

Bininda-Emonds, O. R. P. (ed.) Phylogenetic Supertrees: Combining Information to Reveal

the Tree of Life, pp. 1–21. Computational Biology, volume 3 (Dress, A., series ed.).

© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Chapter 7

SUPERTREE ALGORITHMS FOR NESTED
TAXA

Philip Daniel and Charles Semple

Abstract: Most supertree algorithms combine collections of rooted phylogenetic trees

with overlapping leaf sets into a single rooted phylogenetic tree. It is implicit
in all these algorithms that the leaves of the rooted phylogenetic trees in the
input collection, as a whole, represent non-nested taxa. Thus, for example, the
“domestic dog” and “mammal” cannot be represented by two distinct leaves in
such a collection because the former is nested inside the latter. In practice,
however, one often wants to combine rooted trees in which taxa are nested. In
other words, to combine rooted trees in which the leaves as well as some of the
interior vertices are labeled. These interior labels represent taxa at a level
higher than that of their descendants (e.g., families versus genera, or genera
versus species). Moreover, it could happen that a leaf of one of the input trees
represents a taxon that is represented by an interior label of another tree. In this
chapter, we describe two supertree algorithms for combining rooted trees in
which the leaves as well as some of the interior vertices are labeled. Called
“rooted semi-labeled trees”, these trees are more general than rooted
phylogenetic trees in that not only are their leaves labeled, but some of their
interior vertices might be as well. Both algorithms are polynomial-time in the
size of the input and are motivated by a problem posed by Page in an earlier
chapter called “Taxonomy, Supertrees, and the Tree of Life”.

Keywords: BUILD; interior labels; leaf labels; nested taxa; taxonomy

1. Introduction

Throughout the chapter, we will assume that the reader is familiar with the
basics of phylogenetic trees.

2 Daniel and Semple

A rooted semi-labeled tree (on X) is an ordered pair (T; φ) consisting of a
rooted tree T with vertex set V and root vertex ρ, and a map φ : X → V with
the properties that, for all v ∈ V – {ρ} of degree at most two, v ∈ φ(X) and, if
ρ has degree zero or one, ρ ∈ φ(X). Viewing a rooted tree with edges
directed away from the root, every vertex of out-degree 0 or 1 is labeled by
an element of X. Intuitively, a rooted semi-labeled tree is simply a rooted
tree in which the leaves and some of the interior vertices are labeled. We
could avoid some of the technicalities of the formal definition, but then some
of the generality is also lost. Rooted semi-labeled trees on X are also called
rooted X-trees. Two rooted semi-labeled trees are shown in Figure 1. Rooted
X-trees extend the notion of rooted phylogenetic X-trees; in the case of the
latter, φ is a bijective map from X into the set of leaves of T, and the root has
degree at least two.

Let T = (T; φ) be a rooted X-tree and let X' be a subset of X. The
restriction of T to X', denoted T ⏐X', is the rooted X'-tree that is obtained
from the minimal rooted subtree of T induced by the elements of the set
φ(X') by suppressing all vertices of out-degree 0 or 1 not in φ(X'). We say a
rooted X-tree T displays a rooted X' tree T' if X' ⊆ X and T ⏐X' is a
refinement of T'. For example, in Figure 1, T displays T'. A collection P of
rooted semi-labeled trees is compatible if there exists a rooted semi-labeled
tree T that displays every tree in P, in which case, T displays P.

One of the first supertree methods is due to Aho et al. (1981). Intended
originally for relational databases, their method (called BUILD) provides a
polynomial-time solution to the following problem: given a collection P of
rooted phylogenetic trees, does there exist a rooted phylogenetic tree that
displays P and, if so, can we construct such a rooted phylogenetic tree? In
terms of evolutionary biology, where one views a rooted phylogenetic tree as
representing the ancestral relationships of a set of present-day species, a
rooted phylogenetic tree T displays P if, up to “polytomies”, all the ancestral
relationships of every tree in P is preserved in T. As noted in Semple and
Steel (2003), BUILD can be extended easily to determine the compatibility of
a collection P' of rooted semi-labeled trees in polynomial time, and, if they

f

g

ec f

h

 g e a b d a b c d

T T'

Figure 1. Two rooted semi-labeled trees.

Supertree algorithms for nested taxa 3

are compatible, to construct a rooted semi-labeled tree that displays this
collection. However, under this notion of compatibility, it is possible that P'
is compatible, but the only rooted semi-labeled trees that display P' all have
a particular label labeling a leaf that labeled an interior vertex of a tree in P'
originally. Hence, this notion of compatibility does not preserve
descendancy and so, for practical purposes, it appears that it might not be of
much use for collections of rooted semi-labeled trees.

In this chapter, we present two polynomial-time supertree algorithms for
rooted semi-labeled trees. The first algorithm provides a solution to a
problem posed by Page (2004) in another chapter of this book. We call this
problem HIGHER TAXA COMPATIBILITY. A rooted X-tree T perfectly
displays a rooted X'-tree T' if X' ⊆ X and T ⏐X' is isomorphic to T'. In
Figure 2, T perfectly displays T'. Furthermore, a collection P of rooted semi-
labeled trees is perfectly compatible if there exists a rooted semi-labeled tree
T that perfectly displays every tree in P, in which case, T perfectly displays
P. Note that if T perfectly displays T', then T displays T'. However, the
converse does not hold necessarily.

