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CYCLIC MATROIDS

NICK BRETTELL† , CHARLES SEMPLE‡ , AND GERRY TOFT§

Abstract. For integers s and t exceeding one, a matroid M on n elements is nearly (s, t)-cyclic
if there is a cyclic ordering σ of its ground set such that every s − 1 consecutive elements of σ
are contained in an s-element circuit and every t − 1 consecutive elements of σ are contained in a
t-element cocircuit. In the case s = t, nearly (s, s)-cyclic matroids have been studied previously. In
this paper, we show that if M is nearly (s, t)-cyclic and n is sufficiently large, then these s-element
circuits and t-element cocircuits are consecutive in σ in a prescribed way, that is, M is “(s, t)-cyclic”.
Furthermore, we show that, given s and t where t ≥ s, every (s, t)-cyclic matroid on n > s + t − 2
elements is a weak-map image of the

(
t−s
2

)
-th truncation of a certain (s, s)-cyclic matroid. If s = 3,

this certain matroid is the rank-n
2

whirl, and if s = 4, this certain matroid is the rank-n
2

free swirl.
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1. Introduction. Tutte’s Wheels-and-Whirls Theorem [8] is synonymous with
matroid theory. It says that, except for wheels and whirls, every 3-connected matroid
has a single-element deletion or a single-element contraction that is 3-connected. The
reason for this exception is that wheels and whirls are precisely the 3-connected ma-
troids in which every element is in a 3-element circuit and a 3-element cocircuit. In
fact, wheels and whirls have a stronger property: if M is a wheel or a whirl, then there
is a cyclic ordering σ of its ground set such that every set of two consecutive elements
in σ is contained in a 3-element circuit and a 3-element cocircuit. Furthermore, if
M is a wheel and r(M) ≥ 4, or if M is a whirl and r(M) ≥ 3, then these 3-element
circuits and 3-element cocircuits are unique, and the elements of these 3-element cir-
cuits and 3-element cocircuits are consecutive in σ. Brettell et al. [3] studied matroids
satisfying a generalisation of this property, that is, for a positive integer s exceeding
one, matroids whose ground sets have a cyclic ordering σ such that every set of s− 1
consecutive elements in σ is contained in an s-element circuit and an s-element co-
circuit. In this paper, we extend this study by considering generalisations of these
matroids whereby the size of the circuit and the size of the cocircuit need not be the
same.

Let s and t be positive integers exceeding one. A matroid M is nearly (s, t)-cyclic
if there exists a cyclic ordering σ of E(M) such that every set of s − 1 consecutive
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elements of σ is contained in an s-element circuit and every set of t − 1 consecutive
elements of σ is contained in a t-element cocircuit, in which case we say that σ is
a nearly (s, t)-cyclic ordering of E(M). Although not explicitly stated, there is an
implicit assumption that if M is nearly (s, t)-cyclic, then M has at least max{s, t}−1
elements, so it has at least one s-element circuit and at least one t-element cocircuit.

Wheels and whirls are nearly (3, 3)-cyclic, while spikes and swirls are nearly (4, 4)-
cyclic. For all r ≥ 3, a rank-r spike is a matroid M on 2r elements whose ground
set can be partitioned into pairs {L1, L2, . . . , Lr} such that, for all distinct i, j ∈
{1, 2, . . . , r}, the union of Li and Lj is a 4-element circuit and a 4-element cocircuit.
Therefore, if σ is a cyclic ordering of E(M) such that, for all i, the two elements in
Li are consecutive in σ, then σ is a nearly (4, 4)-cyclic ordering of E(M). For all
r ≥ 3, a rank-r swirl is a matroid M on 2r elements obtained by first taking a simple
matroid whose ground set is the disjoint union of a basis B = {b1, b2, . . . , br} and 2-
element sets L1, L2, . . . , Lr such that Li ⊆ cl({bi, bi+1}) for all i ∈ {1, 2, . . . , r}, where
subscripts are interpreted modulo r, and then deleting the elements in B. If, for all i,
the elements in Li are freely placed in the span of {bi, bi+1} in this construction, then
the resulting matroid is the rank-r free swirl. Observe that Li ∪ Li+1 is 4-element
circuit and a 4-element cocircuit for all i. Therefore, if Li = {ei, fi} for all i, then
σ = (e1, f1, e2, f2, . . . , er, fr) is a nearly (4, 4)-cyclic ordering of E(M), and so M is
nearly (4, 4)-cyclic.

The examples of nearly (s, t)-cyclic matroids in the last paragraph all have the
property that s = t. To see an example of a nearly (s, t)-cyclic matroid where s 6= t,
take a sufficiently large whirl and truncate it, that is freely add an element f to the
whirl, and then contract f . It is not difficult to show that the resulting matroid is
nearly (3, 5)-cyclic. More generally, given odd t ≥ 3, the

(
t−3
2

)
-th truncation of a suf-

ficiently large whirl results in a matroid that is nearly (3, t)-cyclic (see Theorem 1.3).

Nearly (s, t)-cyclic matroids are highly structured. For example, suppose that
M is a rank-r wheel, where r ≥ 4, and σ = (e1, e2, . . . , en) is a nearly (3, 3)-cyclic
ordering of its ground set. Then, for all i ∈ {1, 2, . . . , n}, one of {ei, ei+1, ei+2} and
{ei−1, ei, ei+1} is the unique 3-element circuit containing {ei, ei+1} and the other is
the unique 3-element cocircuit containing {ei, ei+1}, with the parity of i determining
which is the circuit and which is the cocircuit. The following definition captures this
structure.

Let s and t be positive integers exceeding one. A matroid M is (s, t)-cyclic if there
exists a cyclic ordering σ = (e1, e2, . . . , en) of E(M) such that each of the following
holds, where subscripts are interpreted modulo n:

(i) either {e1, e2, . . . , es} or {e2, e3, . . . , es+1} is an s-element circuit of M ;
(ii) either {e1, e2, . . . , et} or {e2, e3, . . . , et+1} is a t-element cocircuit of M ;
(iii) if {ei, ei+1, . . . , ei+s−1} is an s-element circuit for some i ∈ {1, 2, . . . , n}, then

{ei+2, ei+3, . . . , ei+s+1} is also an s-element circuit of M ; and
(iv) if {ei, ei+1, . . . , ei+t−1} is a t-element cocircuit for some i ∈ {1, 2, . . . , n}, then

{ei+2, ei+3, . . . , ei+t+1} is also a t-element cocircuit of M .

A cyclic ordering satisfying (i)–(iv) is called an (s, t)-cyclic ordering of E(M). Note
that our terminology differs from [3]; what we call a nearly (t, t)-cyclic ordering of a
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matroid M was previously called a cyclic (t− 1, t)-ordering of M , and what we call a
(t, t)-cyclic ordering of M was previously called a t-cyclic ordering of M .

If M is nearly (2, 2)-cyclic, then, as noted in [3], M is obtained by taking direct
sums of copies of U1,2, and so M is (2, 2)-cyclic. Brettell et al. [3, Theorem 1.1] showed
that, for all s ≥ 3, if σ is a nearly (s, s)-cyclic ordering of a matroid M on n elements
and n ≥ 6s− 10, then σ is an (s, s)-cyclic ordering of M . The first main result of this
paper generalises that theorem.

Theorem 1.1. Let M be a matroid on n elements, and suppose that σ is a nearly
(s, t)-cyclic ordering of M , where s, t ≥ 3. Let t1 = min{s, t} and t2 = max{s, t}. If
n ≥ 3t1 + t2 − 5 and n ≥ t1 + 2t2 − 1, then σ is an (s, t)-cyclic ordering of M .

The proof of Theorem 1.1 takes a different approach to that used in [3]. Equating
s and t in Theorem 1.1, we have the following corollary, improving the lower bound
in [3, Theorem 1.1].

Corollary 1.2. Let M be a matroid on n elements, and suppose that σ is a
nearly (s, s)-cyclic ordering of M for s ≥ 3. If n ≥ max{8, 4s − 5}, then σ is an
(s, s)-cyclic ordering of M .

For all positive integers s and t exceeding one, we will show that if a matroid on
n elements is nearly (s, t)-cyclic, then n ≥ s+ t− 2. Observe that, for all such s and
t, the uniform matroid Us−1,s+t−2 is nearly (s, t)-cyclic with s+ t− 2 elements. Thus
this lower bound is sharp. Furthermore, if a matroid on n elements is (s, t)-cyclic and
n > s + t − 2, then we will also show that n is even and s ≡ t mod 2. Hence, if a
matroid M is (s, t)-cyclic and s 6≡ t mod 2, then M has exactly s + t − 2 elements.
Lastly, we suspect the inequalities n ≥ 3t1 + t2−5 and n ≥ t1 +2t2−1 in Theorem 1.1
are not tight, and leave it as an open problem to determine, for all positive integers
s, t ≥ 2, tight lower bounds on the size of the ground set of a matroid M having the
property that if σ is a nearly (s, t)-cyclic ordering of E(M), then σ is an (s, t)-cyclic
ordering of E(M).

The second main result of this paper, Theorem 1.3, shows that (s, t)-cyclic ma-
troids are not wild. In particular, this result shows that, given positive integers s and
t exceeding one, such that t ≥ s, an (s, t)-cyclic matroid M on n elements, where
n > s+ t−2, is a weak-map image of the

(
t−s
2

)
-th truncation of a certain (s, s)-cyclic

matroid. To formally state Theorem 1.3, let M1 and M2 be matroids on ground sets
E1 and E2, respectively, and suppose that |E1| = |E2|. Let ϕ : E1 → E2 be a bijec-
tion. We say ϕ is a weak map from M1 to M2 if, for all independent sets I in M2,
the set ϕ−1(I) is independent in M1. Equivalently, ϕ is a weak map from M1 to M2

if, for all circuits C of M1, the set ϕ(C) contains a circuit of M2. If ϕ is such a map,
M2 is a weak-map image of M1, and M1 is said to be freer than M2.

For vertices u and v of a graph, u is a neighbour of v if u is adjacent to v, and
we let N(v) denote the set of neighbours of v. Note that here, as well as elsewhere in
the paper, we adopt the convention of writing singletons without set braces provided
there is no ambiguity.

Now let s be an integer exceeding one and let n be a positive even integer. We
next define a certain matroid with parameters s and n that is transversal and co-
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Fig. 1.1. The bipartite graph G12
4 .

transversal. Let Gn
s be the bipartite graph with vertex parts E = {e1, e2, . . . , en} and

{1, 2, . . . , n2 } and, for all i ∈ {1, 2, . . . , n2 }, the set of neighbours of i is

N(i) = {e2i−1, e2i, . . . , e2i+s−2},

where subscripts are interpreted modulo n. For example, if n = 12 and s = 4, then
G12

4 is the bipartite graph shown in Figure 1.1. The transversal matroid on E in
which

(N(1), N(2), . . . , N(n
2 ))

is a presentation is an example of a multi-path matroid [1]. Denote the dual of this
transversal matroid by Ψn

s . Multi-path matroids have the property that their duals
are transversal [1, Theorem 3.8], so Ψn

s is a transversal matroid. In fact, we shall
show that Ψn

s is a self-dual matroid. If s = 2, then Ψn
s is isomorphic to the rank-n2

matroid obtained by taking direct sums of copies of U1,2; while if s = 3 or s = 4, then
Ψn

s is isomorphic to the rank-n2 whirl or rank-n2 free swirl, respectively. For example,
the dual of the transversal matroid realised by G12

4 is the rank-6 free swirl. More
generally, it turns out that, for all s ≥ 2, the matroid Ψn

s is (s, s)-cyclic.

