
Counting Consistent Phylogenetic Trees is

#P-complete

Magnus Bordewich∗, Charles Semple†, John Talbot‡

18 July 2003

Abstract

Reconstructing phylogenetic trees is a fundamental task in evolu-
tionary biology. Various algorithms exist for this purpose, many of
which come under the heading of ‘supertree methods’. These methods
amalgamate a collection P of phylogenetic trees into a single parent
tree. In this paper, we show that, in both the rooted and unrooted
settings, counting the number of parent trees that preserve all of the
ancestral relationships displayed by the phylogenetic trees in P is #P-
complete.

1 Introduction

Phylogenetics is the reconstruction and analysis of phylogenetic (evolution-
ary) trees and networks based on inherited characteristics. In evolutionary
biology, phylogenetic trees are used to represent the ancestral history of a
collection of present-day species.

There exists a variety of methods for reconstructing phylogenetic trees
depending upon the type of information being used for inference. Supertree
methods is the collective name for reconstruction algorithms that combine
a collection P of smaller phylogenetic trees on overlapping sets of species
into a single parent tree. The resulting parent tree is called a supertree.
Supertree methods have attracted much interest in evolutionary biology as
illustrated by a recent survey paper [2] and a soon to be published book [3].

∗Corresponding author. bordewic@maths.ox.ac.uk. New College and Mathematical

Institute, Oxford, UK.
†c.semple@math.canterbury.ac.nz. Biomathematics Research Centre, Department of

Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand.
‡talbot@maths.ox.ac.uk. Merton College and Mathematical Institute, Oxford, UK.

1



A desirable property of any such method is that the resulting supertree
preserves (if possible) all of the ancestral relationships described by the
smaller phylogenetic trees. Such a supertree is said to be consistent with P.

If P is a collection of rooted binary phylogenetic trees, then deciding
whether there exists a consistent rooted binary supertree for P can be done
in polynomial time [1]. Indeed, the associated algorithm outputs an appro-
priate supertree if one exists. For biologists who may want to determine the
evolutionary history of up to 10, 000 species on a single tree, the efficiency
of this algorithm has important practical implications. However, knowing
there is at least one consistent rooted binary supertree for P may not be of
much use if one hopes to identify the ‘true’ underlying tree and there are
exponentially many such supertrees. It is intuitive to say that if there is a
large number of consistent rooted binary supertrees for P, then P doesn’t
contain much information about the ‘true’ tree. On the other hand, if there
are only a few such supertrees, then P contains a lot of information about
the ‘true’ tree. To be precise, suppose that the ‘true’ tree T on n labels is
a priori equally likely to be any rooted binary phylogenetic tree on the n
labels. Then the information about T given by P is

I(T |P) = H(T )−H(T |P) = − log2

(

N(P)

(2n− 3)!!

)

,

where H is the entropy function, N(P) is the number of rooted binary
phylogenetic trees consistent with P, and (2n− 3)!! is the number of rooted
binary phylogenetic trees on n labels. Consequently, counting the number of
consistent rooted binary supertrees for P is a natural and realistic problem in
phylogenetics. Unfortunately, the main result of this paper shows that this
problem is computationally hard, in particular, #P-complete. An almost
immediate corollary of the main result is that if P is a collection of unrooted
binary phylogenetic trees, then counting the number of consistent (unrooted)
binary supertrees for P is also #P-complete. This last result is not surprising
as the associated decision problem is NP-complete [10].

The complexity class #P was introduced by Valiant [11] as an extension
of classical complexity theory from decision problems to enumeration prob-
lems. The fact that computing the number of supertrees preserving a given
set of relationships is #P-complete means that computing this number is
as hard as computing any problem in the class #P. Such problems include
counting the number of satisfying assignments to a Boolean formula in con-
junctive normal form and counting the number of Hamiltonian circuits in
a graph. Intuitively, this implies that it is extremely unlikely that there

2



exists a polynomial-time algorithm for computing the number of such su-
pertrees. Indeed, such an algorithm would not only imply that P=NP, but
that the whole ‘polynomial hierarchy’ collapses. For a good introduction to
the complexity of counting problems, we refer the reader to Welsh [12].

2 Main Result

In this section, we formalise and state the main result. A brief description of
the organisation of the paper is given at the end of the section. Throughout
the paper, the phylogenetic notation and terminology follows Semple and
Steel [9].

A rooted phylogenetic tree T (on X) is a rooted tree with the following
properties:

(i) every interior vertex has degree at least three except for the root which
may have degree two;

(ii) the leaves of T are bijectively labelled with the elements of X.