Problem: HIGHER TAXA COMPATIBILITY

Instance: A collection P of rooted semi-labeled trees.
Question: Does there exist a rooted semi-labeled tree that perfectly displays
P and, if so, can we construct such a rooted semi-labeled tree?

The motivation for HIGHER TAXA COMPATIBILITY arises when one wants
to use a supertree method for combining evolutionary trees the internal
vertices of which as well as their leaves are labeled. Such trees contain taxa
at different taxonomic levels. Indeed, it could happen that a higher taxon
labels an internal vertex in one of the trees we want to combine, but it labels
a leaf in another. The algorithm that we present to solve this problem is
called SEMI-LABELEDBUILD.

g

g

e

d

f

 a b c a b

T T'

Figure 2. T perfectly displays T'.

4 Daniel and Semple

Our first response in trying to solve HIGHER TAXA COMPATIBILITY was
to use the extension of BUILD for determining the compatibility of a
collection of rooted semi-labeled trees in some way. However, despite SEMI-
LABELEDBUILD having a similar description to this extension, it seems that
no straightforward modification solves this problem.

The notion of perfectly displays is very restrictive in the sense that a
collection P of semi-labeled trees is perfectly compatible precisely if there is
a rooted semi-labeled tree that preserves all the most recent common
ancestor relationships described by P. Thus, perfectly displays does not
allow for the resolution of any polytomies in P. To accommodate the
possible resolution of polytomies, but still preserve all the descendancy
relationships in P, we introduce a second notion of displays called
“ancestrally displays” in the second half of this chapter. In comparison with
the other two notions of displays, ancestrally displays is weaker than
perfectly displays because it might not preserve all the most recent common
ancestor relations, but it is stronger than the usual notion of displays because
it preserves descendancy. The second algorithm in this chapter determines
the compatibility of P under this second notion.

Unless otherwise stated, the notation and terminology in this chapter
follow Semple and Steel (2003). The chapter is organized as follows. In
Section 2, we describe some necessary preliminaries. In Section 3, we
present SEMI-LABELEDBUILD and show that it does indeed provide a
polynomial-time solution to HIGHER TAXA COMPATIBILITY. The last section
defines ancestrally displays formally and presents a polynomial-time
algorithm for solving the associated compatibility problem.

2. Preliminaries

Let T = (T; φ) be a rooted semi-labeled tree. The tree T and the map φ are
called the underlying tree and labeling map of T. The domain of φ is the
label set of T and is denoted L(T). We shall often refer to the elements of
L(T) as labels. If v is a vertex of T, we say that the elements of φ -1(v) label
v. If ρ is the root of T, then the elements of φ -1(ρ) are called root labels.
Furthermore, T is fully labeled if φ -1(v) is non-empty for all vertices v of T.
For a collection P of rooted semi-labeled trees, we denote the set ∪T ∈ R
L(T) by L(P).

For a rooted tree T, a particularly useful partial order ≤T on the vertex set
V of T is obtained by setting u ≤T v if the path from the root of T to v includes
u. If u ≤T v, we say that v is a descendant of u or, alternatively, u is an
ancestor of v. Furthermore, u and v are comparable under ≤T if either u ≤T v
or v ≤T u; otherwise u and v are not comparable. Observe that the partial

Supertree algorithms for nested taxa 5

order ≤T has the property that, for every pair of elements, the greatest lower
bound exists. The greatest lower bound of x and y under ≤T is called the most
recent common ancestor of x and y and is denoted mrcaT (x, y).

The above partial order extends naturally to the label set of a rooted
semi-labeled tree as follows. Let T = (T; φ) be a rooted X-tree and let a, b ∈
X. Then, a ≤T b if φ -1(a) ≤T φ -1(b), in which case, b is a descendant label of a
or, alternatively, a is an ancestor label of b. Furthermore, for all a, b ∈ X, we
let

 mrcaT (a, b) = φ -1 (mrcaT (φ(a), φ(b))).

Note that, because T is only semi-labeled, this set could be empty. However,
if T is fully-labeled, then this set is non-empty.

Let T = (T; φ) be a rooted semi-labeled tree and let u be a vertex of T. An
element a of L(T) is a descendant label of u if u ≤T φ -1(a). The set of
descendant labels of a non-root vertex v of T is called a cluster and we often
refer to it as the cluster of T corresponding to v. The collection of clusters of
T is denoted by H(T). Up to isomorphism of the underlying trees, no two
rooted semi-labeled trees have the same collection of clusters; thus, a rooted
semi-labeled tree T is determined completely by its set of clusters (see
Theorem 3.5.2 in Semple and Steel, 2003). Indeed, T can be constructed
quickly and easily from H(T).

In Section 1, we defined the restriction of a rooted X-tree T to a subset X'
of X and denoted it by T ⏐X'. An equivalent definition of T ⏐X' is the rooted
X'-tree for which

 H(T ⏐X') = {C ∩ X' : C ∈ H(T) and C ∩ X' ≠ Ø}

This equivalence will prove useful in this chapter.