Let M be a matroid. If r(M) > 0, then the matroid obtained from M by freely
adding an element f and then contracting f is called the truncation of M and is
denoted by T (M). If r(M) = 0, we set T (M) = M . For all positive integers i, the
i-th truncation of M , denoted T i(M), is defined iteratively as T i(M) = T (T i−1(M)),
where T 0(M) = M . The second main result of this paper is the following theorem.

Theorem 1.3. Let M be an (s, t)-cyclic matroid on n elements, where n ≥ s+
t − 1. If t ≥ s, then M is a weak-map image of the

(
t−s
2

)
-th truncation of Ψn

s , an
(s, t)-cyclic matroid.

In addition to this paper and [3], there have been several recent studies into
matroids with particular prescribed circuits and cocircuits. Miller [5] investigated
the matroids in which every pair of elements is contained in a 4-element circuit and
a 4-element cocircuit, while Oxley et al. [7] considered the 3-connected matroids in
which every pair of elements is in a 4-element circuit and every element is in a 3-
element cocircuit, and the 4-connected matroids in which every pair of elements is
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contained in a 4-element circuit and a 4-element cocircuit. Furthermore, Brettell et
al. [2] studied matroids in which every t-element subset of the ground set is contained
in an `-element circuit and an `-element cocircuit. Relevant to this paper, their results
imply that if a matroid M has the property that every t-element subset of E(M) is
contained in a 2t-element circuit and a 2t-element cocircuit, then, provided |E(M)|
is sufficiently large, M is (2t, 2t)-cyclic. Further results concerning (3, t)-cyclic and
(4, t)-cyclic matroids, including a characterisation of the (4, 4)-cyclic matroids on at
least 8 elements, will be found in Gerry Toft’s PhD thesis.

The paper is organised as follows. The next section contains some preliminaries,
while Section 3 establishes some basic properties of cyclic matroids. These properties
are used in the proofs of Theorems 1.1 and 1.3 which are given in Sections 4 and 5,
respectively. The proof of Theorem 1.3 follows from a more general result concerning
the duals of multi-path matroids. Lastly, in Section 6, we give a counterexample to
a conjecture concerning (s, s)-cyclic matroids, given in [3]. This conjecture says that
if s is an integer exceeding two and M is an (s, s)-cyclic matroid, then M can be
obtained from either a wheel or a whirl (if s is odd), or either a spike or a swirl (if s
is even) by a sequence of elementary quotients and elementary lifts. Unless otherwise
specified, notation and terminology follows [6].

2. Preliminaries. Throughout the paper, we say two sets X and Y intersect
if X ∩ Y is non-empty; otherwise, X and Y do not intersect. For a positive integer
m, we let [m] denote the set {1, 2, . . . ,m}. Furthermore, for i, j ∈ [m], we let [i, j]
denote the set {i, i+ 1, . . . , j} if i ≤ j and the set {i, i+ 1, . . . ,m, 1, 2, . . . , j} if i > j.
Now let σ = (e1, e2, . . . , en) be a cyclic ordering of {e1, e2, . . . , en}. For all i, j ∈ [n],
the notation σ(i, j) denotes the set of elements {ei, ei+1, . . . , ej}, where subscripts are
interpreted modulo n.

The following well-known lemma is used frequently in the paper. The phrase by
orthogonality signals an application of this lemma.

Lemma 2.1. Let M be a matroid. If C is a circuit and C∗ is a cocircuit of M ,
then |C ∩ C∗| 6= 1.

The next lemma concerns the independent sets of the i-th truncation of a matroid
(see, for example, [6, Proposition 7.3.10]).

Lemma 2.2. Let M be a matroid with r(M) ≥ 1, and let i be a non-negative
integer such that i ≤ r(M). Then

I(T i(M)) = {X ∈ I(M) : |X| ≤ r(M)− i}.

3. Properties of Cyclic Matroids. In this section, we establish various prop-
erties of nearly (s, t)-cyclic and (s, t)-cyclic matroids on n elements. The first lemma
is used frequently in this section.

Lemma 3.1. Let M be an (s, t)-cyclic matroid on n elements, where n > s+t−2,
and let σ = (e1, e2, . . . , en) be an (s, t)-cyclic ordering of M . Then,

(i) if {ei, ei+1, . . . , ei+s−1} is a circuit, then {ei−t, ei−t+1, . . . , ei−1} and
{ei+s, ei+s+1, . . . , ei+s+t−1} are cocircuits, and
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(ii) if {ei, ei+1, . . . , ei+t−1} is a cocircuit, then {ei−s, ei−s+1, . . . , ei−1} and
{ei+t, ei+t+1, . . . , ei+s+t−1} are circuits.

Proof. We will prove (i). The proof of (ii) follows by duality as M∗ is a
(t, s)-cyclic matroid. Since σ is an (s, t)-cyclic ordering of M , it follows that
one of {ei−t, ei−t+1, . . . , ei−1} and {ei−t+1, ei−t+2, . . . , ei} is a t-element cocircuit
of M . But, as n > s + t − 2, the set {ei−t+1, ei−t+2, . . . , ei} intersects the
circuit {ei, ei+1, . . . , ei+s−1} in one element, and so {ei−t+1, ei−t+2, . . . , ei} is not
a cocircuit. Therefore {ei−t, ei−t+1, . . . , ei−1} is a cocircuit of M . Similarly,
{ei+s−1, ei+s, . . . , ei+s+t−2} is not a cocircuit as it intersects {ei, ei+1, . . . , ei+s−1}
in one element, and so {ei+s, ei+s+1, . . . , ei+s+t−1} is a cocircuit.

The next two lemmas consider the relationships amongst s, t, and n.

Lemma 3.2. Let M be a nearly (s, t)-cyclic matroid on n elements. Then n ≥
s+ t− 2.

Proof. Since M contains an s-element circuit, we have that r(M) ≥ s − 1.
Similarly, as M contains a t-element cocircuit, r∗(M) ≥ t − 1. Therefore, as
n = r(M) + r∗(M), we also have that n ≥ s+ t− 2.

Note that the bound in Lemma 3.2 is tight. In particular, for any positive integers
s, t ≥ 2, the uniform matroid Us−1,s+t−2 is nearly (s, t)-cyclic. In fact, Us−1,s+t−2 is
(s, t)-cyclic.

Lemma 3.3. Let M be an (s, t)-cyclic matroid on n elements. If n > s+ t− 2 ,
then

(i) n is even, and
(ii) s ≡ t mod 2.

Proof. Suppose n > s + t − 2. To prove (i), assume that n is odd. Let
σ = (e1, e2, . . . , en) be an (s, t)-cyclic ordering of M , and let {ei, ei+1, . . . , ei+s−1}
be a circuit of M . Then, for all even k, the set {ei+k, ei+1+k, . . . , ei+s−1+k} is a cir-
cuit of M . In particular, taking k = n − 1, the set {ei−1, ei, . . . , ei+s−2} is a circuit
of M . But, by Lemma 3.1, the set {ei−t, ei−t+1, . . . , ei−1} is a cocircuit of M , and,
since n > s + t − 2, this cocircuit intersects the circuit {ei−1, ei, . . . , ei+s−2} in one
element. This contradiction implies n is even.

For the proof of (ii), assume that s 6≡ t mod 2. Let σ = (e1, e2, . . . , en) be an (s, t)-
cyclic ordering of M , and let {ei, ei+1, . . . , ei+s−1} be a circuit of M . By Lemma 3.1,
the set {ei−t, ei−t+1, . . . , ei−1} is a cocircuit of M . By the assumption, s + t − 1 is
even and so, as (i− t) + (s+ t−1) = i+ s−1, the set {ei+s−1, ei+s, . . . , ei+s+t−2} is a
cocircuit. But this cocircuit intersects {ei, ei+1, . . . , ei+s−1} in precisely one element,
contradicting orthogonality. Therefore, s ≡ t mod 2, completing the proof of (ii).

The bound in Lemma 3.3 is tight. For example, choosing one of s and t to be even
and the other to be odd, the uniform matroid Us−1,s+t−2 is an (s, t)-cyclic matroid on
s + t − 2 elements. However, Lemma 3.3 shows that there is no (s, t)-cyclic matroid
with more elements.

Generalising [3, Lemma 4.3, Lemma 5.1, Lemma 5.3], the next four lemmas con-
cern the independent sets, closure operator, and rank function of (s, t)-cyclic matroids.
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A consequence of the first of these lemmas is that if s = t and s is even, then the
s-element circuits and s-element cocircuits in an (s, s)-cyclic ordering of a matroid
coincide. On the other hand, if s = t and s is odd, then the s-element circuits and
s-element cocircuits in an (s, s)-cyclic ordering of a matroid behave like the 3-element
circuits and 3-element cocircuits in (3, 3)-cyclic orderings of whirls.

Lemma 3.4. Let M be an (s, t)-cyclic matroid on n elements, where
n > s+ t− 2 , and let σ = (e1, e2, . . . , en) be an (s, t)-cyclic ordering of M . Sup-
pose that {ei, ei+1, . . . , ei+s−1} is a circuit of M . If s and t are even, then

(i) {ei, ei+1, . . . , ei+t−1} is a cocircuit,
(ii) {ei+1, ei+2, . . . , ei+s} is independent, and
(iii) {ei+1, ei+2, . . . , ei+t} is coindependent.

Furthermore, if s and t are odd, then

(iv) {ei+1, ei+2, . . . , ei+t} is a cocircuit,
(v) {ei+1, ei+2, . . . , ei+s} is independent, and
(vi) {ei, ei+1, . . . , ei+t−1} is coindependent.

Proof. By Lemma 3.1, the set {ei−t, ei−t+1, . . . , ei−1} is a cocircuit of M . If
t is even, this implies {ei, ei+1, . . . , ei+t−1} is a cocircuit; otherwise, t is odd and
{ei+1, ei+2, . . . , ei+t} is a cocircuit.

We next show that {ei+1, ei+2, . . . , ei+s} is independent. Suppose this is not the
case. Then {ei+1, ei+2, . . . , ei+s} contains a circuit, call it C. By Lemma 3.1, the
set {ei+s, ei+s+1, . . . , ei+s+t−1} is a cocircuit of M . Therefore, if ei+s ∈ C, then C
intersects {ei+s, ei+s+1, . . . , ei+s+t−1} in exactly one element, a contradiction. But
if ei+s /∈ C, then C is properly contained in the circuit {ei, ei+1, . . . , ei+s−1}, an-
other contradiction. Thus, no such circuit C exists, and so {ei+1, ei+2, . . . , ei+s}
is independent. We have shown that, if {ei, ei+1, . . . , ei+s−1} is a circuit, then
{ei+1, ei+2, . . . , ei+s} is independent. Since M∗ is a (t, s)-cyclic matroid, this implies
that if {ej , ej+1, . . . , ej+t−1} is a cocircuit, then {ej+1, ej+2, . . . , ej+t} is coindepen-
dent. This is sufficient to show (iii) and (vi) and complete the proof.

Lemma 3.5. Let M be an (s, t)-cyclic matroid on n elements, where n > s+ t−2,
and let σ = (e1, e2, . . . , en) be an (s, t)-cyclic ordering of M . Then, for all i ∈ [n] and
s− 1 ≤ k ≤ n− t,

(i) ei+k ∈ cl({ei, ei+1, . . . , ei+k−1}) if and only if

{ei+k−s+1, ei+k−s+2, . . . , ei+k}

is a circuit, and
(ii) ei−1 ∈ cl({ei, ei+1, . . . , ei+k−1}) if and only if

{ei−1, ei, . . . , ei+s−2}

is a circuit.