The set X is called the label set of T . Since X bijectively labels the leaves
of T , we shall often view X has the leaf set of T . A rooted phylogenetic
tree is binary if, in addition, every interior vertex has degree three except
for the root which has degree two. Two rooted binary phylogenetic trees are
shown in Fig. 1. For a collection P of rooted phylogenetic trees, we denote
by L(P) the set

⋃

T∈P

L(T ),

where, for all T , the set L(T ) denotes the label set of T .
Let X ′ be a subset of X, and suppose that T and T ′ are rooted binary

phylogenetic trees on X and X ′, respectively. Then T displays T ′ if, up
to suppressing degree two vertices, T ′ is isomorphic to the minimal rooted
phylogenetic subtree of T whose label set is X ′. Note that this minimal
subtree is necessarily binary. To illustrate, T displays T ′ in Fig. 1.

A collection P of rooted binary phylogenetic trees is compatible if there
exists a rooted binary phylogenetic tree T that displays every tree in P,
in which case, we say that T displays P. If we view P as a collection
of evolutionary trees on overlapping sets of species, then T displaying P
corresponds to T preserving all of the ancestral relationships described by
the trees in P; that is, T is consistent with P.

For an arbitrary collection P of rooted binary phylogenetic trees, Aho
et al. [1] presented a polynomial-time algorithm for deciding whether or not

3



1 2 3 4 5 6 7 1 3 6

T T
′

Figure 1: T displays T ′.

P is compatible. Their algorithm, called Build, is constructive and, in the
case P is compatible, one can obtain a rooted binary phylogenetic tree that
displays P by refining the rooted phylogenetic tree outputted by Build.
Furthermore, if Build outputs a rooted binary phylogenetic tree, then it is
the unique rooted binary phylogenetic tree that displays P. In contrast to
these results, it is an immediate consequence of Theorem 2.1 below that,
in general, counting the number of rooted binary phylogenetic trees that
display P is hard.

A rooted triple is a rooted binary phylogenetic tree with three leaves.
The rooted triple with leaves a, b, and c is denoted ab|c if the path from a

to b does not intersect the path from c to the root. Note that we make no
distinction between ab|c and ba|c. In Fig. 1, T ′ is the rooted triple 13|6.

Theorem 2.1 shows that the following counting problem is computation-
ally hard:

#Consistent Supertrees

Instance: A collection P of rooted triples.

Question: How many rooted binary phylogenetic trees with label set L(P)
display P?

Theorem 2.1 Computing #Consistent Supertrees is #P-complete.

Since a collection of rooted triples is a special type of collection of rooted
binary phylogenetic trees, Theorem 2.1 implies that counting the number of
consistent supertrees for an arbitrary collection of rooted binary phyloge-
netic trees is also #P-complete.

An almost immediate consequence of Theorem 2.1 is the analogous count-
ing result for the unrooted setting. A phylogenetic tree T (on X) is an

4



unrooted tree with no degree-two vertices and whose leaves are bijectively
labelled with the elements of X. In addition, T is binary if all of the in-
terior vertices have degree three. A binary phylogenetic X-tree T displays
a binary phylogenetic X ′-tree T ′ if X ′ ⊆ X and, up to suppressing degree
two vertices, the minimal phylogenetic subtree of T whose labelled set is X ′

is isomorphic to T ′. The notions of compatibility and consistency for col-
lections of rooted binary phylogenetic trees extend to collections of binary
phylogenetic trees in the obvious way.

A quartet is a binary phylogenetic tree with four leaves. The unrooted
counterpart of #Consistent Supertrees is the following:

#Unrooted Consistent Supertrees

Instance: A collection P of quartets.

Question: How many unrooted binary phylogenetic trees with label set L(P)
display P?

Let P be a collection of rooted triples and let x be an element not in
L(P). For each T ∈ P, let Tx be the quartet obtained from T by adjoining x
to the root of T by an edge and then viewing the resulting tree as unrooted.
Let Px = {Tx : T ∈ P}. Thus Px is a collection of quartets. It is easily
seen that if T is a rooted binary phylogenetic tree that displays P, then the
binary phylogenetic tree obtained from T by adjoining x to the root of T by
an edge and viewing the resulting tree as unrooted displays Px. Moreover,
the converse also holds. Corollary 2.2 now follows from Theorem 2.1.

Corollary 2.2 Computing #Unrooted Consistent Supertrees is #P-
complete.

Evidently, Corollary 2.2 implies that, for an arbitrary collection of binary
phylogenetic trees, counting the number of consistent unrooted supertrees
is #P-complete. We remark here that Steel [10] showed that determining
if a collection of quartets, and thus more generally a collection of binary
phylogenetic trees, is compatible is NP-complete. However, the complexity
of the associated uniqueness problem is open and appears to be difficult.

The remainder of the paper is organised as follows. Although Theo-
rem 2.1 is the main result, there are two closely related counting problems
that also turn out to #P-complete; we describe these problems in Section 3.
Section 4 consists of the proof of Theorem 2.1 and the last section consists
of some final remarks.

We close this section with some further definitions. A rooted caterpillar
is a rooted binary phylogenetic tree for which the subgraph induced by the

5



a1 a2 an−2 an−1 an

Figure 2: The rooted caterpillar a1a2 · · · an−2|an−1an.

set of interior vertices is a path. We denote the rooted caterpillar shown in
Fig. 2 by a1a2 · · · an−2|an−1an.