3. The SEMI-LABELEDBUILD algorithm

In this section, we describe the algorithm SEMI-LABELEDBUILD. We begin
by defining a particular graph that will play a prominent role in the
algorithm. A vertex of a graph is isolated if it is incident with no edges. Let
P be a collection of rooted fully-labeled trees. The cluster and root-label
graph of P, and denoted G(P), has vertex set L(P) and an edge set consisting
of three types of edges that are added sequentially as follows:

(i) First, two (not necessarily distinct) vertices are joined by a blue edge
if they appear in the same cluster of a fully-labeled tree in P. Note

6 Daniel and Semple

this implies that, for any element of L(P) that is in a cluster, there is
a loop joining this element to itself.

(ii) Second, if a is a root label of a fully-labeled tree, T say, in P and a
is not isolated, then join a to every other label in L(T) by a blue
edge.

(iii) Third, once all of the edges associated with (i) and (ii) have been
added, do the following:
(a) For all isolated vertices c, if there is a tree T in P with labels a, b

∈ L(T) such that c ∈ mrcaT (a, b), join a and b with a red edge
labeled c. This labeled edge can be in parallel with a blue edge
or other red edges (see remark below).

(b) For any two vertices joined by a red edge labeled c, if there is a
path connecting them consisting of just blue edges, delete every
red edge labeled c and join c to each d ∈ L(P) with a blue edge
if both c and d are in the label set of some particular tree in P.

(c) Repeat (b) until there are no pairs of vertices joined by red edges
that are connected by a path consisting of just blue edges.

(d) Delete all remaining red edges.

We call a blue edge of G(P) a type (i), (ii), or (iii) edge depending upon
whether it is added at Step (i), (ii), or (iii), respectively, in the construction
of G(P).

Remark. In the construction of G(P), once a blue edge has been added to
join two, not necessarily distinct, vertices, no further blue edge need be
added in parallel with this edge. However, red edges with distinct labels are
added in parallel because each such edge plays a particular role in the
construction.

As an example of the above construction, let P be the collection of rooted
fully-labeled trees shown in Figure 3. Then, omitting loops, the construction
of G(P) to the end of Step (ii) is shown in Figure 4. At Step (iii)(a), red
edges are added between pairs {a, b}, {d, a}, {d, b}, {d, c}, {d, j}, {e, a},
{e, b}, {e, c}, {e, j}, {h, a}, {h, b}, {h, c}, {h, j}, {h, d} and {h, e}. The red

j

i

a

k

b

f

eh

 g d h a b c

Figure 3. A collection G(P) of rooted fully-labeled trees.

Supertree algorithms for nested taxa 7

edge between a and b gives blue edges between k and a and between k and b
at Step (iii)(b). All other red edges are deleted at Step (iii)(d) without having
affected the graph. With loops omitted, the final construction of G(P) is
shown in Figure 5.

Before describing SEMI-LABELEDBUILD, we need to define one further
construction. Let T = (T; φ) be a rooted semi-labeled tree on X, where T has
vertex set V. We say that a rooted fully-labeled tree T1 = (T; φ1) on X1, where
X ⊆ X1, has been obtained from T by adding distinct new labels if, for all
distinct u, v ∈ V, the following properties are satisfied:

1. If φ -1(v) is non-empty, then φ
1

-1(v) = φ -1(v).
2. If φ -1(v) is empty, then ⏐φ

1
-1(v)⏐ = 1.

3. If φ -1(u) and φ -1(v) are both empty, then φ
1

-1(u) ≠ φ
1

-1(v).

Intuitively, T1 has been obtained from T by labeling non-labeled vertices of
T singularly with distinct new labels. For a collection P of rooted semi-
labeled trees, we say that P1 has been obtained from P by adding distinct
new labels if it has been obtained by adding distinct new labels to every tree
in P so that, for any pair of trees, no two new labels are the same.

Essentially, all the work in SEMI-LABELEDBUILD is done by a subroutine
called FULLY-LABELEDBUILD. We describe each in turn.

f

i

j

d

c

b

h

a

e g

k

Figure 4. Construction of G(P) at the end of steps (i) and (ii).

f

i

j

d

c

b

h

a

e g

k

Figure 5. Completed construction of G(P).

8 Daniel and Semple

Algorithm: SEMI-LABELEDBUILD(P, T)

Input: A collection P of rooted semi-labeled trees.
Output: A rooted semi-labeled tree T that perfectly displays P or the
statement not perfectly compatible.

1. Construct a collection P' of rooted fully-labeled trees from P by
adding distinct new labels.

2. Call the subroutine FULLY-LABELEDBUILD(P', v', T').
3. If FULLY-LABELEDBUILD returns not perfectly compatible, then

return not perfectly compatible.
4. If FULLY-LABELEDBUILD returns a rooted fully-labeled tree T', then

remove the added labels and return the resulting rooted semi-labeled
tree T.

Algorithm: FULLY-LABELEDBUILD(P', v', T')

Input: A collection P' of rooted fully-labeled trees.
Output: A rooted fully-labeled tree T' with root vertex v' that perfectly
displays P' or the statement not perfectly compatible.