Proof. We will prove (i). Then (ii) follows from the fact that reversing
the order of σ gives another (s, t)-cyclic ordering of M . Since k ≥ s − 1, if
{ei+k−s+1, ei+k−s+2, . . . , ei+k} is a circuit, then ei+k ∈ cl({ei, ei+1, . . . , ei+k−1}).
Conversely, suppose ei+k ∈ cl({ei, ei+1, . . . , ei+k−1}). Then there exists a cir-
cuit C contained in {ei, ei+1, . . . , ei+k} such that C contains ei+k. Assume
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{ei+k−s+1, ei+k−s+2, . . . , ei+k} is not a circuit. If s and t are even, then, by
Lemma 3.4, the set {ei+k−s, ei+k−s+1, . . . , ei+k−s+t−1} is a cocircuit and so, as s
is even, the set {ei+k, ei+k+1, . . . , ei+k+t−1} is also a cocircuit. Since k ≤ n − t,
this last cocircuit intersects C only in the element ei+k, a contradiction. There-
fore, {ei+k−s+1, ei+k−s+2, . . . , ei+k} is a circuit. Similarly, if s and t are odd,
then, by Lemma 3.4, {ei+k−s+1, ei+k−s+2, . . . , ei+k−s+t} is a cocircuit, which means
{ei+k, ei+k+1, . . . , ei+k+t−1} is also a cocircuit. Again, this contradicts orthogonality
with C, showing that {ei+k−s+1, ei+k−s+2, . . . , ei+k} is a circuit, and completing the
proof of the lemma.

Lemma 3.6. Let M be an (s, t)-cyclic matroid on n elements, where
n > s+ t− 2 , and let σ = (e1, e2, . . . , en) be an (s, t)-cyclic ordering of M . Then,
for all i ∈ [n] and 1 ≤ k ≤ n− t+ 1,

r({ei, ei+1, . . . ,ei+k−1}) =



k, if k < s;⌊
s+k−1

2

⌋
, if k ≥ s and {ei, ei+1, . . . , ei+s−1}

is a circuit;⌈
s+k−1

2

⌉
, if k ≥ s and {ei, ei+1, . . . , ei+s−1}

is not a circuit.

Proof. The proof is by induction on k. If k < s, then {ei, ei+1, . . . , ei+k−1}
is a proper subset of an s-element circuit, so it is independent. Therefore,
r({ei, ei+1, . . . , ei+k−1}) = k. Now suppose k = s. If {ei, ei+1, . . . , ei+s−1} is a circuit,
then

r({ei, ei+1, . . . , ei+s−1}) = s− 1 =
⌊
s+s−1

2

⌋
,

while if {ei, ei+1, . . . , ei+s−1} is not a circuit, then, by Lemma 3.5,

r({ei, ei+1, . . . , ei+s−1}) = s =
⌈
s+s−1

2

⌉
.

Thus the lemma holds for all 1 ≤ k ≤ s.

Now suppose that s + 1 ≤ k ≤ n − t + 1, and the lemma holds for
the set {ei, ei+1, . . . , ei+k−2}. Consider {ei, ei+1, . . . , ei+k−1}. First assume that
{ei, ei+1, . . . , ei+s−1} is a circuit. If s + k is odd, then k − s is odd, and it fol-
lows by Lemma 3.4(ii) and (v) that {ei+k−s, ei+k−s+1, . . . , ei+k−1} is not a circuit.
Therefore, by Lemma 3.5, ei+k−1 6∈ cl({ei, ei+1, . . . , ei+k−2}), and so, by the induction
assumption,

r({ei, ei+1, . . . , ei+k−1}) = r({ei, ei+1, . . . , ei+k−2}) + 1

=
⌊
s+k−2

2

⌋
+ 1 =

⌊
s+k
2

⌋
=
⌊
s+k−1

2

⌋
as s+ k is odd. If s+ k is even, then {ei+k−s, ei+k−s+1, . . . , ei+k−1} is a circuit, and
so ei+k−1 ∈ cl({ei, ei+1, . . . , ei+k−2}). Therefore

r({ei, ei+1, . . . , ei+k−1}) = r({ei, ei+1, . . . , ei+k−2})
=
⌊
s+k−2

2

⌋
=
⌊
s+k−1

2

⌋
as s+ k is even.

Now assume that {ei, ei+1, . . . , ei+s−1} is not a circuit. If s + k is odd, then
{ei+k−s, ei+k−s+1, . . . , ei+k−1} is a circuit, and so, by the induction assumption and
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Lemma 3.5,

r({ei, ei+1, . . . , ei+k−1}) = r({ei, ei+1, . . . , ei+k−2})
=
⌈
s+k−2

2

⌉
=
⌈
s+k−1

2

⌉
as s+ k is odd. If s+ k is even, then {ei+k−s, ei+k−s+1, . . . , ei+k−1} is not a circuit,
and so, by Lemma 3.5 and the induction assumption,

r({ei, ei+1, . . . , ei+k−1}) = r({ei, ei+1, . . . , ei+k−2}) + 1

=
⌈
s+k−2

2

⌉
+ 1 =

⌈
s+k
2

⌉
=
⌈
s+k−1

2

⌉
as s+ k is even. This completes the proof of the lemma.

The next lemma shows that the rank of an (s, t)-cyclic matroid on n elements is
invariant under s, t, and n.

Lemma 3.7. Let M be an (s, t)-cyclic matroid on n elements. Then
r(M) = n+s−t

2 and r∗(M) = n−s+t
2 .

Proof. By Lemma 3.2, the matroid M has at least s + t − 2 elements. Since M
has an s-element circuit and a t-element cocircuit, r(M) ≥ s− 1 and r∗(M) ≥ t− 1.
Therefore, if n = s+ t− 2, then

r(M) = s− 1 = (s+t−2)+s−t
2

and
r∗(M) = t− 1 = (s+t−2)−s+t

2 .

Otherwise, by Lemma 3.6, the set {e1, e2, . . . , en−t+1} either has rank
⌊
n+s−t

2

⌋
or

rank
⌈
n+s−t

2

⌉
. By Lemma 3.3, we have that n+ s− t is even, so

r({e1, e2, . . . , en−t+1}) =
n+ s− t

2
.

Therefore, r(M) ≥ n+s−t
2 . Similarly, by Lemmas 3.3 and 3.6, we get that

r∗({e1, e2, . . . , en−s+1}) =
n− s+ t

2
,

and so r∗(M) ≥ n−s+t
2 . Since n+s−t

2 + n−s+t
2 = n, it follows that r(M) = n+s−t

2 and
r∗(M) = n−s+t

2 .

The last lemma in this section will be used to prove Theorem 1.1 in the next
section; we include it here as it may be of independent interest.

Lemma 3.8. Let s and t be positive integers exceeding one, and let σ =
(e1, e2, . . . , en) be a nearly (s, t)-cyclic ordering of a matroid M , where n ≥ s + t.
If {ei, ei+1, . . . , ei+s−1} is a circuit for all odd i ∈ [n], then σ is an (s, t)-cyclic order-
ing of M .

Proof. It is sufficient to prove that, for all odd i ∈ [n], the set
{ei−t+2, ei−t+3, . . . , ei+1} is a cocircuit. Consider the set {ei−t+2, ei−t+3, . . . , ei}.
This set contains t − 1 consecutive elements of σ, so must be contained in a
t-element cocircuit C∗. Let ej be the unique element of C∗ not contained in
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{ei−t+2, ei−t+3, . . . , ei}. If ej /∈ {ei+1, ei+2, . . . , ei+s−1}, then C∗ intersects the circuit
{ei, ei+1, . . . , ei+s−1} in exactly one element, contradicting orthogonality. Further-
more, if ej ∈ {ei+2, ei+3, . . . , ei+s−1}, then, as n ≥ s + t, the cocircuit C∗ intersects
the circuit {ei+2, ei+3, . . . , ei+s+1} in exactly one element. This last contradiction
implies that ej = ei+1, completing the proof of the lemma.

4. Proof of Theorem 1.1. This section consists of the proof of Theorem 1.1.
Throughout the section, let M be a nearly (s, t)-cyclic matroid, where s, t ≥ 3, and
let σ = (e1, e2, . . . , en) be a nearly (s, t)-cyclic ordering of M . We shall prove that,
provided n is sufficiently large, σ is an (s, t)-cyclic ordering of M .

Recall that, for all i, j ∈ [n], we define σ(i, j) to be the set {ei, ei+1, . . . , ej}.
Additionally, for all i ∈ [n], let Ci be an arbitrarily chosen circuit of size s containing
σ(i, i+ s− 2) and let C∗i be an arbitrarily chosen cocircuit of size t containing σ(i, i+
t−2). There is a unique element of Ci not contained in σ(i, i+s−2); call this element
ci. Likewise, let c∗i be the unique element of C∗i not contained in σ(i, i+ t− 2).

Lemma 4.1. If n ≥ s+ 2t− 4, then ci 6= ci+1 for all i ∈ [n].

Proof. Suppose n ≥ s + 2t − 4 and ci = ci+1 for some i ∈ [n]. Then Ci =
σ(i, i + s − 2) ∪ {ci} and Ci+1 = σ(i + 1, i + s − 1) ∪ {ci}. By circuit elimination,
there is a circuit, say C, of M contained in σ(i, i + s − 1). If C does not contain ei,
then C is properly contained in the circuit Ci+1, a contradiction. Similarly, if C does
not contain ei+s−1, then C is properly contained in Ci. Therefore, C contains both
ei and ei+s−1.

Since t ≥ 2, we have that n ≥ s + t − 2. Therefore, the (t − 1)-element set
σ (i+ s− 1, i+ s+ t− 3) intersects C in only the element ei+s−1. Therefore, by
orthogonality, c∗i+s−1 ∈ C − {ei+s−1} ⊆ σ(i, i + s − 2). This means that C∗i+s−1
and σ (i, i+ s− 2) also intersect in exactly one element. Therefore, by orthogonality,
ci ∈ σ(i+ s− 1, i+ s+ t− 3).

Similarly, the (t − 1)-element set σ(i − t + 2, i) intersects C in only the element
ei. Therefore, orthogonality between C∗i−t+2 and C implies that c∗i−t+2 ∈ C − {ei} ⊆
σ(i + 1, i + s − 1). Applying orthogonality again, this time between C∗i−t+2 and
Ci+1, shows that ci+1 ∈ σ(i− t+ 2, i). But ci = ci+1, and so ci is contained in both
σ(i−t+2, i) and σ(i+s−1, i+s+t−3), two sets which are disjoint since n ≥ s+2t−4.
This contradiction implies that ci 6= ci+1 and completes the proof.

The next lemma is used several times in the proof of Lemma 4.3.

Lemma 4.2. Suppose there exists di 6= ci such that Di = σ(i, i+ s− 2)∪{di} is a
circuit of M . Let j ∈ [n] such that |σ(j, j + t− 2)∩ {ci, di}| = 1. Then σ(j, j + t− 2)
intersects σ(i, i+ s− 2).

Proof. Without loss of generality, we may assume that ci ∈ σ(j, j+t−2) and di /∈
σ(j, j+t−2). Suppose σ(j, j+t−2) does not intersect σ(i, i+s−2). Then σ(j, j+t−2)
intersects Ci in one element. Therefore, by orthogonality, c∗j ∈ σ(i, i+s−2). But now
c∗j ∈ Di, so C∗j and Di intersect in one element. This contradiction to orthogonality
implies that σ(j, j + t− 2) intersects σ(i, i+ s− 2), and completes the proof.

