of 7 up to
labelling. Moreover, it is easily seen that a Ts-representable subset F' of edges can
be chosen so that F' separates the three interior edges of 7 not in F into singletons.
Note that if ¢ = 3, then |Ey U Ey| < 2; otherwise, |E2| = 3 or we can extend P. It now
follows by Lemmas 3.2, 5.2, and 5.5 that there is a collection of four 4-state characters
that defines 7.

Now suppose that there are distinct ¢ and j such that |E;| = |E;| = 3. Without
loss of generality, we may assume that 7 < j. If either F; or F; contains an edge that
can extend P, then 7 has an internal pseudo-path of length 6 separating the interior
edges of 7 not in it into sets of size at most two apart from one possible set which
as size at most three. By Lemma 5.4 and the argument in the previous paragraph,
we may assume that neither ; nor E; has such an edge. Furthermore, by symmetry,
we may assume that ¢ € {1,2,3,4}. If |i — j| > 3, then it is easily checked that we
can choose another internal pseudo-path of length 6 whose first and last edge are in
E; U E; with the property that it separates the interior edges not in it into sets in
which at most one set has size three and all other sets have size at most two. By
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Lemma 5.4 and the argument in the previous paragraph, there is a collection of four
4-state characters that defines 7. If |i — j| € {1, 2}, then, unless {i,j} = {3,5}, there
is some s € {1,2,3} such that 7 in Figure 5.3 is a restriction of T up to labelling.
Furthermore, there is a T,-representable subset F' of edges that can be chosen so that
F separates the three interior edges of 7 not in F' into singletons. By Lemmas 3.2,
5.2, and 5.5, there is a collection of four 4-state characters that defines 7. In the
exceptional case, we can choose an internal pseudo-path of length 6 whose first and
last edges are in E3 U F5 with the property that it separates the remaining internal
edges of T into sets of size at most two, in which case, by Lemma 5.4, there is a
collection of four 4-state characters that defines 7. O

LEMMA 5.7. Let T be a binary phylogenetic X -tree with 15 leaves and an internal
pseudo-path P of length 6. If P separates the interior edges of T not in P into sets
one of which has size at least four, then there is a collection of four 4-state characters
that defines T .

Proof. Suppose that P separates the interior edges of 7 not in P into sets one of
which has size at least four. In order, let ey, es, ..., es denote the edges of P and let
E1, Es, ..., E7 be the sets of interior edges not in P separated by {ei,ea,...,es}. For
some i, we have |E;| € {4,5,6}. By symmetry, we may assume that ¢ € {1,2,3,4}.
First suppose that |E;| = 4. If E; contains an edge that can extend P to an internal
pseudo-path of length 7, then we can choose another internal pseudo-path of T of
length 6 with the property that it separates the interior edges of T not in it into sets
of size at most three, in which case, by Lemma 5.6, there is a collection of four 4-state
characters that defines 7. Thus we may assume that there is no such edge in F;. If
(i) ¢ € {1,2} or (ii) ¢ = 3 and |E; U E2| < 1, then we can choose another internal
pseudo-path of length 6 whose first edge is in F; with the property that it separates
the interior edges not in it into sets of size at most three. By Lemma 5.6, there is a
set of four 4-state characters that defines 7. If (i) ¢ = 3 and |E7 U E2| = 2, or (ii)
i = 4, then, for some s € {1,2,3}, the binary phylogenetic tree T, in Figure 5.3 is a
restriction of 7 up to labelling. Furthermore, a T,-representable subset F' of edges
can be chosen so that F' separates the three interior edges not in F' into singletons.
It now follows by Lemmas 3.2, 5.2, and 5.5 that there is a collection of four 4-state
characters that defines 7.

Now suppose that |E;| € {5,6}. Then, regardless of i, we can chose another
internal pseudo-path of length 6 whose first edge is in E; with the property that it
separates the interior edges not in it into sets of size at most four. By Lemma 5.6
and the argument in the last paragraph, there is a set of four 4-state characters that
defines 7. O

The following corollary is an immediate consequence of Lemmas 5.4, 5.6, and 5.7.