1. Construct the cluster and root-label graph G(P') of P'.
2. If G(P') has no isolated vertices, then halt and return not perfectly

compatible.
3. Otherwise, let S1, S2, …, Sk denote the vertex sets of the connected

components of G(P') not consisting of an isolated vertex, and let S0
denote the set of isolated vertices of G(P').

4. Initialize T' with a single root vertex v' and assign all labels in S0 to
v'.

5. For each i ∈ {1, 2, …, k}, call FULLY-LABELEDBUILD(P', v', T'),
where P'i is the collection of rooted fully-labeled trees obtained from
P' by restricting each tree in P' to Si. If FULLY-LABELEDBUILD(P',
v', T') returns a tree, then attach T'i to v' via the edge {v'i, v'}.

Intuitively, for a set P' of rooted fully-labeled trees, FULLY-
LABELEDBUILD attempts to construct a rooted fully-labeled tree T' that
perfectly displays P' by essentially constructing H(T'). This is done by
beginning with L(P') and breaking it down successively into disjoint
subclusters. How clusters are broken up in this way is determined by the
connected components of the associated cluster and root-label graph.
Components consisting of isolated vertices are distinguished from those not
consisting of isolated vertices. This process continues provided the

Supertree algorithms for nested taxa 9

associated cluster and root-label graph has at least one isolated vertex at each
iteration, in which case, FULLY-LABELEDBUILD returns a rooted fully-
labeled tree. By contrast, if the associated cluster and root-label graph has no
isolated vertices at some iteration, then FULLY-LABELEDBUILD returns “P'
is not perfectly compatible”.

Remark.

1. It is an immediate consequence of Lemma 3.2 below that, for all i in Step
4 of FULLY-LABELEDBUILD, P'i is indeed a collection of rooted fully-
labeled trees as indicated in this step.

2. Using the fact that FULLY-LABELEDBUILD considers proper restrictions
of the input collection of rooted fully-labeled trees successively in Step 4
of the algorithm, it is seen easily that FULLY-LABELEDBUILD returns
either “P' is not perfectly compatible” or a rooted fully-labeled tree with
label set L(P'). Consequently, SEMI-LABELEDBUILD returns either “P is
not perfectly compatible” or a rooted semi-labeled tree with label set
L(P).

To illustrate FULLY-LABELEDBUILD, the rooted fully-labeled tree shown
in Figure 6 is the result of applying this algorithm to the collection of rooted
fully-labeled trees shown in Figure 3.

The main result of this chapter is the following theorem.

Theorem 3.1. Let P be a collection of rooted semi-labeled trees. Then SEMI-
LABELEDBUILD applied to P either:

(i) returns a rooted semi-labeled tree that perfectly displays P if P
is perfectly compatible, or

(ii) returns the statement P is not perfectly compatible otherwise.

To prove Theorem 3.1, we establish first some lemmas.

h k, j

i, f

e

 d g a b c

Figure 6. The rooted fully-labeled tree outputted by FULLY-LABELEDBUILD when
applied to the collection of trees shown in Figure 3.

10 Daniel and Semple

Lemma 3.2. Let P be a collection of rooted fully-labeled trees and consider
the cluster and root-label graph G(P) of P. Let T be an element of P and let
S0 denote the set of isolated vertices of G(P). Then the following hold:

(i) If L(P) ∩ S0 is non-empty, then all the elements of this set are
root labels of T. Furthermore, if d is a root label of T and d ∈ S0,
then all root labels of T are elements of S0.

(ii) If no root label of T is an element of S0, then L(T) is a subset of
the vertex set of some connected component of G(P).

(iii) Suppose that a root label of T is an element of S0. Let A and B be
distinct maximal clusters of T. Then A and B are subsets of the
vertex sets of distinct connected components of G(P).

Proof. Using the construction of G(P), the proofs of (i), (ii), and (iii) are
straightforward. We omit the details. �

Lemma 3.3. Let T1 be a rooted fully-labeled tree on X1 and let T2 be a
rooted semi-labeled tree on X2 such that X1 ⊆ X2. Then T2 perfectly displays
T1 if and only if, for all a, b ∈ X1,

 mrcaT1 (a, b) = mrcaT2 (a, b)⏐X1.

Proof. For each i ∈ {1, 2}, let Hi denote the collection of clusters of Ti plus
Xi. Suppose that T2 perfectly displays T1. Let a, b, c ∈ X1 and suppose that
c ∈ mrcaT1 (a, b). Then, for any C1 ∈ H1, {a, b} is a subset of C1 if and only
if c ∈ C1. Because H1 = H2⏐X1, it follows that, for any C2 ∈ H2, {a, b} is a
subset of C2 if and only if c ∈ C2. Therefore, c is a common ancestor of a
and b in T2, and no common ancestor of a and b in T2 is a proper descendent
of c in T2. Thus, c ∈ mrcaT2 (a, b)⏐X1, and, more generally, mrcaT1 (a, b) ⊆
mrcaT2 (a, b)⏐X1. For all x in X1 – mrcaT1 (a, b), there is either an element of
H1 containing x but not c, or there is an element of H1 containing c but not
x. Thus, because H1 = H2⏐X1, there is either an element of H2 containing x
but not c or there is an element of H2 containing c but not x. Therefore, c
and x do not label the same vertex of T2, and so x ∉ mrcaT2 (a, b)⏐X1. This
shows that mrcaT1 (a, b) = mrcaT2 (a, b)⏐X1.