Lemma 4.3. If n ≥ s + 2t − 4, then, for all i ∈ [n], there is a unique circuit of
size s containing σ(i, i+ s− 2).
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Proof. We know Ci is an s-element circuit containing σ(i, i+s−2). Suppose that
there is a second such circuit. This means that there is an element di, distinct from
ci, such that σ(i, i+ s− 2) ∪ {di} is a circuit. Call this circuit Di.

Now, for some j ∈ [n], we have ci = ej . Consider the (t − 1)-element subsets
σ(j − t + 2, j) and σ(j, j + t − 2). Since ci 6= di, at least one of these sets does
not contain di. Up to symmetry, we may assume that di /∈ σ(j − t + 2, j). Now,
|σ(j − t+ 2, j) ∩ {ci, di}| = 1 and so, by Lemma 4.2, the set σ(j − t+ 2, j) intersects
σ(i, i+ s− 2). Since n ≥ s+ 2t− 5, this implies that σ(j, j + t− 2) does not intersect
σ(i, i+ s− 2). Applying Lemma 4.2 again, we see that |σ(j, j + t− 2) ∩ {ci, di}| 6= 1,
so di ∈ σ(j, j + t− 2). Therefore, σ(j + 1, j + t− 1) contains di but does not contain
ci. However, since n ≥ s + 2t − 4 and σ(j − t + 2, j) intersects σ(i, i + s − 2), we
also have that σ(j + 1, j + t− 1) is disjoint from σ(i, i+ s− 2). This contradiction to
Lemma 4.2 shows that no such di exists, thereby completing the proof.

Lemma 4.4. Let i, j ∈ [n] such that ci ∈ σ(j + 1, j + t − 2), and suppose that
n ≥ 2s+ t− 4. Then each of the following holds:

(i) If σ(j, j + t− 1) does not intersect σ(i, i+ s− 1), then ci+1 ∈ σ(j, j + t− 1).
(ii) If σ(j, j+ t− 1) does not intersect σ(i− 1, i+ s− 2), then ci−1 ∈ σ(j, j + t− 1) .

Proof. We prove (i). Then (ii) follows by reversing the order of σ. Suppose that
σ(j, j + t − 1) does not intersect σ(i, i + s − 1). Assume that ci+1 /∈ σ(j, j + t − 1),
and consider the (t − 1)-element sets σ(j, j + t − 2) and σ(j + 1, j + t − 1). Each of
these sets contains ci and does not contain ci+1. Furthermore, since σ(j, j+ t−1) and
σ(i, i+ s− 1) are disjoint, each of σ(j, j + t− 2) and σ(j + 1, j + t− 1) intersects Ci

in exactly one element and does not intersect Ci+1. Therefore, by orthogonality, c∗j
and c∗j+1 are both contained in Ci, but not contained in Ci+1. The only possibility is
c∗j = c∗j+1 = ei. However, this contradicts Lemma 4.1 when applied to M∗. Therefore,
ci+1 ∈ σ(j, j + t− 1).

Lemma 4.5. Let i ∈ [n], and suppose that ci = ej. If n ≥ s + 2t − 2 and n ≥
2s+ t− 4, then at least one of the following holds:

(i) ci and ci+1 are both contained in σ(i− 1, i+ s);
(ii) ci+1 = ej+1; or
(iii) ci+1 = ej−1.

Proof. Suppose (i) does not hold, that is, at least one of ci and ci+1 is not con-
tained in σ(i−1, i+s). Choose k ∈ [n] such that ek ∈ {ci, ci+1} and ek /∈ σ(i−1, i+s).
Let ek′ be the other element of ci and ci+1. We establish the lemma by proving that
either k′ = k + 1 or k′ = k − 1, which we shall do using Lemma 4.4.

First assume that ek /∈ σ(i−t+2, i+s+t−3). This means that neither σ(k−1, k+
t−2) nor σ(k− t+2, k+1) intersect σ(i, i+s−1). So, by Lemma 4.4 (using part (i) if
ek = ci or part (ii) if ek = ci+1), we have that ek′ ∈ σ(k−1, k+t−2)∩σ(k−t+2, k+1).
Now,

σ(k − 1, k + t− 2) ∩ σ(k − t+ 2, k + 1) = {ek−1, ek, ek+1}

and, by Lemma 4.1, ek′ 6= ek. Therefore, either ek′ = ek−1 or ek′ = ek+1, the desired
result.

Now assume that ek ∈ σ(i − t + 2, i + s + t − 3). Then, as ek /∈ σ(i − 1, i + s),
either ek ∈ σ(i + s + 1, i + s + t − 3) or ek ∈ σ(i − t + 2, i − 2). We consider
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only the former case; the analysis for the latter case is symmetrical. Thus, suppose
ek ∈ σ(i+s+1, i+s+ t−3). Now, σ(k−1, k+ t−2) does not intersect σ(i, i+s−1),
as k is at most i+s+ t−3 and n ≥ s+2t−2. Therefore, by Lemma 4.4, we have that
ek′ ∈ σ(k − 1, k + t− 2). If ek′ 6= ek−1 and ek′ 6= ek+1, then ek′ ∈ σ(k + 2, k + t− 2).
Furthermore, since n ≥ s + 2t − 2, the sets σ(i, i + s − 1) and σ(k + 1, k + t) do
not intersect. However, ek /∈ σ(k + 1, k + t), contradicting Lemma 4.4. Thus either
ek′ = ek−1 or ek′ = ek+1, thereby completing the proof of the lemma.

Lemma 4.6. If n ≥ s+ 2t− 1 and n ≥ 2s+ t− 4, then ci 6= ci+2 for all i ∈ [n].

Proof. Suppose ci = ci+2 for some i ∈ [n]. Then Ci = σ(i, i + s − 2) ∪ {ci}
and Ci+2 = σ(i + 2, i + s) ∪ {ci}. By circuit elimination, there is also a circuit, say
C, of M contained in σ(i, i + s). If C contains neither ei+s−1 nor ei+s, then C is
contained in σ(i, i + s − 2), and thus properly contained in Ci, a contradiction. So
C contains at least one of ei+s−1 and ei+s. We next show that ci is contained in
σ(i+ s+ 1, i+ s+ t− 1).

First, if ei+s is not contained in C, then ei+s−1 ∈ C, in which case the (t − 1)-
element set σ(i + s − 1, i + s + t − 3) intersects C in one element. Therefore, by
orthogonality, c∗i+s−1 ∈ σ(i, i + s − 2). Now, orthogonality between Ci and C∗i+s−1
implies ci ∈ σ(i + s − 1, i + s + t − 3). Furthermore, ci can be neither ei+s−1 nor
ei+s since these elements are contained in σ (i+ 2, i+ s) and ci = ci+2, so ci ∈
σ(i+ s+ 1, i+ s+ t− 3).

Now assume that ei+s ∈ C. Orthogonality with C∗i+s implies that
c∗i+s ∈ σ(i, i+ s− 1) , so either c∗i+s = ei+s−1 or c∗i+s ∈ σ(i, i+ s− 2) . In the lat-
ter case, orthogonality with Ci implies that ci ∈ σ(i+ s+ 1, i+ s+ t− 2) . Thus, we
may assume that c∗i+s = ei+s−1. Now, C∗i+s intersects σ(i+1, i+s−1) in one element,
so ci+1 ∈ σ(i+ s, i+ s+ t− 2). Either ci+1 = ei+s, or ci+1 ∈ σ(i+ s+ 1, i+ s+ t− 2).
Say ci+1 = ei+s. Then both σ(i+ 1, i+ s) and σ(i+ 2, i+ s) ∪ {ci} are circuits of M
(noting that ci 6= ei+1 because ei+1 ∈ σ(i, i+ s− 2)). This contradicts Lemma 4.3,
so ci+1 ∈ σ(i+ s+ 1, i+ s+ t− 2). Since ci+1 /∈ σ(i− 1, i+ s), and n ≥ s+ 2t− 1 and
n ≥ 2s+ t− 4, it follows by Lemma 4.5 that the elements ci and ci+1 are consecutive,
so ci ∈ σ(i+ s+ 1, i+ s+ t− 1).

We have now shown that, in all cases, ci ∈ σ(i + s + 1, i + s + t − 1). But,
using a symmetrical argument and comparing C and Ci+2, we can show that ci+2 ∈
σ(i−t+1, i−1). Now, ci+2 = ci, so ci ∈ σ(i−t+1, i−1) and ci ∈ σ(i+s+1, i+s+t−1).
But, since n ≥ s + 2t − 1, these two sets are disjoint. This contradiction completes
the proof of the lemma.

Lemma 4.7. Let n ≥ s + 2t − 1 and t ≥ s. If there exists i ∈ [n] such that
σ(i, i+ s− 1) is a circuit of M , then M is (s, t)-cyclic.

Proof. Let i ∈ [n] such that σ(i, i + s − 1) is a circuit of M . We will show that
σ(i + 2, i + s + 1) is also a circuit. It then follows that σ(i + 2k, i + 2k + s − 1) is a
circuit for all k ≥ 1 and so, by Lemma 3.8, M is (s, t)-cyclic.

Since σ(i, i + s − 1) is a circuit, it follows by Lemma 4.3 that ci = ei+s−1 and
ci+1 = ei. By Lemma 4.5, either ci+2 ∈ σ(i, i+ s+ 1) or ci+2 = ei−1 or ci+2 = ei+1.
Therefore, ci+2 ∈ {ei−1, ei, ei+1, ei+s+1}. If ci+2 = ei+s+1, then σ(i + 2, i + s + 1) is
a circuit, and we have the desired result. Furthermore, if ci+2 = ei, then ci+2 = ci+1,
contradicting Lemma 4.1. If ci+2 = ei+1, then both σ(i, i+ s− 1) and σ(i+ 1, i+ s)
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are circuits containing σ(i+ 1, i+ s−1), contradicting Lemma 4.3. Therefore we may
assume that ci+2 = ei−1.

Now consider ci+3. Since ci+2 is not contained in σ(i + 1, i + s + 2), it follows
by Lemma 4.5 that either ci+3 = ei−2 or ci+3 = ei. But ci+1 = ei, so ci+3 6= ei by
Lemma 4.6. Therefore, ci+3 = ei−2. More generally, suppose that ci+k−2 = ei−k+3

and ci+k−1 = ei−k+2, for some k ≥ 4. If n ≥ 2k+ s− 2, then ci+k−1 /∈ σ(i+ k− 2, i+
k + s − 1), and we can apply Lemma 4.5 to show that ci+k ∈ {ei−k+1, ei−k+3}. But
ci+k−2 = ei−k+3, so ci+k = ei−k+1 by Lemma 4.6.

By induction, we deduce, for all k ≥ 2 satisfying n ≥ 2k+s−2, that ci+k = ei−k+1.
Suppose t = s. Taking k = s, we have that n ≥ 3s − 2, and so ci+s = ei−s+1.
Therefore, assuming t > s, we have that ci+s = ei−s+1 ∈ σ(i − t + 2, i). This means
that the (t−1)-element set σ(i−t+2, i) intersects each of Ci and Ci+s in one element,
and so c∗i−t+2 ∈ Ci ∩ Ci+s. But Ci and Ci+s are disjoint, a contradiction. Thus, we
may assume that s = t.