Let T be a rooted phylogenetic tree. A useful partial order ≤T on the
vertex set V of T is obtained by setting u ≤T v if the path from the root of T
to v includes u. If u ≤T v and v is a leaf of T , we say that v is a descendant
label of u. For all a, b ∈ V , we call the unique vertex of T that is the greatest
lower bound of {a, b} under ≤T the most recent common ancestor of a and
b in T . Lastly, two distinct leaves of T form a cherry if they are adjacent to
a common vertex.

3 Two Related Counting Problems

In this section, we describe two counting problems that are related to #Con-

sistent Supertrees and which also turn out to be #P-complete. For each
of these additional problems, all that is required is a relatively simple re-
duction from #Linear Extensions; that is, counting the number of lin-
ear extensions of a poset. This problem was shown to be #P-complete by
Brightwell and Winkler [4].

As in the case of Theorem 2.1, all of the results in this section are stated
in terms of collections of rooted triples, but each extends to collections of
rooted binary phylogenetic trees. Furthermore, where the instance of a
problem is a set P of rooted triples, we take |P| to be the number of labels
present in P. Since the number of distinct rooted triples on N labels is

6



3
(

N
3

)

, we can consider |P| to be our input size when examining polynomial
reductions.

The first counting problem we consider is the following:

#Consistent Caterpillars

Instance: A collection P of rooted triples.

Question: How many rooted caterpillars with label set L(P) display P?

Structurally, rooted caterpillars are the simplest family of rooted binary
phylogenetic trees. However, the next proposition shows that the above
counting problem is hard.

Proposition 3.1 #Consistent Caterpillars is #P-complete.

Proof. It is clear that #Consistent Caterpillars is in #P since, given
a rooted caterpillar T with label set L(P), one can verify whether T displays
P in polynomial time.

Let (S,≺) be a partially ordered set on n elements, and let x and y

be distinct elements not in S. Let PS be the following collection of rooted
triples:

{ax|b : a ≺ b ∈ (S,≺)} ∪ {xy|a : a ∈ S}.

Since the size of PS is polynomial in the input size of (S,≺) and #Linear

Extensions is #P-complete, to prove the proposition it suffices to show
the number of linear extensions of (S,≺) is equal to the number of rooted
caterpillars with label set L(P) that display P.

First suppose that a1 ≺ a2 ≺ · · · ≺ an is a linear ordering of S.
Then anan−1 · · · a1|xy is a rooted caterpillar that displays PS . Moreover,
this association of linear orderings of (S,≺) with rooted caterpillars on
{a1, a2, . . . , an, x, y} is one-to-one.

Now consider the other direction. As xy|a ∈ PS for all a ∈ S, it is easily
seen that {x, y} is a cherry of any rooted binary phylogenetic tree and, in
particular, any rooted caterpillar on {a1, a2, . . . , an, x, y} that displays PS . It
is now straightforward to check that if bnbn−1 · · · b1|xy is a rooted caterpillar
that displays PS , where b1, b2, . . . , bn ∈ S, then b1 ≺ b2 ≺ · · · ≺ bn is a linear
extension of (S,≺). As in the previous paragraph, this association is one-
to-one. Therefore it follows that the number of linear extensions of (S,≺) is
equal to the number of rooted caterpillars with label set L(PS) that display
PS . 2

Remark. Since all of the rooted triples in PS in the proof of Proposition 3.1
contain a common label, it follows that #Consistent Caterpillars is

7



#P-complete even if all of the rooted triples in the input collection have a
common label. This contrasts with the NP-complete decision problem of
determining if a collection P of quartets is compatible. If each of the quar-
tets in P share a common label, then the problem reduces to determining
if an associated set of rooted triples is compatible, which can be done in
polynomial time.

The second counting problem we consider in this section is the following:

#Forbidden Supertrees

Instance: A collection P of rooted triples.

Question: How many rooted binary phylogenetic trees T with label set L(P)
have the property that no rooted triple in P is displayed by T ?

Bryant [5] showed that the associated decision problem is NP-complete.
Proposition 3.2 shows that #Forbidden Supertrees is also hard.

Proposition 3.2 #Forbidden Supertrees is #P-complete.

Proof. Given a rooted binary phylogenetic tree T with label set L(P), it
is clear that one can verify in polynomial time that no rooted triple in P is
displayed by T . Thus #Forbidden Supertrees is in #P.

As in the proof of Proposition 3.1, the #P-complete problem we use for
reduction is #Linear Extensions. Let (S,≺) be a partially ordered set
and let x be an element not in S. Let PS denote the following collection of
rooted triples:

{bx|a : a ≺ b ∈ (S,≺)} ∪ {ab|x : a, b ∈ S}.