Now suppose that, for all a, b ∈ X1, we have mrcaT1 (a, b) = mrcaT2 (a, b)
∩ X1, but H1 ≠ H2⏐X1. If H2⏐X1 is a proper subset of H1, then T1 is a
proper refinement of T2⏐X1 and it is checked easily that there is a pair of
distinct elements a, b ∈ X1 such that mrcaT1 (a, b) ≠ mrcaT2 (a, b)⏐X1.
Therefore, we can assume that there is an element, C2 say, of H2⏐X1 that is
not an element of H1. Let C1 be the minimal cluster of T1 that contains C2
and let x be an element of C1 – C2. If x is a label of the vertex of T1 that
corresponds to C1, then, by the minimality of C1, there is a pair of distinct

Supertree algorithms for nested taxa 11

elements a, b ∈ C1 such that x ∈ mrcaT1 (a, b), but x ∉ mrcaT2 (a, b)⏐X1. It
follows that we can assume also that no element of C1 – C2 labels the vertex
of T1 corresponding to C1. But then, if c is such a label, it is seen easily that
mrcaT1 (x, c) ≠ mrcaT2 (x, c)⏐X1. This completes the proof of Lemma 3.3. �

Lemma 3.4. Let P be a collection of rooted semi-labeled trees. Let P' be a
set of rooted fully-labeled trees obtained from P by adding distinct new
labels. Then P is perfectly compatible if and only if P' is perfectly
compatible. Moreover, if T' is a rooted semi-labeled tree that perfectly
displays P', then T' perfectly displays P.

Proof. Suppose that P is perfectly compatible and let T be a rooted semi-
labeled tree that perfectly displays P. For each element c' ∈ L(P') – L(P),
there is a unique rooted fully-labeled tree, T1' say, in P' for which c' ∈
L(T1'). Furthermore, because c' is one of the added labels, c' labels a vertex
of T1' of degree at least three and so there exist labels a and b of T1 such that
mrcaT1' (a, b) = {c'}, where T1 is the tree in P corresponding to T1' , because
all leaves of T1 must be labeled.

Now let T' be the rooted semi-labeled tree obtained from T by adding
the labels of L(P') – L(P) so that if c' ∈ L(P') – L(P), c' ∈ T1' , and
mrcaT1' (a, b) = {c'} for some labels a and b of T1, then c' ∈ mrcaT ' (a, b). By
the previous paragraph and the fact that T perfectly displays P, it is seen
easily that, for all a, b ∈ L(T1'),

 mrcaT1' (a, b) = mrcaT ' (a, b)⏐ L(T1')

It now follows by Lemma 3.3 that T' perfectly displays T1' and hence P'.
The rest of the proof of Lemma 3.4 is straightforward and omitted. �

Lemma 3.5. Let P be a collection of rooted fully-labeled trees. If P is
perfectly compatible, then there exists a rooted fully-labeled tree that
perfectly displays P with label set L(P).

Proof. Suppose that P is perfectly compatible and let T = (T; φ) be a rooted
semi-labeled tree that perfectly displays P and has label set L(P). Now
suppose that among all rooted semi-labeled trees that perfectly display P and
have label set L(P), the tree T has the least number of unlabeled vertices. If
T has no unlabeled vertices, then the lemma is proved. Therefore, assume
that there is a vertex, u say, of T that is unlabeled. Because T is a rooted
semi-labeled tree, u has out-degree at least two. Furthermore, because T
perfectly displays P and P is a collection of rooted fully-labeled trees, it
follows by Lemma 3.3 that there is no tree T1 in P with labels a and b such

12 Daniel and Semple

that mrcaT1 (φ(a), φ(b)) = u. By Lemma 3.3 again, this in turn implies that if
v1, v2, …, vn are immediate descendants of u in T, then the rooted semi-
labeled tree obtained from T by contracting {u, vi} for all i and labeling the
identified vertex with ∪i∈{1,…, n} φ

1
-1(vi) perfectly displays P. But the latter

tree has one less unlabeled vertex than T. This contradiction completes the
proof of the lemma. �

It follows from Lemma 3.4 and the description of SEMI-LABELEDBUILD
that Theorem 3.1 is an immediate consequence of the following theorem.

Theorem 3.6. Let P be a collection of rooted fully-labeled trees. Then
FULLY-LABELEDBUILD applied to P either:

(i) returns a rooted fully-labeled tree that perfectly displays P if P
is perfectly compatible, or

(ii) returns the statement P is not perfectly compatible otherwise.