We apply Lemma 4.5 to ci−1 with the aim of showing that ci−1 = ei+s. Suppose
ci−1 = ej . If ci−1 /∈ σ(i − 2, i + s − 1), then either ci = ej−1 or ci = ej+1. Since
ci = ei+s−1, it follows that either ci−1 ∈ σ(i−2, i+s−1) or ci−1 = ei+s. Now consider
the (t−1)-element set σ(i+s, i+s+t−2). This intersects Ci+2 = σ(i+2, i+s)∪{ei−1}
in one element. So, either c∗i+s ∈ σ(i + 2, i + s − 1) or c∗i+s = ei−1. In the former
case, C∗i+s intersects σ(i, i + s − 1) in one element, contradicting orthogonality. So
c∗i+s = ei−1. But then σ(i − 1, i + s − 3) intersects C∗i+s in one element, and so
ci−1 ∈ σ(i+ s, i+ s+ t− 2). Therefore, ci−1 /∈ σ(i− 2, i+ s− 1), and so ci−1 = ei+s.

Consider ci−2. Since ci−1 /∈ σ(i − 3, i + s − 2), it follows by Lemma 4.5 that
either ci−2 = ei+s−1 or ci−2 = ei+s+1. But ci = ei+s−1 and so, by Lemma 4.6,
ci−2 = ei+s+1. More generally, suppose ci−k+3 = ei+s+k−4 and ci−k+2 = ei+s+k−3,
for some k ≥ 4. If n ≥ 2k+s−2, then ci−k+2 /∈ σ(i−k, i−k+s+1), and we can apply
Lemma 4.5 to show that ci−k+1 ∈ {ei+s+k−4, ei+s+k−2}. But ci−k+3 = ei+s+k−4, so
ci−k+1 = ei+s+k−2.

Therefore, by induction, for all k ≥ 2 satisfying n ≥ 2k + s − 2, we have ci+k =
ei−k+1 and ci−k+1 = ei+s+k−2. If s = t = 3, we have ci+2 = ei−1 and ci−1 = ei+3.
By orthogonality between C∗i and Ci−1, we have that either c∗i = ei−1 or c∗i = ei+3.
For either possibility, C∗i intersects Ci+2 in one element, a contradiction. Now assume
that s = t ≥ 4, and consider the (t− 1)-element set σ(i, i+ t− 2). This set intersects
each of σ(i− s+ 2, i) and σ(i+ t− 2, i+ s+ t− 4) in exactly one element. Now, since
n ≥ 3s − 4, we have that ci−s+2 = ei+2s−3 and, since n ≥ s + 2t − 6, we have that
ci+t−2 = ei−t+3 = ei−s+3. Neither ci−s+2 nor ci+t−2 are contained in σ(i, i + t − 2),
and so c∗i ∈ Ci−s+2 ∩ Ci+t−2 = {ei−s+3}. But now, since ci−s+1 = ei+2s−2, we have
that Ci−s+1 = σ(i−s+1, i−1)∪{ei+2s−2}, which intersects C∗i in one element. This
contradiction to orthogonality completes the proof of the lemma.

Lemma 4.8. Let n ≥ s + 2t − 1, and suppose that t ≥ s. If ci = ei+s, then
ci+1 = ei+s+1.

Proof. As t ≥ s, it follows by Lemma 4.5 that either ci+1 ∈ σ(i − 1, i + s), or
ci+1 = ei+s+1. Therefore, ci+1 ∈ {ei−1, ei, ei+s, ei+s+1}. By Lemma 4.1, ci+1 6= ei+s.
Also, if ci+1 = ei, then both σ(i, i + s − 1) and σ(i, i + s − 2) ∪ {ei+s} are circuits
containing σ(i, i+ s− 2), contradicting Lemma 4.3.
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Suppose ci+1 = ei−1, and consider the (t − 1)-element set σ(i − t + 1, i − 1).
As n ≥ s + 2t − 1, this set intersects Ci+1 in exactly one element, but does not
intersect Ci. Therefore, c∗i−t+1 ∈ Ci+1, but not in c∗i−t+1 /∈ Ci; the only possibility is
c∗i−t+1 = ei+s−1.

Now consider the (t − 1)-element set σ(i + s, i + s + t − 2). As n ≥ s + 2t − 1,
this set intersects Ci in exactly one element, and does not intersect Ci+1. Therefore,
c∗i+s = ei. Finally, consider the (s − 1)-element set σ(i + 2, i + s). This last set
intersects each of C∗i+s and C∗i−t+1 in exactly one element. But C∗i+s and C∗i−t+1 are
disjoint, a contradiction. Therefore, ci+1 = ei+s+1.

Lemma 4.9. Let n ≥ s+2t−1 and t ≥ s. If ci = ei+s−1+k for some 1 ≤ k < n−s,
then ci+1 = ei+s+k.

Proof. The proof is by induction on k. If k = 1, then the result follows immedi-
ately from Lemma 4.8. Suppose k = 2, so that, ci = ei+s+1. By Lemma 4.5, either
ci+1 = ei+s or ci+1 = ei+s+2. If ci+1 = ei+s, then σ(i + 1, i + s) is a circuit. But,
by Lemma 4.7, this implies M is (s, t)-cyclic, which, by Lemma 4.3, contradicts the
uniqueness of the circuit containing σ(i, i+ s− 2). So ci+1 = ei+s+2, and the lemma
holds for k = 2.

Now let k ≥ 3, and suppose that, for all i′ ∈ [n], if ci′ = ei′+s−1+(k−2), then
ci′+1 = ei′+s+(k−2). We shall complete the proof by proving that the lemma holds
for k. So, let ci = ei+s−1+k. Then, by Lemma 4.5, either ci+1 = ei+s−2+k or ci+1 =
ei+s+k. If ci+1 = ei+s−2+k, then, by the induction assumption, ci+2 = ei+s−1+k.
But now ci+2 = ci. This contradiction to Lemma 4.6 shows that ci+1 = ei+s+k, and
completes the proof of the lemma.

At last we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Since σ is an (s, t)-cyclic ordering of M if and only if σ
is a (t, s)-cyclic ordering of M∗, we may assume, without loss of generality, that
t ≥ s. For the purposes of obtaining a contradiction, suppose there is no j ∈ [n]
such that σ(j, j + s − 1) is a circuit of M . Since σ is a nearly (s, t)-cyclic ordering
of M , it follows by Lemma 4.9 that there exists 1 ≤ k < n − s such that, for all
i ∈ [n], the set σ(i, i+ s− 2) ∪ {ei+s−1+k} is a circuit. In particular, by Lemma 4.3,
Ci = σ(i, i + s − 2) ∪ {ei+s−1+k}. Take one such i, and consider the (t − 1)-element
set σ(i, i+ t− 2). As n ≥ 2s+ t− 3, the (s− 1)-element sets σ(i− s+ 1, i− 1) and
σ(i+ t− 1, i+ s+ t− 3) are disjoint, so at least one of these two sets does not contain
c∗i . We will establish a contradiction for when c∗i 6∈ σ(i− s+ 1, i− 1). A symmetrical
argument applies when c∗i 6∈ σ(i+t−1, i+s+t−3). So suppose c∗i /∈ σ(i−s+1, i−1).
Then σ(i−s+2, i) intersects C∗i in exactly one element. Therefore, either ci−s+2 = c∗i
or ci−s+2 ∈ σ(i+ 1, i+ t− 2).

First assume that ci−s+2 ∈ σ(i + 1, i + t − 2). We know that ci−s+2 6= ei+1, for
otherwise σ(i− s+ 2, i+ 1) is a circuit. So ci−s+2 ∈ σ(i+ 2, i+ t− 2). But now, by
Lemma 4.9, ci−s+1 ∈ σ(i+ 1, i+ t−3), and so Ci−s+1 and C∗i intersect in exactly one
element, a contradiction.

Now assume that ci−s+2 = c∗i . Consider the (s − 1)-element set
σ (i+ t− 2, i+ s+ t− 4). Suppose c∗i /∈ σ(i+ t− 1, i+ s+ t− 3) . Then, by or-
thogonality, either ci+t−2 = c∗i or ci+t−2 ∈ σ(i, i + t − 3). But ci+t−2 6= ei+t−3,
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since then σ(i + t − 3, i + s + t − 4) is a circuit, and ci+t−2 /∈ σ(i, i + t − 4) since
then Ci+t−1 and C∗i intersect in exactly one element, by Lemma 4.9. Furthermore,
ci+t−2 6= c∗i , since then ci+t−2 = ci−s+2, contradicting Lemmas 4.3 and 4.9. Therefore,
c∗i ∈ σ(i+ t− 1, i+ s+ t− 3).

It now follows that ci−s+2 = ei+t−2+` for some 1 ≤ ` ≤ s − 1. Therefore,
by Lemma 4.9, ci−s+2−` = ei+t−2. Furthermore, as n ≥ 3s + t − 5, the (s − 1)-
element set σ(i−s+2− `, i− `) does not contain c∗i = ei+t−2+` and does not intersect
σ(i, i+t−2). So Ci−s+2−` and C∗i intersect in exactly one element. This contradiction
to orthogonality establishes that M must contain a circuit σ(j, j + s − 1) for some
j ∈ [n], and so, by Lemma 4.7, σ is an (s, t)-cyclic ordering of M . This completes the
proof of the theorem.

5. Proof of Theorem 1.3. In this section, we prove Theorem 1.3. We begin
by defining a class of matroids that contains, for all positive integers s exceeding
one and all positive even integers n, the matroid Ψn

s . The proof of Theorem 1.3
is a consequence of a more general weak-map result, namely Theorem 5.4, that we
establish for this class.

Recall that for a vertex v of a graph G, we denote the set of vertices of G adjacent
to v, that is, the neighbours of v, by N(v). More generally, for a subset U of vertices
of G, the neighbours of U , denoted N(U), is⋃

v∈U
N(v).

We next define a multi-path matroid. Let E be a set of n elements, and sup-
pose that σ = (e1, e2, . . . , en) is a cyclic ordering of E. Let m be a positive integer
exceeding one. Choose distinct elements x1, x2, . . . , xm ∈ [n] and distinct elements
y1, y2, . . . , ym ∈ [n] such that exi

∈ σ(xi−1, xi+1) and eyi
∈ σ(yi−1, yi+1) for all

i ∈ [m], where subscripts of x and y are interpreted modulo m, and, furthermore,
the intervals σ(xi, yi) form an antichain of σ, that is, there is no i, i′ ∈ [m] such that
σ(xi, yi) ⊆ σ(xi′ , yi′). Let G denote the bipartite graph with parts E and [m], and
whose set of edges satisfy N(i) = σ(xi, yi) for all i ∈ [m]. The transversal matroid on
ground set E with presentation

I = (N(1), N(2), . . . , N(m))

is called a multi-path matroid and is denoted by M [I]. Let M∗[I] denote the dual
of M [I], and observe that, for all i ∈ [m], the set σ(xi, yi) is a circuit of M∗[I].
Multi-path matroids were introduced in [1].

As an example, let s be a positive integer exceeding one and let n be a positive
even integer, and suppose that σ = (e1, e2, . . . , en) is a cyclic ordering of E and m = n

2 .
By choosing xi = 2i− 1 and yi = 2i+ s− 2 for all i ∈

[
n
2

]
, we have that G ∼= Gn

s , the
bipartite graph defined in the introduction, and M∗[I] ∼= Ψn

s .

The initial goal of this section is to establish Theorem 5.4 which says that, up
to isomorphism, M∗[I] is at least as free as any matroid on the same ground set
satisfying a certain rank condition; that is, up to isomorphism, every such matroid is
a weak-map image of M∗[I].
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A subset X ⊆ E is independent in M∗[I] if and only if E −X is cospanning. In
other words, X is independent in M∗[I] if and only if there is a complete matching
from [m] into E −X. By Hall’s Theorem [4], this is true precisely if, for all subsets
J of [m], we have that |N(J) −X| ≥ |J |. We repeatedly use this fact in the proofs
in this section. To ease reading, in the statements of these lemmas and theorem, the
multi-path matroid M [I] has ground set E and is constructed as above.