Clearly, the size of PS is polynomial in the imput size of (S,≺). We complete
the proof by showing that the number of linear extensions of (S,≺) is equal
to the number of rooted binary phylogenetic trees T with label set L(P S)
in which no rooted triple of PS is displayed by T . In the latter, it turns out
that all such trees are caterpillars.

Let n = |S|. Suppose a1 ≺ a2 ≺ · · · ≺ an is a linear ordering of S. Then
no rooted triple of PS is displayed by the rooted caterpillar anan−1 · · · a2|a1x.
It follows that, for each linear extension of (S,≺), there is a distinct rooted
caterpillar with the desired properties.

Now suppose that T is a rooted binary phylogenetic tree with label set
L(PS) and which has the property that no rooted triple of PS is displayed
by T . Since T does not display the rooted triple ab|x for all distinct a, b ∈
S, it follows that T has exactly one cherry and this cherry must contain

8



x. Consequently, T is a rooted caterpillar of the form bnbn−1 · · · b2|b1x.
Suppose, for some 1 ≤ i < j ≤ n, we have bj ≺ bi ∈ (S,≺). Then T

displays bix|bj and bix|bj ∈ PS , giving a contradiction. Hence, for each such
rooted caterpillar, b1 ≺ b2 ≺ · · · ≺ bn is a linear extension of (S,≺). As
each rooted caterpillar induces a distinct linear extension, we deduce that
the number of linear extensions of (S,≺) is equal to the number of rooted
binary phylogenetic trees T with label set L(PS) in which no rooted triple
of PS is displayed by T .

2

4 #Consistent Supertrees is #P-complete

This section consists of the proof of Theorem 2.1. The overall strategy of the
proof follows Brightwell and Winkler’s proof that #Linear Extensions is
#P-complete [4]. One difference is that, for convenience, we use a reduc-
tion from #Mon-2-Sat instead of #3-Sat. The problem #Mon-2-Sat is
in Valiant’s original list of #P-complete functions [11] and is the problem
of counting the number of satisfying assignments of a Boolean formula in
conjunctive normal form that has exactly two literals per clause neither of
which are negations. We remark here that, despite the reductions of the last
section, it seems that there is no straightforward reduction from #Linear

Extensions to #Consistent Supertrees.
Before presenting the proof, we give a brief outline of the general ap-

proach. Evidently, #Consistent Supertrees is in #P. Let I be a general
instance of #Mon-2-Sat. The strategy is to choose a suitable set S of
primes and, for each p ∈ S, convert I into a particular set PI(p) of rooted
triples so that the number (mod p) of rooted binary phylogenetic trees dis-
playing PI(p) is a simple multiple of the number of satisfying assignments of
I. Using an oracle O(P) that can count the number of rooted phylogenetic
trees that display a collection P of rooted triples in polynomial time, we
can determine the number (mod p) of satisfying assignments of I for each
p ∈ S. Because S is suitably chosen, we are then able to apply the Chi-
nese Remainder Theorem and Euclid’s Algorithm to recover the number of
satisfying assignments of I exactly.

In the proof, we make use of the following two lemmas (see [4] and [9],
respectively). The second lemma is freely used.

Lemma 4.1 Let m be a positive integer. Then the product of the set of
primes between 8m and 64m2 is at least (8m)!28m.

9



For a positive odd number 2k + 1, we denote by (2k + 1)!! the product

(2k + 1)!! = (2k + 1)× (2k − 1)× · · · × 3× 1.

Lemma 4.2 Let k ≥ 2. Then

(i) the number of edges in any rooted binary phylogenetic tree on k labels
is (2k − 2); and

(ii) the number of distinct rooted binary phylogenetic trees on k labels is
(2k − 3)!!.

To begin the formal proof, let I be an instance of #Mon-2-Sat on n

literals and m clauses. Without loss of generality, we may assume m > n,
as we can always pad I with repeated clauses. Throughout the proof, the
sets P of rooted triples we construct contain no more than (8m)3 labels and
so the input to the oracle O(P) is polynomially bounded. We denote the
number of rooted binary phylogenetic trees displaying P by N(P). Lastly,
to ease reading, throughout the proof we write ‘phylogenetic tree’ for ‘rooted
binary phylogenetic tree’.

4.1 Determining the set S of primes

We first define a set PI of rooted triples that will play an important role
later in the proof. The set S of primes is chosen so that no member divides
the number of phylogenetic trees displaying PI . The set of labels of PI is

{xi : 1 ≤ i ≤ n} ∪ {c1j , c
2
j , c

3
j : 1 ≤ j ≤ m} ∪ {b}.

For each clause cj = (xi or xk) of I, we include the following rooted triples
in PI :

bxi|c
1
j , bxk|c

1
j , bxi|c

2
j , bxk|c

3
j .