Proof. First suppose that P is perfectly compatible. Under this assumption,
we show that FULLY-LABELEDBUILD applied to P outputs a rooted fully-
labeled tree. If this is not the case, then FULLY-LABELEDBUILD outputs not
perfectly compatible, in which case, the associated cluster and root-label
graph, G say, has no isolated vertices at some iteration of the algorithm. Let
S denote the vertex set of G. Because P is perfectly compatible, P⏐S is
perfectly compatible and so, by Lemma 3.5, there exists a rooted fully-
labeled tree T with labeled set S that perfectly displays P⏐S. Let c be a root
label of T. Then, because T perfectly displays P⏐S, every tree of P⏐S in
which c is a label has the property that c is a root label. Furthermore, because
G has no isolated vertices, c must be joined to an element of S – {c} in G by
some edge and this edge must be a type (iii) edge; for otherwise, c is a non-
root label of some tree in P⏐S. It now follows that there exists a tree T1 in
P⏐S such that a, b, c are distinct vertices of L(T1), c ∈ mrcaT1 (a, b), and, in
G, there is a path joining a and b. We next show that the existence of this
path implies that a and b are elements of a cluster of T.

Let G0 denote the graph with vertex set S and the edge set of which
consists of all type (i) and (ii) edges of G. Let u and v be any two vertices of
G0. If {u, v} is an edge of this graph, then, using the fact that T perfectly
displays P, it is checked easily that u and v must be in the same maximal
cluster of T. Clearly, being in the same maximal cluster of a given rooted
semi-labeled tree is a transitive relation and so if there is a path in G0 joining
two vertices, then these two vertices are in the same maximal cluster of T.
Now G is obtained from G0 by adding sets of edges iteratively that join a
particular root label of trees in P⏐S to all its descendant labels. Let E1, E2,
…, Ek denote the corresponding sequence of these added sets of edges, and

Supertree algorithms for nested taxa 13

let z1, z2, …, zk denote the associated sequence of particular root labels. Let
E0 denote the edge set of G0 and, for all i ∈{1, 2, … k}, let Gi denote the
graph with vertex set S and edge set E0 ∪ E1 ∪ E2 ∪ … ∪ Ei.

Consider the graph G1. By the construction of G1, there is a rooted fully-
labeled tree T1 in P⏐S with root label z1 and distinct proper descendant
labels x1 and y1 such that z1 ∈ mrcaT1 (x1, y1) and, in G0, there is a path
joining x1 and y1. By the existence of this path and the previous paragraph, x1
and y1 are in the same maximal cluster of T. Because T perfectly displays
P⏐S and z1 ∈ mrcaT1 (x1, y1), it follows that z1 must also be in this particular
maximal cluster of T. Because all the edges in E1 contain z1 and because G0
has the transitive property mentioned in the last paragraph, G1 also has the
property that if there is a path joining two vertices in G1, then these two
vertices are in the same maximal cluster of T. Continuing in this way for G2,
G3, …, Gk–1 and lastly for Gk, we deduce that Gk, and hence G(P⏐S), also
have this edge transitive property. But then, because a and b are joined by a
path in G(P⏐S), a and b are in the same maximal cluster of T and so c ∉
mrcaT (a, b). This contradiction shows that FULLY-LABELEDBUILD does
indeed output a rooted fully-labeled tree if P is compatible.

Now suppose that FULLY-LABELEDBUILD outputs a rooted fully-labeled
tree T. Here, we show that T perfectly displays P. Let T1 be a rooted semi-
labeled tree in P with label set X1 and let a, b ∈ X1. By Lemma 3.3, it
suffices to show that mrcaT1 (a, b) = mrcaT (a, b)⏐X1.

We show first that if c ∈ mrcaT1 (a, b), then c ∈ mrcaT (a, b)⏐X1.
Throughout this part of the proof, we freely use the fact that, because c ∈
mrcaT1 (a, b), we have c ∈ mrcaT1 (a, c) and c ∈ mrcaT1 (b, c). Let S be the
minimal cluster of T that contains a, b, and c, and consider the graph
G(P⏐S). If c is not isolated, then either a and c are in the same cluster of a
fully-labeled tree in P or c is the root label of a fully-labeled tree in P. In
both cases, it follows that a and c are in the same connected component of
G(P⏐S). Similarly, b and c are in the same connected component of G(P⏐S).
It now follows that a, b, and c must be in the same connected component of
G(P⏐S). This implies that S is not the minimal cluster of T that contains a,
b, and c. Therefore, we can assume that c is an isolated vertex of G(P⏐S)
and, moreover, that it labels the vertex of T corresponding to S.

If a, b, and c label the same vertex of T1, then, by symmetry, a, b, and c
are all isolated vertices of G(P⏐S) and so a, b, and c label the vertex of T
corresponding to S. Hence, in this case, c ∈ mrcaT (a, b)⏐X1.

Now assume that a and b do not label the same vertex of T1, but that b
and c do. Then, because c is isolated, it follows by the argument above that b
is also an isolated vertex of G(P⏐S). Furthermore, b also labels the vertex of
T corresponding to S. Because c ∈ mrcaT1 (a, b), a is not isolated in G(P⏐S)
and so c ∈ mrcaT (a, b)⏐X1.

14 Daniel and Semple

Lastly, assume that no pair of a, b, and c label the same vertex of T1.
Because c is isolated, c must have been isolated after Step (ii) in the
construction of G(P⏐S), and so the relation c ∈ mrcaT1 (a, b) implies that a
and b are joined by a red edge labeled c in Step (iii)(a) of this construction.
Moreover, because c remains isolated at the end of the construction, a and b
must be in separate connected components of G(P⏐S). Therefore, c ∈
mrcaT (a, b)⏐X1.