Lemma 5.1. r(M∗[I]) = |E| −m.

Proof. It is sufficient to prove that r(M [I]) = m. Let X ⊆ E be a set of m + 1
elements. Clearly there is no matching of X into [m], so X is dependent. Therefore,
r(M [I]) ≤ m. For all i ∈ [m], we have that {i, exi

} is an edge of the bipartite graph G.
Therefore, {{1, ex1

}, {2, ex2
}, . . . , {m, exm

}} is a matching of G. Hence r(M [I]) ≥ m,
so r(M [I]) = m, completing the proof.

Lemma 5.2. Let C be a circuit of M∗[I]. Let J ⊆ [m] such that |N(J)− C| < |J | .
Then C is a subset of N(J) containing |N(J)| − |J |+ 1 elements.

Proof. If C is not a subset of N(J), then there exists an element e of C such that
e 6∈ N(J). Then

|N(J)− (C − {e})| = |N(J)− C| < |J |.

But this implies that C − {e} is dependent, a contradiction. Thus C is a subset of
N(J).

To see that C contains |N(J)| − |J | + 1 elements, suppose that
|N(J)− C| < |J | − 1 , and let e ∈ C. Then, as C is a subset of N(J), we have

|N(J)− (C − {e})| = |N(J)− C|+ 1 < |J |.

Again, this implies C − {e} is dependent, a contradiction. Thus

|N(J)| − |C| = |N(J)− C| = |J | − 1.

Rearranging this last equation gives |C| = |N(J)| − |J | + 1, thereby completing the
proof of the lemma.

Lemma 5.3. Let C be a circuit of M∗[I]. Then either C has |E|−m+1 elements
or there exist i, j ∈ [m] such that each of the following hold:

(i) N([i, j]) = σ(xi, yj),
(ii) C is a subset of N([i, j]) containing |N([i, j])| − |[i, j]|+ 1 elements,
(iii) either i = j, or N([i, j])−N([i+ 1, j]) ⊆ C,
(iv) either i = j, or N([i, j])−N([i, j − 1]) ⊆ C, and
(v) σ(xi, yj) ⊆ cl(C),

Proof. Since C is dependent, there exists J ⊆ [m] such that |N(J)−C| < |J |. If
N(J) = E, then N([m]) = E, so |N([m]) − C| = |E − C| < |J | ≤ m. Therefore, by
Lemma 5.2, C has |E| −m+ 1 elements. So suppose that N(J) 6= E.

We next show that we may assume that J has the property that N(J) = σ(xi, yj)
for some i, j ∈ [m]. If J does not satisfy this property, then partition J into maximal
subsets with disjoint, consecutive neighbourhoods. More formally, since

N(J) =
⋃
i0∈J

σ(xi0 , yi0),
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we may partition J into sets J1, J2, . . . , Jk such that, for all ` ∈ [k], there exist
i`, j` ∈ [m] with N(J`) = σ(xi` , yj`). Furthermore, we may choose such a partition in
which, for all distinct `, `′ ∈ [k], the sets σ(xi` , yj`) and σ(xi′` , yj′`) are disjoint. Now,

|N(J1)− C|+ |N(J2)− C|+ · · ·+ |N(Jk)− C| = |N(J)− C|
< |J |
= |J1|+ |J2|+ · · ·+ |Jk|.

It follows that there exists ` ∈ [k] such that |N(J`)−C| < |J`|, in which case replace
J with J`.

We have chosen J ⊆ [m] such that |N(J) − C| < |J | and N(J) = σ(xi, yj)
for some i, j ∈ [m]. It follows from the definition of the bipartite graph G that
J ⊆ [i, j]. Furthermore, N([i, j]) ⊆ σ(xi, yj), so N([i, j]) = σ(xi, yj), that is, (i)
holds. Therefore,

|N([i, j])− C| = |N(J)− C| < |J | ≤ |[i, j]| .

Hence, by Lemma 5.2, C is a subset of N([i, j]) containing |N([i, j])| − |[i, j]|+ 1
elements, so (ii) holds.

We next show that we may choose i′ ∈ [m] such that the pair i′, j satisfies (i),
(ii), and (iii). Initially, choose i′ = i, and suppose i′ and j do not satisfy (iii). Then
i′ 6= j, and there exists f ∈ N([i′, j]) − N([i′ + 1, j]) with f /∈ C. First, assume
N([i′, j])−N([i′ + 1, j]) = {f} . Then C is a subset of N([i′ + 1, j]) and

|C| = |N([i′, j])| − |[i′, j]|+ 1

= (|N([i′ + 1, j])|+ 1)− (|[i′ + 1, j]|+ 1) + 1

= |N([i′ + 1, j])| − |[i′ + 1, j]|+ 1,

so i′ + 1, j satisfies (ii). Furthermore, it follows from the definition of the bipartite
graph G that, since N([i′, j]) = σ(xi′ , yj), we have that N([i′ + 1, j]) = σ(xi′+1, yj) .
Thus, i′ + 1, j satisfies (i) and (ii), and we may replace i′ in the pair i′, j with i′ + 1.

Hence, we may assume there exists f ′ ∈ N([i′, j]) − N([i′ + 1, j]) with f ′ 6= f .
First assume f ′ ∈ C. Then, by (ii),

|N([i′ + 1, j])− (C − {f ′})| = |N([i′ + 1, j])− C|
< |N([i′, j])− C|
= |[i′, j]| − 1

= |[i′ + 1, j]| .

Therefore, C − {f ′} is dependent, a contradiction. Now assume f ′ /∈ C. Since
f, f ′ 6∈ C,

|N([i′ + 1, j])− C| < |N([i′, j])− C| − 1.

Let x ∈ C. Then, by (ii),

|N([i′ + 1, j])− (C − {x})| ≤ |N([i′ + 1, j])− C|+ 1

< |N([i′, j])− C| = |[i′, j]| − 1 = |[i′ + 1, j]| .
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But this implies that C − {x} is dependent, and thus the pair i′, j satisfies (i), (ii)
and (iii). A symmetrical argument shows that we may choose j′ ∈ [m] such that the
pair i′, j′ satisfies (i)-(iv).

It remains to show (v). Let e ∈ C, and let e′ ∈ σ(xi′ , yj′)− C. Then

|N([i′, j′])− ((C − {e}) ∪ {e′})| = |N([i′, j′])− C| < |[i′, j′]|.

Therefore, (C − {e}) ∪ {e′} is dependent, so contains a circuit C ′. The circuit C ′

contains the element e′, as otherwise C ′ is a proper subset of C. Therefore, e′ ∈ cl(C),
completing the proof of the lemma.

Theorem 5.4. Let M be a matroid on ground set E such that, for all i ∈ [m]
and 1 ≤ k ≤ m, we have

rM
(
σ(xi, yi)∪σ(xi+1, yi+1) ∪ · · · ∪ σ(xi+k−1, yi+k−1)

)
≤ rM∗[I]

(
σ(xi, yi) ∪ (xi+1, yi+1) ∪ · · · ∪ σ(xi+k−1, yi+k−1)

)
.

If M [I] has no loops, then, under the identity map, M is a weak-map image of M∗[I].

Proof. Let ϕ denote the identity map from the ground set E of M∗[I] to the
ground set E of M . To prove the theorem, we will show that if C is a circuit of
M∗[I], then ϕ(C) contains a circuit of M . Let C be a circuit of M∗[I]. Now, as M [I]
has no loops, every element of E is in N(i) = σ(xi, yi) for some i ∈ [m]. Therefore,
σ(x1, y1) ∪ σ(x2, y2) ∪ · · · ∪ σ(xm, ym) = E. Thus, by Lemma 5.1

|E| −m = r(M∗[I])

= rM∗[I]
(
σ(x1, y1) ∪ σ(x2, y2) ∪ · · · ∪ σ(xm, ym)

)
≥ rM

(
σ(x1, y1) ∪ σ(x2, y2) ∪ · · · ∪ σ(xm, ym)

)
= r(M).

Therefore, if C contains |E| −m+ 1 elements, then ϕ(C) contains a circuit of M .

Otherwise, by Lemma 5.3, there exist i, j ∈ [m] such that C is a subset of σ(xi, yj)
containing |σ(xi, yj)| − |[i, j]| + 1 elements. Furthermore, by Lemma 5.3(i), we have
that

N([i, j]) = σ(xi, yi) ∪ σ(xi+1, yi+1) ∪ · · · ∪ σ(xj , yj) = σ(xi, yj)

and so rM (σ(xi, yj)) ≤ rM∗[I](σ(xi, yj)). By Lemma 5.3(v), we have that σ(xi, yj) ⊆
cl(C), so rM∗[I](σ(xi, yj)) = rM∗[I](C) = |C| − 1. Thus,

rM (C) ≤ rM (σ(xi, yj)) ≤ rM∗[I](σ(xi, yj)) = |C| − 1.

Therefore, ϕ(C) contains a circuit of M .

The previous results in this section apply for any multi-path matroid M∗[I]. We
now turn our attention to the case where M∗[I] ∼= Ψn

s , towards proving Theorem 1.3.
We first show that Ψn

s is self-dual.

Lemma 5.5. Let s be an integer exceeding two, and let φs : E → E be the identity
map if s is even, or the map φs(ei) = ei+1 if s is odd. Then Ψn

s is self-dual under the
map φs.
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Proof. Let B be a basis of Ψn
s . We show that φ−1s (E − B) is also a basis of

Ψn
s . By Lemma 5.1, we have that

∣∣φ−1s (E −B)
∣∣ = r(Ψn

s ) = n
2 . Furthermore, by

Lemma 5.3, a circuit of Ψn
s is either a set of n

2 +1 elements, or a subset of σ(xi, yi+k) =
σ(2i− 1, 2i+ 2k+ s− 2) containing |σ(2i− 1, 2i+ 2k + s− 2)| − (k + 1) + 1 = s+ k
elements, for some i ∈ [m] and k ≤ n

2 − s. Hence, to show that φ−1s (E −B) contains
no circuits, and is therefore a basis, it suffices to show that, for all odd i ∈ [n] and
k ≤ n

2 − s, we have that
∣∣φ−1s (E −B) ∩ σ(i, i+ s− 1 + 2k)

∣∣ < s+ k.

First, suppose s is even. Then

φs(E − σ(i, i+ s− 1 + 2k)) = σ(i+ s+ 2k, i− 1)

= σ
(
i+ s+ 2k, i+ s+ 2k + s− 1 + 2

(
n
2 − k − s

))
.

Therefore, since i+ s+ 2k is odd, there exists j ∈
[
n
2

]
such that

N
([
j, j +

(
n
2 − k − s

)])
= φs(E − σ(i, i+ s− 1 + 2k)).

Now, B is independent, so∣∣N ([j, j +
(
n
2 − k − s

)])
−B

∣∣ = |φs(E − σ(i, i+ s− 1 + 2k))−B|
≥ n

2 − k − s+ 1.

It follows that

|B ∩ φs (E − σ(i, i+ s− 1 + 2k))| < n
2 − k.

On the other hand, if s is odd, then

φs(E − σ(i, i+ s− 1 + 2k)) = φs(σ(i+ s+ 2k, i− 1))

= σ(i+ s+ 2k + 1, i)

= σ
(
i+ s+ 2k + 1, i+ s+ 2k + 1 + s− 1 + 2

(
n
2 − k − s

))
.

Since i+ s+ 2k + 1 is odd, there exists j ∈
[
n
2

]
such that

N
([
j, j +

(
n
2 − k − s

)])
= φs(E − σ(i, i+ s− 1 + 2k)).