There are no other rooted triples in PI . Since |L(PI)| = n+ 3m+ 1, there
are at most (2n + 6m − 1)!! distinct phylogenetic trees that display PI . In
particular, as n < m, we have N(PI) ≤ (2n+ 6m− 1)!! ≤ (8m)!. Let S0 be
the set of primes between 8m and 64m2. By Lemma 4.1, the product of the
elements of S0 is at least (8m)!28m. Since N(PI) ≤ (8m)!, there is a subset
S of S0 with the properties that no element divides N(PI) and the product
of the elements is at least 28m. Since our input size is at least m, we can
compute this set of primes in polynomial time.

10



4.2 Defining the set PI(p) of rooted triples

In this subsection, we define a set PI(p) of rooted triples for each prime p
in S. For simplicity, we include several rooted caterpillars in PI(p). Each
such caterpillar d1d2 · · · dk−2|dk−1dk on k labels is simply replacing the set
of triples

{d1|d2d3, d2|d3d4, . . . , dk−2|dk−1dk}

which defines it (see [9] for details).
Let x1, x2, . . . , xn denote the n variables of I and, for notational conve-

nience, let cn+1, cn+2, . . . , cn+m denote the m clauses of I. The label set of
PI(p) is the union of the sets

{xi, xi : 1 ≤ i ≤ n} ∪ {c1i , c
2
i , c

3
i , c

4
i : n+ 1 ≤ i ≤ n+m} ∪ {b0},

{ai,1, ai,2, . . . , ai, p+1

2

, hi,1, hi,2, . . . , hi, p+1

2

: 1 ≤ i ≤ n+m},

and {ui,1, ui,2, . . . , ui,p−2 : 1 ≤ i ≤ n+m}.

Essentially, for all n+ 1 ≤ i ≤ n+m, the labels c1i , c
2
i , c

3
i , c

4
i correspond to

the four possible assignments to the variables in the clause ci. We call the
elements of {xi, xi : 1 ≤ i ≤ n} and {c1i , c

2
i , c

3
i , c

4
i : n+ 1 ≤ i ≤ n +m} the

literal and clause labels, respectively.
We now describe the rooted triples of PI(p); the label b0 plays a special

role in this description. We begin with those rooted triples not involving
literal or clause labels. Firstly, for each i, PI(p) contains the rooted cater-
pillar

b0ai,1ai,2 · · · ai, p−3

2

|a
i, p−1

2

a
i, p+1

2

.

In addition to these rooted caterpillars, PI(p) also contains the rooted cater-
pillar

an+m,1an+m−1,1 · · · a2,1|a1,1b0.

The fact that PI(p) contains these n+m+1 rooted caterpillars means that
any phylogenetic tree that displays PI(p) must display the phylogenetic tree
(solid lines) shown in Fig. 3. For any such phylogenetic tree T , let bi denote
the most recent common ancestor of b0 and ai,1, for all i.

Secondly, PI(p) contains the rooted triples in the sets

{b0ai−1,1|hi,k : 2 ≤ i ≤ n+m, 1 ≤ k ≤ p+1

2
},

{b0ai−1,1|ui,k : 2 ≤ i ≤ n+m, 1 ≤ k ≤ p− 2},

{b0hi,k|ai,1 : 1 ≤ i ≤ n+m, 1 ≤ k ≤ p+1

2
},

and {b0ui,k|ai,1 : 1 ≤ i ≤ n+m, 1 ≤ k ≤ p− 2}.

11



bi

bi−1

Gi

ai−1,1

ai−1,2

ai,1

ai,2

a
i,

p+1

2

a
i−1,

p+1

2

a1,1

a1,2

b1

an+m,2

bn+m H

an+m,1

a
n+m,

p+1

2

a
1,

p+1

2

G1

b0

Figure 3: Any phylogenetic tree displaying PI(p) displays the phylogenetic
tree indicated by the solid lines.

Loosely speaking, for any phylogenetic tree displaying PI(p), the above
union of rooted triples forces the labels hi,∗ and ui,∗ to be ‘sandwiched
between’ bi−1 and bi for all i.

Lastly, we describe the rooted triples of PI(p) that involve literal and
clause labels. For each clause ci = (xj or xk) of I, the set PI(p) contains
the sets

{b0xj|c
1
i , b0xk|c

1
i , b0xj |c

2
i , b0xk|c

2
i , b0xj|c

3
i , b0xk|c

3
i , b0xj |c

4
i , b0xk|c

4
i }.

Note that changing the order of the literals in the clause ci only permutes
the labels and gives rise to an isomorphic set of rooted triples. Finally, PI(p)
contains the sets

{hi,1hi,k|xi, hi,1hi,k|xi : 1 ≤ i ≤ n, 2 ≤ k ≤ p+1

2
}

and {hi,1hi,k|c
l
i : n+ 1 ≤ i ≤ n+m, 2 ≤ k ≤ p+1

2
, 2 ≤ l ≤ 4}.

We will see in Section 4.4 that, under certain assumptions, the last two sets
of rooted triples force exactly one of xi, xi or one of c2i , c

3
i , c

4
i to be between

bi−1 and bi in any phylogenetic tree that displays PI(p). The other literal

12



and clause labels are thus forced into ‘the top part of the tree’ indicated by
dash-dot lines in Fig. 3.