COROLLARY 5.8. Let T be a binary phylogenetic X -tree with 15 leaves and an
internal pseudo-path of length 6. Then there is a collection of four 4-state characters
that defines T .

COROLLARY 5.9. Let T be a binary phylogenetic X -tree with 13 or 14 leaves.
Then there is a collection of four 4-state characters that defines T .

Proof. We prove the corollary for when 7 is a binary phylogenetic tree with 13
leaves. The analogous proof for when 7T is a binary phylogenetic tree with 14 leaves is
simpler and omitted. Let 7 be a binary phylogenetic X-tree with X = {1,2,...,13}.
We next extend 7 to a binary phylogenetic X'-tree, where X’ = {1,2,...,15} as
follows. For each non-trivial X-split of 7, add the elements 14 and 15 to the cell
of the X-split containing 13. The resulting collection of X’-splits together with the
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X'-split {{14,15},{1,2,...,13}} is the collection of non-trivial X’-splits of a binary
phylogenetic X’-tree 7’. By Corollary 5.8, there is a collection C’ of four 4-state
characters that defines 7. Now, amongst the characters in C’, there is a character x}
in which {13,14,15} € m(x}) and a character x4 in which {14, 15} € w(x%). Deleting
{13,14,15} from 7(x}), deleting {14,15} from m(x5%), and deleting the elements 14
and 15 from the partitions induced by the remaining two characters in C’, gives the
partitions of a collection C of four 4-state characters on {1,2,...,13}. Note that,
except for x4, each of the characters in C’' has the property of mapping the elements
14 and 15 to the same state in which 13 is mapped. Clearly, C is convex on 7.
Furthermore, C defines 7. If not, then there is another binary phylogenetic X-tree
on which C is convex. By extending this tree to a binary phylogenetic X’-tree in the
same way that we extended 7 to 7', we obtained a binary phylogenetic X'-tree on
which C’ is convex but distinct to 7’; a contradiction. This completes the proof of
the corollary. O

4
Fi1G. 5.4. A caterpillar-like tree with exactly three cherries {1,2}, {3,4}, and {n — 1,n}.

Let T be a binary phylogenetic X-tree. A cherry is a 2-element subset {z,y} of
X with the property that = and y have a common neighbour. A binary phylogenetic
tree is caterpillar-like if it does not have three cherries each two of which are separated
by at least three interior edges. It is easily checked that there are exactly three types
of caterpillar-like trees. The first type has precisely two cherries, the second type has
precisely three cherries, two of which are separated by only two interior edges, and
the third type has precisely four cherries, in two pairs each separated by only two
interior edges. An illustration of a caterpillar-like tree with exactly three cherries is
shown in Figure 5.4.

LEMMA 5.10. Let T be a binary phylogenetic X -tree that is caterpillar-like with
n leaves, where n > 11. Then there is a collection of 4-state characters of size WLT_?)]
that defines T .

Proof. Let P be a longest internal path of 7. Since n > 11, it is easily checked
that P has at least 6 internal edges. In fact, the exact number of internal edges in P
is n — k, where k € {3,4,5}, depending upon whether T is the first, second, or third
type of caterpillar-like tree. We next partition the edges of P into three non-empty
parts, each part consisting of consecutive edges in P. If we view these parts as being
ordered, the first part contains the first edge of P and the third part contains the last
edge of P. If n — k =0 (mod 3), then each part consists of %’k edges. If n—k=1
(mod 3), then the first part consists of | 5% | + 1 edges and the other two parts each

consist of L%J edges. If n — k = 2 (mod 3), then the first and second parts each

consist of L”gkj + 1 edges and third part consists of L”gkj edges.
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Using the above partition of P, we next construct a collection of 4-state characters
of size L”T_’“J that will infer all but at most four of the non-trivial X-splits of 7. View
each part as an ordered set with the ordering consistent with the order of the edges in
P. Foralli € {1,2, ol L”T_kj }, define x; to be a 4-state characters on {1,2,...,n}
displayed (collectively) by the i-th edge in each part. By Lemma 3.1, x1 and x2 infer
the X-splits of 7 induced by the edges displaying x; and x2. Moreover, for each
VRS {3,4, cee L"T’]“J }, it follows by Lemma 3.2 that {x1, x2, Xx;} infers the X-splits
of T induced by the edges displaying x;. Thus, except for at most two edges, the

collection

€= {xxex o

infers each of the X-splits of 7 induced by the edges of P.