We have now established mrcaT1 (a, b) ⊆ mrcaT (a, b)⏐X1. It follows
from Lemma 3.2 that, for all a, b ∈ L(T1), a and b label the same vertex of T
precisely if a and b label the same vertex of T1. By the argument in the
preceding paragraph, mrcaT1 (a, b) ∩ mrcaT (a, b)⏐X1 is non-empty. Hence,
mrcaT1 (a, b) = mrcaT (a, b)⏐X1. �

We now consider the running time of SEMI-LABELEDBUILD applied to a
collection P of rooted semi-labeled trees. Because it is more than likely that
there is a faster method for determining if P is perfectly compatible, a
detailed analysis is omitted. The point is to show that there exists a
polynomial-time algorithm (in the size of L(P)) for determining perfect
compatibility of P.

Let P' be a collection of rooted fully-labeled trees obtained from P by
adding distinct new labels. Because all vertices of degree at most two are
labeled in a rooted semi-labeled tree, the only possible unlabeled vertices are
interior vertices with degree at least three. The number of such interior
vertices is at most one less than the number of leaves. Summing over all
trees in P, this implies that ⏐L(P')⏐ – ⏐L(P)⏐ ≤ ⏐L(P)⏐ – 1. Thus, it
suffices to show that the running of SEMI-LABELEDBUILD is polynomial in
⏐L(P')⏐. Clearly, the construction of the cluster and root-label graph at each
iteration of FULLY-LABELEDBUILD can be done in such a time. Furthermore,
because we consider only proper restrictions of the input collection of rooted
fully-labeled trees at Step 4 of FULLY-LABELEDBUILD, the number of
iterations of FULLY-LABELEDBUILD is bounded by L(P'). It now follows
that the running time of SEMI-LABELEDBUILD is polynomial in the size of
L(P').

Supertree algorithms for nested taxa 15

4. Ancestrally displays

If T is a rooted semi-labeled tree that perfectly displays a collection P of
rooted semi-labeled trees, then T preserves all the most recent common
ancestor relationships described by P. As a consequence, no polytomies in P
are resolved in T. Thus, as mentioned in Section 1, the notion of perfectly
compatible is very strong. In this section, we introduce a notion of
compatibility that allows the resolution of polytomies, but still maintains all
the descendancy relationships of a collection of rooted semi-labeled trees.
Moreover, we present a polynomial-time algorithm for determining if a
collection of rooted semi-labeled trees is compatible under this new notion.

Let X' ⊆ X. A rooted semi-labeled tree T on X ancestrally displays a
rooted semi-labeled tree T' on X' if T ⏐X' refines T', and for all a, b ∈ X', the
following hold:

1. if a <T ' b, then a <T b, and
2. if a is not comparable to b in T' under <T ', then a is not comparable to b

in T under <T.

Intuitively, (1) and (2) imply that T preserves the ancestor-descendant
relationships of T', but might not preserve the most recent common ancestor
relationships of T', which is required for the notion of perfectly displays.
Consequently, perfectly displays is a stronger notion than ancestrally
displays. Each of the rooted semi-labeled trees in Figure 7 are ancestrally
displayed by the rooted semi-labeled tree in Figure 8. However, the first tree

x
x

 a b c d e a b c a c f

Figure 7. A collection of semi-labeled trees.

x

 a b c d f e

Figure 8. The rooted semi-labeled tree outputted by ANCESTRALBUILD when applied
to the rooted semi-labeled trees in Figure 7.

16 Daniel and Semple

in Figure 7 is not perfectly displayed by the rooted semi-labeled tree in
Figure 8. In comparison with the standard notion of displays, ancestrally
displays is stronger because the former does not preserve descendancy. A
collection P of rooted semi-labeled trees is ancestrally compatible if there is
a rooted semi-labeled tree T that ancestrally displays every tree in P, in
which case, T ancestrally displays P.

In this section, we present a polynomial-time algorithm (called
ANCESTRALBUILD) for solving the following problem.

Problem: HIGHER TAXA ANCESTOR COMPATIBILITY

Instance: A collection P of rooted semi-labeled trees.
Question: Does there exist a rooted semi-labeled tree that ancestrally
displays P and, if so, can we construct such a rooted semi-labeled tree?

Before describing ANCESTRALBUILD and its subroutine DESCENDANT,
we need first to define a particular graph and a construction. This graph
consists of a mixture of arcs (directed edges) and edges. Let P be a
collection of rooted fully-labeled trees. This graph, called the descendancy
graph of P and denoted D(P), is defined as follows. The vertex set of D(P)
is L(P). The arc set A(P) of D(P) is

 {(c, a) : c <T a for some T in P},

and the edge set E(P) of D(P) is

 {{a, b} : a is not comparable to b under ≤T for some T in P}.

As an example of a descendancy graph, let P be the collection of fully-
labeled trees formed from the trees in Figure 7 by adding u1 to the root of the
leftmost tree, u3 to the root and u2 to the other unlabeled vertex of the middle
tree, and u4 to the unlabeled vertex of the rightmost tree. Figure 9 shows the
descendancy graph of P where, to avoid clutter, only edges and arcs from
parents to immediate descendants are shown.