4.3 Breaking the tree into sections

Fixing p, let T be a phylogenetic tree that displays PI(p). Using the fact
that T displays the phylogenetic tree shown in Fig. 3, we unambigously
‘break’ T into n+m+ 1 distinct sections G1(T ), G2(T ), . . . , Gn+m(T ), and
H(T ) as follows. For 1 ≤ i ≤ n + m, let Gi be the phylogenetic subtree
induced by bi and its descendants with the descendants of bi−1 contracted
to the single leaf bi−1. In addition, let H(T ) denote the phylogenetic subtree
obtained from T by contracting the descendants of bn+m into the single leaf
bn+m (see Fig. 3).

We place an equivalence relation ∼ on the set of phylogenetic trees dis-
playing PI(p) by setting

T1 ∼ T2 ⇐⇒ L(Gi(T1)) = L(Gi(T2)) for all 1 ≤ i ≤ n+m.

Note that the only labels of PI(p) that are not forced to be in a specific
Gi(T ) for every phylogenetic tree T displaying PI(p) are the literal and
clause labels.

Let ψ be an equivalence class under ∼. For all i, we denote the set
L(Gi(T )) by ψi and the set L(H(T )) by ψH , where T is any phylogenetic
tree in ψ. Furthermore, for all i, let P|ψi denote the set of rooted triples on
ψi that is obtained by taking

(i) those rooted triples in PI(p) all of whose labels are in ψi and

(ii) those rooted triples in PI(p) that contain two distinct labels in ψi and
one label in ψj , for some j < i, and replacing the label in ψj with the
label bi−1.

The set P|ψH of rooted triples on ψH is similarly defined.
Now let T be a phylogenetic tree in ψ. Then it is clear that, for all i, the

phylogenetic subtrees Gi(T ) and H(T ) display P|ψi and P|ψH , respectively.
Furthermore, in each Gi(T ), the most recent common ancestor of bi−1 and
ai,1 is the root of Gi(T ). We will say that a phylogenetic tree Gi is good
for P|ψi if Gi displays P|ψi and the most recent common ancestor of bi−1

and ai,1 is the root of Gi. Thus if, for all i, Gi is a phylogenetic tree that
is good for P|ψi and H is a phylogenetic tree that displays P|ψH , then a
unique phylogenetic tree in ψ is obtained by joining these trees through the

13



vertices b1, b2, . . . , bn+m. It now follows that

|ψ| = N(P|ψH )

n+m
∏

i=1

N ′(P|ψi), (1)

where N ′(P|ψi) is the number of phylogenetic trees on label set ψi which
are good for P|ψi. We will show that |ψ| 6≡ 0 (mod p) if and only if ψ
corresponds to a satisfying assignment of I.

4.4 Isolating the labels

Suppose that |ψ| 6≡ 0 (mod p). Then, for all 1 ≤ i ≤ n + m, it follows by
(1) that

N ′(P|ψi) 6≡ 0 (mod p).

We first show that, for each i, N ′(P|ψi) 6≡ 0 (mod p) if and only if ψi

contains exactly one of the literal labels xi, xi if i ≤ n and exactly one of
the clause labels c2i , c

3
i , c

4
i if i ≥ n+ 1, but no other literal or clause labels.

Fixing i, let A be the set of literal and clause labels contained in ψi.
Every phylogenetic tree that is good for P|ψi has the hi,∗’s, ui,∗’s and bi−1

on one side of the root, and the ai,∗’s on the other side. Hence such a tree
partitions A into two parts A1 and A2 depending upon whether an element
of A is on the same side of the root as bi−1 or ai,1, respectively. Now no
rooted triple of PI(p) containing a literal or clause label also contains an
‘a’ label. Consequently, for a particular partition {A1,A2}, the number of
phylogenetic trees that induce this partition is divisible by the number of
distinct ways of attaching the labels of A2 to the side of the root containing
ai,1. If A2 is non-empty, then, as there are initially p available edges on
this side of the root, the number of such trees is certainly divisible by p and
therefore contributes zero to N ′(P|ψi) (mod p). Thus, in counting (mod p),
we need only consider those phylogenetic trees displaying P|ψi for which A2

is empty.
Let |A| = k. The number (mod p) of phylogenetic trees that are good

for P|ψi is equal to the number (mod p) of phylogenetic trees that can be
constructed by first taking a phylogenetic tree T on all of the labels except
the ui,∗’s, and then attaching the ui,∗’s. Since the only rooted triple in P|ψi

that has ui,j as a label is bi−1ui,j |ai,1, it follows that ui,j can be attached to
any edge on the side of the root containing bi−1. Since we need only consider
those phylogenetic trees for which A2 is empty, there are

p+ 1

2
+ k + 1

14



labels on this side of the root before attaching the ui,∗’s. Therefore there are
p+ 2k+ 2 available edges. Thus there are p+ 2k+ 2 ways of attaching ui,1.
As attaching ui,1 creats two additional edges, there is now p+2(k+2) ways
of attaching ui,2. Continuing this process, we eventually have p+2(k+p−2)
ways of attaching ui,p−2. Hence there are

(p+ 2k + 2)(p+ 2k + 4) · · · (3p+ 2k − 4)

distinct ways of attaching the ui,∗’s to T . Since k ≤ 2n + 4m < 8m < p,
this product is zero (mod p) unless k = 0 or k = 1, therefore if |A| > 1 then
N ′(P|ψi) ≡ 0 (mod p).