As before, since B is independent, it follows that

|B ∩ φs (E − σ(i, i+ s− 1 + 2k))| < n
2 − k.

In both cases, ∣∣φ−1s (B) ∩ (E − σ(i, i+ s− 1 + 2k))
∣∣ < n

2 − k

and so ∣∣φ−1s (B) ∩ σ(i, i+ s− 1 + 2k)
∣∣ > k.

Therefore, ∣∣φ−1s (E −B) ∩ σ(i, i+ s− 1 + 2k)
∣∣ < |σ(i, i+ s− 1 + 2k)| − k

= s+ 2k − k = s+ k

as required.
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Lemma 5.6. Let s and t be positive integers exceeding one, such that t ≥ s. If n

is a positive even integer with n ≥ s + t − 2 and s ≡ t mod 2, then T
t−s
2 (Ψn

s ) is an
(s, t)-cyclic matroid.

Proof. Without loss of generality, we may assume that the ground set
{e1, e2, . . . , en} of Ψn

s is consistent with the bipartite graph Gn
s associated with the

dual of Ψn
s as described in the introduction. In particular, Gn

s has vertex parts
{e1, e2, . . . , en} and [n2 ] and, for all i ∈ {1, 2, . . . , n2 }, we have

N(i) = {e2i−1, e2i, . . . , e2i+s−2}.

The proof is by induction on t. Suppose that t = s, and consider T 0(Ψn
s ) = Ψn

s .
It is easily checked that, for all odd i ∈ [n], the set {ei, ei+1, . . . , ei+s−1} is an s-
element circuit of Ψn

s . By Lemma 5.5, the set {ej , ej+1, . . . , ej+s−1} is an s-element
cocircuit of Ψn

s for all odd j ∈ [n] if s is even, or for all even j ∈ [n] if s is odd.
Therefore Ψn

s is (s, s)-cyclic, and the lemma holds if t = s.

Now suppose that t > s and that the matroid T
(t−2)−s

2 (Ψn
s ) is (s, t − 2)-cyclic.

Consider

T
t−s
2 (Ψn

s ) = T
(
T

(t−2)−s
2 (Ψn

s )
)
.

It follows from Lemma 2.2 that each non-spanning circuit of T
(t−2)−s

2 (Ψn
s ) is a circuit

of T
t−s
2 (Ψn

s ). Now, by Lemma 3.7,

r
(
T

(t−2)−s
2 (Ψn

s )
)

= n+s−(t−2)
2

≥ (s+t−2)+s−t+2
2

= s.

Therefore, for all odd i ∈ [n], we have that {ei, ei+1, . . . , ei+s−1} is a non-spanning cir-

cuit of T
(t−2)−s

2 (Ψn
s ), so is also an s-element circuit of T

t−s
2 (Ψn

s ). Furthermore, for all
j ∈ [n], if {ej , ej+1, . . . , ej+t−3} and {ej+2, ej+3, . . . , ej+t−1} are (t−2)-element cocir-

cuits of T
(t−2)−s

2 (Ψn
s ), then {ej , ej+1, . . . , ej+t−1} is a t-element cocircuit of T

t−s
2 (Ψn

s ).

To see this, if f is the element freely added to T
(t−2)−s

2 (Ψn
s ), then it is easily checked

that (
E
(
T

(t−2)−s
2 (Ψn

s )
)
− {ej , ej+1, . . . , ej+t−1}

)
∪ {f}

is a hyperplane of the resulting matroid. Therefore

E
(
T

t−s
2 (Ψn

s )
)
− {ej , ej+1, . . . , ej+t−1}

is a hyperplane of T
t−s
2 (Ψn

s ), so {ej , ej+1, . . . , ej+t−1} is a t-element cocircuit of

T
t−s
2 (Ψn

s ). Hence, by induction, T
t−s
2 (Ψn

s ) is (s, t)-cyclic.

Proof of Theorem 1.3. Let M be an (s, t)-cyclic matroid on n elements, where
n ≥ s + t − 1 and t ≥ s. Then, by Lemma 3.3, n is even, and s ≡ t mod 2. Let
σ = (e1, e2, . . . , en) be an (s, t)-cyclic ordering of E(M). Without loss of generality,
we may assume that, for all odd i ∈ [n], the set σ(i, i+ s− 1) is an s-element circuit
of M . Now consider Ψn

s . To ease reading, we may assume that E(M) = E(Ψn
s )
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and σ = (e1, e2, . . . , en) is an (s, s)-cyclic ordering of Ψn
s , where σ(i, i + s − 1) is an

s-element circuit of Ψn
s for all odd i ∈ [n]. Note that the dual of Ψn

s has no loops.

First suppose that t = s. By Lemma 5.6, both M and Ψn
s are (s, s)-cyclic matroids

with n elements. Therefore, by Lemma 3.6, for all i ∈ [n2 ] and k such that 1 ≤ k ≤ m,
we have that

rM
(
σ(xi, yi)∪σ(xi+1, yi+1) ∪ · · · ∪ σ(xi+k−1, yi+k−1)

)
= rM∗[I]

(
σ(xi, yi) ∪ σ(xi+1, yi+1) ∪ · · · ∪ σ(xi+k−1, yi+k−1)

)
,

where xi = e2i−1 and yi = e2i+s−2 for all i ∈ {1, 2, . . . , n2 }. Hence, by Theorem 5.4,
under the identity map, M is a weak-map image of Ψn

s .

Now suppose t > s. By Lemma 5.6, the matroid T
t−s
2 (Ψn

s ) is an (s, t)-cyclic

matroid. It remains to show that M is a weak-map image of T
t−s
2 (Ψn

s ). Let I be an
independent set in M . By Theorem 5.4, under the identity map, M is a weak-map
image of Ψn

s , and so I is an independent set in Ψn
s . From Lemma 3.7, we have that

r(M) = n+s−t
2 = n

2 −
(
t−s
2

)
= r(Ψn

s )−
(
t−s
2

)
,

Therefore, |I| ≤ r(Ψn
s )−

(
t−s
2

)
. Therefore, as T

t−s
2 (Ψn

s ) is the
(
t−s
2

)
-th truncation of

Ψn
s , it follows by Lemma 2.2 that I is independent in T

t−s
2 (Ψn

s ). In particular, under

the identity map, M is a weak-map image of T
t−s
2 (Ψn

s ). This completes the proof of
Theorem 1.3.

6. Counterexample. In this section, we give a counterexample to a conjecture
posed in [3]. Let s be an integer exceeding two, and let M be an (s, s)-cyclic matroid
such that |E(M)| ≥ 2s+2. A matroid N is an inflation of M if N can be obtained from
M by first taking an elementary quotient in which none of the s-element cocircuits
corresponding to consecutive elements in the cyclic ordering are preserved, which
produces an (s, s+2)-cyclic matroid, and then taking an elementary lift in which none
of the s-element circuits corresponding to consecutive elements in the cyclic ordering
are preserved. The resulting matroid N is (s+ 2, s+ 2)-cyclic. The conjecture in [3,
Conjecture 6.1] is the following:

Conjecture 6.1. Let s be an integer exceeding two, and let M be an (s, s)-cyclic
matroid.

(i) If s is even, then M can be obtained from a spike or a swirl by a sequence of
inflations.

(ii) If s is odd, then M can be obtained from a wheel or a whirl by a sequence of
inflations.

Now consider the matroid Ψn
s , where s ≥ 5. If Ψn

s can be obtained from a
spike, swirl, wheel, or whirl by a sequence of inflations, then Ψn

s is an elementary
lift of some (s− 2, s)-cyclic matroid, or, equivalently, using Lemma 5.5, (Ψn

s )∗ ∼= Ψn
s

is the elementary quotient of some (s, s − 2)-cyclic matroid. We shall establish a
counterexample to Conjecture 6.1 by showing that no such (s, s − 2)-cyclic matroid
exists; in fact, we prove a more general result.

Let M ′ be a rank-(n
2 + 1) matroid in which there is a cyclic ordering

σ = (e1, e2, . . . , en) of its ground set such that {ei, ei+1, . . . , ei+s−1} is a circuit of
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M for all odd i ∈ [n]. Further assume that σ is also an (s, s)-cyclic ordering of Ψn
s

such that {ei, ei+1, . . . , ei+s−1} is a circuit of Ψn
s for all odd i ∈ [n]. The following

results show that Ψn
s is not a quotient of M ′. For the next lemma see, for example,

[6, Proposition 7.3.6].

Lemma 6.2. Let M1 and M2 be matroids on the same ground set. Then M2 is a
quotient of M1 if and only if every circuit of M1 is a union of circuits of M2.

Key to the counterexample shall be the following sets. Let M be a matroid on n
elements and let s be an integer exceeding three. Suppose that σ = (e1, e2, . . . , en) is
a cyclic ordering of E(M) such that, for all odd i ∈ [n], the set {ei, ei+1, . . . , ei+s−1}
is an s-element circuit of M . For all odd i ∈ [n], and for all integers k and ` such that
2 ≤ k, ` ≤ s− 1 and s− 1 ≤ k + ` ≤ 2s− 4, define

Ci,k,` = σ(i, i+ k − 1) ∪ σ(i+ 2k + `− s+ 2, i+ 2k + 2`− s+ 1).

Informally, starting at ei, there are k consecutive elements of σ in Ci,k,`, followed
by k + ` − (s − 2) consecutive elements of σ not in Ci,k,`, followed by ` consecutive
elements of σ in Ci,k,`.

The next lemma establishes that certain subsets of the ground set of Ψn
s containing

Ci,k,` are circuits of Ψn
s . The subsequent lemma shows that these subsets are also

circuits of M ′. We will eventually combine these two lemmas to show that Ψn
s is not

a quotient of M ′.

Lemma 6.3. Let s be an integer exceeding three, and let σ = (e1, e2, . . . , en) be an
(s, s)-cyclic ordering of Ψn

s such that, for all odd i ∈ [n], the set {ei, ei+1, . . . , ei+s−1}
is an s-element circuit of Ψn

s . Suppose that n ≥ 4s − 8. Then, for all odd i ∈ [n],
and for all k and ` such that 2 ≤ k, ` ≤ s − 1 and s − 1 ≤ k + ` ≤ 2s − 4, the set
Ci,k,` ∪ {x} is a circuit of Ψn

s , where x ∈ σ(i+ k, i+ 2k + `− s+ 1), and

x 6=

{
ei+k if k = s− 1;

ei+2k+`−s+1 if ` = s− 1.

Proof. Recall the bipartite graph Gn
s whose vertex parts are E = {e1, e2, . . . , en}

and {1, 2, . . . , n2 } and, for all i ∈ {1, 2, . . . , n2 }, the set of neighbours of i is

N(i) = {e2i−1, e2i, . . . , e2i+s−2},

where subscripts are interpreted modulo n. Let i0 = i+1
2 and j0 = i+2(k+`−s)+3

2 .
Observe that

N (i0) = {ei, ei+1, . . . , ei+k−1, . . . , ei+s−1}

and

N (j0) = {ei+2(k+`−s)+2,ei+2(k+`−s)+3, . . . ,

ei+2k+`−s+2, . . . , ei+2(k+`)−s+1}.

In particular, N (i0) ∪ N (j0) contains Ci,k,`. Also recall that Ψn
s is the dual of the

transversal matroid on E in which

(N(1), N(2), . . . , N(n
2 ))
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is a presentation.

We first show that Ci,k,` ∪ {x} is dependent in Ψn
s by showing that

E − (Ci,k,` ∪ {x}) is not cospanning in Ψn
s . Consider Gn

s and the subset [i0, j0] of
[n2 ]. Since n ≥ 4s− 8, we have that N ([i0, j0]) 6= E, and so

|N ([i0, j0])| = 2k + 2`− s+ 2.