Now there are at most two interior edges of 7 not in P. Therefore there are at
most four interior edges of 7 whose X-splits are not inferred by C. Let F' denote the
set consisting of these interior edges of 7. By the way in which P was partitioned,
no two of the edges in F are adjacent. If |F'| = 0, in which case T is the first type of
caterpillar-like tree, C is an appropriate collection of 4-state characters that defines
T.If |F| € {1,2,3}, then define X[ ngk |41 to be a character on {1,2,...,n} displayed

by the edges in F. It follows by Lemma 3.2 that C U {XLMJH
3

X-splits induced by the edges in F' and thus defines 7. Lastly, if |F| = 4, then define
X| m5t | 41 to be a character on {1,2,...,n} displayed by three of the edges in F' and
3

} infers each of the

X| 25k |42 to be a character on {1,2,...,n} displayed by the remaining edge in F'.

By two applications of Lemma 3.2, CU {XLRT%JH, XL%J”} infers each of X-splits
induced by the edges in F' and thus defines 7. This completes the proof of the lemma.
0

Proof. [Proof of Theorem 1.2] It remains to show that, for all n > 13, if T is a
phylogenetic X-tree on {1,2,...,n}, then there is a collection of 4-state characters of
size [”T_3’—| that defines 7. The proof is by induction on n. If n € {13,14,15}, then
the theorem holds by Corollaries 5.8 and 5.9. Now suppose that n > 16 and that the
theorem holds for all binary phylogenetic trees on {1,2,...,n — 3}. By Lemma 5.10,
we may assume that 7 is not a caterpillar-like tree. Hence 7 has three pairs of
cherries in which each pair is separated by at least three interior edges. Without loss
of generality, we may assume that these cherries are {n —5,n—2}, {n—4,n—1}, and
{n—3,n}. Let T,_3 denote the binary phylogenetic tree obtained from 7 by deleting
the leaves n — 2, n — 1, and n, and suppressing the resulting degree-two vertices. By
induction, there is a collection C,,_3 of 4-state characters of size L%_(SJ that defines
Tn—3. Now T, _3 is a restriction of 7, and so there is a collection F' of interior edges
of T that is T,_s-representable. By Lemma 5.2, (C,,_3)F is a collection of characters
on {1,2,...,n} that infer the X-splits of 7 induced by the edges in F. Let x be a
character on {1,2,...,n} in which

m(x)={{n—-5n-2}{n—4,n—-1}{n—-3,n},{1,2,...,n — 6}}

and let C be the collection (C,,—3)r U {x} of 4-state characters on {1,2,...,n}. Since
any two of the cherries {n—5,n—2}, {n—4,n—1}, and {n—3,n} are separated by at
least three interior edges of T, it follows by Lemma 3.2 that C defines 7. Moreover,
C consists of VLT_SJ 4-state characters. This completes the proof of the theorem. O
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We end with a remark regarding where the argument breaks down for when
n < 11. The proof of Theorem 1.2 uses induction on n, where the base case consists
of establishing the result for three consecutive values of n. For a fixed n < 9, there is
no choice whereby the theorem holds for n, n + 1, and n 4+ 2. The reason is that, for

5 <n <9, we simply don’t have enough characters to define every binary phylogenetic

tree with n leaves. For example, when n = 9, we have [2=2] = 2. But any binary

phylogenetic tree with an interior vertex incident with three interior edges can not be
defined by two characters as these two characters won’t distinguish all three of these
edges.
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