Now suppose that |A| ≤ 1. Furthermore, suppose that neither xi nor xi

is in A if i ≤ n, or that none of c2i , c
3
i , c

4
i is in A if i ≥ n+ 1. Then the only

rooted triple in P|ψi that has hi,j as a label is bi−1hi,j|ai,1. Since we may
assume that |A2| = 0, this implies that there are

p+ 1

2
+ (p− 2) + 1 + k =

3p− 1

2
+ k

labels on the side of the root containing bi−1 which are otherwise uncon-
strained. Therefore the number of phylogenetic trees that are good for P|ψi

is divisible by (3p+2k−4)!! and thus divisible by p. Hence, under these con-
ditions, N ′(P|ψG) ≡ 0 (mod p). It follows that if N ′(P|ψi) 6≡ 0 (mod p),
then |A| = 1 and A consists of exactly one of xi, xi if i ≤ n, or one of
c2i , c

3
i , c

4
i if i ≥ n+ 1. Next we show that, in this circumstance,

N ′(P|ψi) ≡
(3p− 2)!!

p
6≡ 0 (mod p).

First suppose that i ≤ n and A consists of exactly one element of xi, xi.
Without loss of generality, we may assume that A = {xi}. If xi is on the
same side of the root as ai,1, then arguing as previously the number of
phylogenetic trees that are good for P|ψi and have this property contribute
zero (mod p) to the sum. Hence we may assume that xi is on the side of
the root containing bi−1. It now follows that the side of the root containing
ai,1 is fixed, and so it suffices to count the number of phylogenetic trees on
the label set

{xi, bi−1} ∪ {hi,j : 1 ≤ j ≤ p+1

2
} ∪ {ui,j : 1 ≤ j ≤ p− 2}.

that display the triples in the set

{hi,1hi,j|xi : 2 ≤ j ≤ p+1

2
}.

15



Now the number of phylogenetic trees on {xi}∪{hi,j : 1 ≤ j ≤ p+1

2
} that dis-

play these triples is (p− 2)!!. As bi−1, ui,1, ui,2, . . . , ui,p−2 are unconstrained,
it follows that the number of phylogenetic trees on {xi, bi−1} ∪ {hi,j : 1 ≤
j ≤ p+1

2
} ∪ {ui,j : 1 ≤ j ≤ p− 2} that display these triples is

(p− 2)!!(p + 2)(p+ 4) · · · (3p− 2).

Hence, if i ≤ n and A consists of one element from xi, xi, then

N ′(P|ψi) ≡
(3p− 2)!!

p
6≡ 0 (mod p). (2)

Similarly, if i ≥ n+ 1 and A consists of one element from c2i , c
3
i , c

4
i , then

N ′(P|ψi) ≡
(3p− 2)!!

p
6≡ 0 (mod p). (3)

4.5 Determining the number of solutions of I

Suppose that |ψ| 6≡ 0 (mod p). Then, by the last subsection, each ψi con-
tains exactly one of the literal labels xi, xi if i ≤ n, or exactly one of the
clause labels c2i , c

3
i , c

4
i if i ≥ n + 1. Thus the remaining literal and clause

labels are in ψH . In particular, c1i ∈ ψH for n+ 1 ≤ i ≤ n+m. Under the
assumption |ψ| 6≡ 0 (mod p), the literal labels appearing in ψH correspond
to a satisfying truth assignment of I as follows. Consider the truth assign-
ment given by setting xi true if xi ∈ ψH and false if xi ∈ ψH . To see this
is a satisfying assignment for I, suppose that some clause ci = (xj or xk) in
I is not satisfied. Then xj, xk ∈ ψH , and so, as PI(p) contains the rooted
triples

b0xk|c
2
i , b0xj |c

3
i , b0xj|c

4
i ,

we must have c2i , c
3
i , c

4
i ∈ ψH . But then ψi ∩ {c

2
i , c

3
i , c

4
i } = ∅, contradicting

the assumption that |ψ| 6≡ 0 (mod p).
Similarly, a satisfying assignment for I gives rise to a unique equivalence

class ψ as follows. For each true literal, we assign xi to ψH and xi to
ψi and, for each false literal, we assign xi to ψH and xi to ψi. For each
clause ci = (xj or xk), we place the clause label that is related only to false
versions of the literals in ψi and the rest of the clause labels in ψH . Since the
assignment is satisfying, c1i is in ψH . Thus a satisfying assignment defines
an equivalence class ψ, and the analysis of Section 4.4 implies that |ψ| 6≡ 0
(mod p).