Therefore, as Ci,k,` ∪ {x} ⊆ N ([i0, j0]) and |Ci,k,` ∪ {x}| = k + `+ 1, it follows that∣∣∣N ([i0, j0]) − (Ci,k,` ∪ {x})
∣∣∣

= |N ([i0, j0])| − |Ci,k,` ∪ {x}|
= (2k + 2`− s+ 2)− (k + `+ 1)

= k + `− s+ 1

< k + `− s+ 2

= |[i0, j0]| .

Hence, by Hall’s Theorem [4], E − (Ci,k,` ∪ {x}) is not cospanning in Ψn
s . Thus

Ci,k,` ∪ {x} is dependent in Ψn
s .

Since Ci,k,` ∪ {x} is dependent, Ci,k,` ∪ {x} contains a circuit C of Ψn
s . If |C| =

|E| − n
2 + 1 = n

2 + 1, then, as n ≥ 4s− 8, it follows that |C| ≥ 2s− 3. Furthermore,
|C| ≤ |Ci,k,` ∪ {x}| = k+ `+ 1 ≤ 2s− 3. Thus C = Ci,k,` ∪ {x}, and so Ci,k,` ∪ {x} is
a circuit of Ψn

s . Therefore, by Lemma 5.3, we may assume that there are i1, j1 ∈ [n2 ]
satisfying (i)–(v) of that lemma. If i1 = j1, then, by Lemma 5.3(ii), C = N(i1) for
some i1 ∈ [n2 ]. Now, C, and thus Ci,k,` ∪ {x}, contains s consecutive elements of σ.
But if Ci,k,` ∪ {x} contains s consecutive elements, then k + ` = s− 1, in which case
Ci,k,` ∪ {x} is a circuit, and we are done. Therefore i1 6= j1, and, by Lemma 5.3(iii)
and (iv),

N([i1, j1])−N([i1 + 1, j1]) = {e2i1−1, e2i1} ⊆ C(6.1)

and

N([i1, j1])−N([i1, j1 − 1])= {e2j1+s−3, e2j1+s−2} ⊆ C.(6.2)

Suppose e2i1−1 /∈ σ(i, i+ k − 1) . Then, by (6.1),

C ⊆ (Ci,k,` ∪ {x})− σ(i, i+ k − 1)

= σ(i+ 2k + `− s+ 2, i+ 2k + 2`− s+ 1) ∪ {x}.

However, since i1 6= j1, we have that |C| ≥ s+ 1, while

|σ(i+ 2k + `− s+ 2, i+ 2k + 2`− s+ 1) ∪ {x}| = `+ 1 ≤ s.

This contradiction implies that e2i1−1 ∈ σ(i, i+ k − 1). Symmetrically,

e2j1+s−2 ∈ σ(i+ 2k + `− s+ 2, i+ 2k + 2`− s+ 1)

and so j1 = j0 − j′ for some 0 ≤ j′ ≤ d `2e.
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By Lemma 5.3(ii), C is a subset of N([i1, j1]) containing
|N([i1, j1])| − |[i1, j1]|+ 1 elements. Now,

|N([i1, j1])| = |N([i0, j0])| − 2(i′ + j′) = 2k + 2`− s+ 2− 2(i′ + j′),

and
|[i1, j1]| = |[i0, j0]| − (i′ + j′) = k + `− s+ 2− (i′ + j′)

so

|C| = k + `+ 1− (i′ + j′).(6.3)

On the other hand,

|C| ≤ |(Ci,k,` ∪ {x}) ∩N([i1, j1])| = k + `+ 1− 2(i′ + j′).(6.4)

Therefore, since both (6.3) and (6.4) hold, we have that i′ = j′ = 0, that is,
i0 = i1 and j0 = j1, and that |C| = |Ci,k,`∪{x}|. Hence, C = Ci,k,`∪{x}, completing
the proof of the lemma.

Lemma 6.4. Let n ≥ 4s− 8, and suppose that Ψn
s is a quotient of M ′. Then, for

all odd i ∈ [n], and for all k and ` such that 2 ≤ k, ` ≤ s−1 and s−1 ≤ k+` ≤ 2s−4,
the set Ci,k,` ∪ {x} is a circuit of M ′, where x ∈ σ(i+ k, i+ 2k + `− s+ 1), and

x 6=

{
ei+k if k = s− 1;

ei+2k+`−s+1 if ` = s− 1.

Proof. Since Ψn
s is a quotient of M ′, it follows by Lemma 6.2 that every circuit

of M ′ is a union of circuits of Ψn
s . Now, by Lemma 6.3, Ci,k,` ∪{x} is a circuit of Ψn

s .
Therefore, to prove the lemma, it suffices to show that M ′ has a circuit contained in
Ci,k,` ∪ {x}. The proof is by induction on k + `.

If k + ` = s− 1, then

Ci,k,` = σ(i, i+ k − 1) ∪ σ(i+ k + 1, i+ s− 1).

Therefore, x = ei+k, and Ci,k,` ∪ {x} = σ(i, i + s − 1) which is a circuit of M ′.
Furthermore, if k + ` = s, then

Ci,k,` = σ(i, i+ k − 1) ∪ σ(i+ k + 2, i+ s+ 1),

so Ci,k,` ∪ {x} = σ(i, i+ s+ 1)− {y}, where y is the element of {ei+k, ei+k+1} which
is not equal to x. Since y ∈ σ(i, i + s − 1) ∩ σ(i + 2, i + s + 1), it follows by circuit
elimination that M ′ has a circuit contained in Ci,k,` ∪ {x}, as desired.

Now suppose that the lemma holds for all 2 ≤ k′, `′ ≤ s − 1 and
s− 1 ≤ k′ + `′ ≤ 2s− 4 such that k′ + `′ = k + ` − 1. First assume that either k
or ` is equal to s − 1. If k = s − 1, then x 6= ei+s−1. Therefore, by the induction
assumption,

Ci+2,k−1,` ∪ {x} = σ(i+ 2, i+ s− 1) ∪ {x} ∪ σ(i+ `+ s, i+ 2`+ s− 1)
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is a circuit of M ′. Thus, by circuit elimination between Ci+2,k−1,` ∪ {x} and σ(i, i+
s− 1) on ei+s−1, the matroid M ′ has a circuit contained in

σ(i, i+ s− 2) ∪ {x} ∪ σ(i+ `+ s, i+ 2`+ s− 1) = Ci,s−1,` ∪ {x}
= Ci,k,` ∪ {x}

as desired. A similar argument shows the lemma holds if ` = s− 1.

We may now assume that neither k nor ` is equal to s − 1. Furthermore, since
k + ` ≥ s + 1, we have that k 6= 2 and ` 6= 2. Assume k = ` = 3. This implies that
s = 5, so

Ci,k,` = Ci,3,3 = {ei, ei+1, ei+2, ei+6, ei+7, ei+8}.
By the induction assumption, if x ∈ {ei+4, ei+5}, then the desired result follows from
circuit elimination between

Ci,3,2 ∪ {ei+4} = {ei, ei+1, ei+2, ei+4, ei+5, ei+6}

and {ei+4, ei+5, ei+6, ei+7, ei+8}. If x = ei+3, then the result follows from circuit
elimination between

Ci+2,2,3 ∪ {ei+4} = {ei+2, ei+3, ei+4, ei+6, ei+7, ei+8}

and {ei, ei+1, ei+2, ei+3, ei+4}.

Lastly, assume that either k ≥ 4 or ` ≥ 4, which implies s ≥ 6. We establish
that the lemma holds when k ≥ 4. The proof of the lemma when ` ≥ 4 is similar and
omitted. Assume k ≥ 4. Suppose x 6= ei+2k+`−s+1, that is x ∈ σ(i+ k, i+ 2k+ `− s).
Then, by the induction assumption, the set

Ci,k,`−1 ∪ {x} = σ(i, i+ k − 1) ∪ {x} ∪ σ(i+ 2k + `− s+ 1, i+ 2k + 2`− s− 1)

is a circuit. If ` = s− 2 and x = ei+2k+`−s, then the set

σ(i+ 2k + `− s, i+ 2k + 2`− s+ 1) = σ(i+ 2k − 2, i+ 2k + s− 3)

is an s-element circuit of M ′. Hence, circuit elimination between this circuit and
Ci,k,`−1 ∪ {x} on the element ei+2k+`−s+1 gives a ciruit of M ′ contained in

σ(i, i+ k − 1) ∪ {ei+2k+`−s} ∪ σ(i+ 2k + `− s+ 2, i+ 2k + 2`− s+ 1) = Ci,k,` ∪ {x}

as desired. Otherwise, since k ≥ 4, the set

Ci+2,k−2,`+1 ∪{x} = σ(i+ 2, i+ k− 1)∪{x}∪σ(i+ 2k+ `− s+ 1, i+ 2k+ 2`− s+ 1)

is a circuit. Again, circuit elimination between this circuit and Ci,k,`−1 ∪ {x} on the
element ei+2k+`−s+1 implies that M ′ has a circuit contained in

σ(i, i+ k − 1) ∪ {x} ∪ σ(i+ 2k + `− s+ 2, i+ 2k + 2`− s+ 1) = Ci,k,` ∪ {x}

as desired.

The final case to consider is when x = ei+2k+`−s+1. By the induction assumption,
and since k 6= s− 1, the set

Ci,k,`−1 ∪ {ei+k} = σ(i, i+ k − 1) ∪ {ei+k} ∪ σ(i+ 2k + `− s+ 1, i+ 2k + 2`− s− 1)
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is a circuit of M ′. Additionally, since k ≥ 4, the set

Ci+2,k−2,`+1∪{ei+k} = σ(i+2, i+k−1)∪{ei+k}∪σ(i+2k+`−s+1, i+2k+2`−s+1)

is a circuit of M ′. Circuit elimination between these circuits on the element ei+k

implies that M ′ has a circuit contained in

σ(i, i+ k − 1) ∪ σ(i+ 2k + `− s+ 1, i+ 2k + 2`− s+ 1) = Ci,k,` ∪ {ei+2k+`−s+1}.

This completes the proof of the case when k ≥ 4, and thus completes the proof of the
lemma.

Proposition 6.5. Let n ≥ 4s − 8, where s is an integer exceeding three. Then
Ψn

s is not a quotient of M ′.

Proof. Suppose Ψn
s is a quotient of M ′. We establish a contradiction by

showing that r(M ′) ≤ n
2 . By definition of M ′, {e1, e2, . . . , es} is a circuit

with rank s − 1. The element es+1 may or may not be in the closure of
{e1, e2, . . . , es}, so r({e1, e2, . . . , es+1}) ≤ s. Since {e3, e4, . . . , es+2} is a circuit,
es+2 ∈ cl({e1, e2, . . . , es+1}), that is, r({e1, e2, . . . , es+2}) ≤ s. Repeating this process,
we see that r({e1, e2, . . . , es+2u}) ≤ s − 1 + u for all u ≤ n−s

2 . In particular, when
u = n

2 − s + 1, we have that r({e1, e2, . . . , en−s+2}) ≤ n
2 . However, by Lemma 6.4

with i = n− 2s+ 5 and k = ` = s− 2, the set

{en−2s+5, en−2s+6, . . . , en−s+2} ∪ {x} ∪ {e1, e2, e3, . . . , es−2}

is a circuit for all x ∈ {en−s+3, en−s+4, . . . , en−1, en}, and so {e1, e2, . . . , en−s+2} is
spanning. This implies r(M ′) ≤ n

2 , a contradiction.
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