16



Now suppose ψ is an equivalence class corresponding to a satisfying
assignment for I. Then the set P|ψH of rooted triples is isomorphic to the
set PI of rooted triples defined in Section 4.1. Hence by (1), (2), and (3),

|ψ| ≡ N(PI)

(

(3p− 2)!!

p

)n+m

(mod p).

Since we have chosen p from a set of primes none of which divide N(PI),

N(PI)

(

(3p− 2)!!

p

)n+m

6≡ 0 (mod p).

Thus, for any equivalence class ψ, |ψ| (mod p) is either zero (if ψ does
not correspond to a satisfying assignment) or a constant depending only on
n,m, p, and N(PI). Let s(I) be the number of satisfying assignments of I.
Then

N(PI(p)) ≡ N(PI)

(

(3p− 2)!!

p

)n+m

s(I) (mod p).

We determine N(PI(p)) for each p ∈ S and N(PI) using |S|+1 oracle calls.
Note that there are

n(2p− 1) +m(2p− 1) + 2n+ 4m+ 1 ≤ 2m(2p+ 2) + 1

< 2m(128m2 + 2) + 1

< (8m)3

labels in PI(p) and at most 4m labels in PI , and so we can legitimately use
the oracle to determine the number of phylogenetic trees displaying these
sets. Thus, for each p ∈ S, we can determine s(I) (mod p) in polynomial
time. Since the product of the primes in the set S is at least 28m which
is greater than 2n and s(I) is at most 2n, this uniquely determines s(I)
by the Chinese Remainder Theorem. The number of satisfying assignments
for I can now be recovered exactly using Euclid’s Algorithm. We conclude
that #Mon-2-Sat is reducible to #Consistent Supertrees and thus the
latter problem is #P-complete.

2

5 A Final Remark

It is interesting to note that, although #Consistent Supertrees is hard,
there exists an algorithm that outputs a list of rooted binary phylogenetic
trees that display P with the properties that no tree is repeated, each tree is

17



generated in polynomial time, and all trees are listed [6, 8]. Since the total
number of rooted binary phylogenetic trees that display P can be exponen-
tially large, the total running time of this algorithm may be exponential.
The existence of a randomised algorithm that could generate a rooted bi-
nary phylogenetic tree in polynomial time such that the tree was selected
uniformly at random from the set of all rooted binary phylogenetic trees that
display P would yield an efficient method of approximating the number of
consistent supertrees (an FPRAS, see [7] for further details). The natural
next step is to try and determine whether such an algorithm exists.

6 Acknowledgments

We thank Dominic Welsh for providing helpful comments on an earlier draft
of this paper.

The first author was funded by the EPSRC and Vodafone, and supported
in part by the RAND-APX. The second author was supported by the New
Zealand Marsden Fund. This research was conducted while the second au-
thor held a Canterbury Fellowship at the University of Oxford and Visiting
Research Fellowship at Merton College.

References

[1] A. V. Aho, Y. Sagiv, T. G. Szymanski, J. D. Ullman, Inferring a tree
from lowest common ancestors with an application to the optimization
of relational expressions, SIAM Journal on Computing 10 (1981) 405–
421.

[2] O. R. P. Bininda-Emonds, J. L. Gittleman, M. A. Steel, The (super)tree
of life: procedures, problems and prospects, Annual Reviews of Ecology
and Systematics 33 (2002) 265–289.

[3] O. R. P. Bininda-Emonds, Phylogenetic supertrees, in preparation.

[4] G. Brightwell, P. Winkler, Counting linear extensions, ORDER 8:3
(1992) 225–242.

[5] D. Bryant, Building trees, hunting for trees, and comparing trees: the
theory and methods in phylogenetic analysis, Ph.D. thesis, University
of Canterbury (1997).

18



[6] M. Constantinescu, D. Sankoff, An efficient algorithm for supertrees,
Journal of Classification 12 (1995) 101–112.

[7] M. R. Jerrum, L. G. Valiant, V. V. Vazirani, Random generation of
combinatorial structures from a uniform distribution, Theoretical Com-
puter Science 43 (1986) 169–188.

[8] M. P. Ng, N. C. Wormald, Reconstruction of rooted trees from subtrees,
Discrete Applied Mathematics 69 (1996) 19–31.

[9] C. Semple, M. Steel, Phylogenetics, Oxford University Press, 2003.

[10] M. Steel, The complexity of reconstructing trees from qualitative char-
acters and subtrees, Journal of Classification 9 (1992) 91–116.

[11] L. G. Valiant, The complexity of enumeration and reliability problems,
SIAM Journal on Computing 8 (1979) 410–421.

[12] D. Welsh, Complexity: Knots, Colourings and Counting, Cambridge
University Press, 1993.

19