The descendancy graph plays an important role in ANCESTRALBUILD.
However, unlike SEMI-LABELEDBUILD, where a cluster and root-label graph
is constructed at each iteration, the descendancy graph for P is constructed
just once and then successive iterations consider particular restrictions of it.
To this end, we will denote the subgraph of D(P) that is induced by a subset
S of the vertex set L(P) by D(P)⏐S; that is, D(P)⏐S denotes the subgraph of
D(P) obtained by deleting all vertices of L(P) – S and their incident arcs and
edges. In association with D(P) (or any of its vertex-induced subgraphs), the

Supertree algorithms for nested taxa 17

in-degree of a vertex a is the number of arcs directed into a (edges are
ignored), and an arc component is a connected component of the graph
obtained by deleting all edges.

Lastly, we define our construction. Let T = (T; φ) be a rooted semi-
labeled tree. We say that a rooted semi-labeled tree T1 has been obtained
from T by adding descendants to leaves if, for each multi-labeled leaf vertex
u of T, we adjoin a new leaf vertex v to u by a new edge, and then label each
new leaf vertex with a distinct new label. For a collection P of rooted semi-
labeled trees, P1 has been obtained from P by adding descendants to leaves
if it has been obtained by adding descendants to leaves to every tree in P so
that all the new labels are distinct.

Algorithm: ANCESTRALBUILD(P, T)

Input: Let P be a collection of rooted semi-labeled trees.
Output: A rooted semi-labeled tree T that ancestrally displays P or the
statement P is not ancestrally compatible.

1. Construct a collection P' of rooted fully-labeled trees from P by
adding descendants to leaves and then adding distinct new labels to
the resulting collection.

2. Construct the descendancy graph D(P') of P'.
3. Call the subroutine DESCENDANT(D(P'), v', T').
4. If DESCENDANT returns no possible labeling, then return P is not

ancestrally compatible.
5. If DESCENDANT returns a rooted semi-labeled tree T', then remove

the added labels and return the resulting rooted semi-labeled tree T.

x

u4

u1

f

e

d

c

b

a

u2

u3

Figure 9. The descendancy graph of P. Arcs are indicated by dashed lines, edges by

solid lines.

18 Daniel and Semple

Algorithm: DESCENDANT(D(P'), v', T')

Input: The descendancy graph of a collection P' of rooted fully-labeled
trees.
Output: A rooted fully-labeled tree T' with root vertex v' that ancestrally
displays P' or the statement no possible labeling.

1. Let S0 denote the set of vertices of D(P') that have in-degree zero
and no incident edges.

2. If S0 is empty, then halt and return no possible labeling.
3. Otherwise,

(a) Delete the elements of S0 (and their incident arcs) from D(P')
and denote the resulting graph by D(P')\S0.

(b) Let S1, S2, …, Sk denote the vertex sets of the arc components of
D(P')\S0.

(c) Delete all edges of D(P')\S0 the end vertices of which are in
distinct arc components of this graph.

(d) For each element i ∈ {1, 2, …, k}, call DESCENDANT(D(P')⏐Si,
v'i, T'i). If DESCENDANT(D(P')⏐Si, v'i, T'i) returns a tree, then
assign the labels in S0 to v' and attach T'i to v' via the edge {v'i,
v'}.

The general approach of the algorithm DESCENDANT is the same as that
of FULLY-LABELEDBUILD. In particular, it attempts to construct a rooted
fully-labeled tree that ancestrally displays P' beginning with the root and
moving towards the leaves. To illustrate ANCESTRALBUILD, the rooted semi-
labeled tree shown in Figure 8 is the result of applying this algorithm to the
collection of rooted semi-labeled trees shown in Figure 7.

Remark.

1. Because DESCENDANT considers proper restrictions of D(P)
successively, it is clear that DESCENDANT returns either “no possible
labeling” or a rooted semi-labeled tree. ANCESTRALBUILD consequently
returns either “P is not ancestrally compatible” or a rooted semi-labeled
tree.

2. Because every tree in P' is fully-labeled, it follows that the only labels in
S0 at any iteration are root labels of the corresponding restrictions of P'.
Thus, in regards to the last step of DESCENDANT, P' ⏐Si is a rooted fully-
labeled tree for all i. This fact will be useful later.

Supertree algorithms for nested taxa 19

Theorem 4.1. Let P be a collection of rooted semi-labeled trees. Then
ANCESTRALBUILD applied to P either:

(i) returns a rooted semi-labeled tree that ancestrally displays P if P is
ancestrally compatible, or

(ii) returns the statement P is not ancestrally compatible otherwise.

The proof Theorem 4.1 makes use of the following lemma. The proof
follows the approach used in the proof of Lemma 3.4 and is omitted.

Lemma 4.2. Let P be a collection of rooted semi-labeled trees. Let P' be a
set of rooted fully-labeled trees obtained from P by adding descendants to
leaves and then adding distinct new labels to the resulting collection. Then P
is ancestrally compatible if and only if P' is ancestrally compatible.
Moreover, if T' is a rooted semi-labeled tree that ancestrally displays P',
then T' ancestrally displays P.

Proof of Theorem 4.1. By Lemma 4.2, it suffices to show that the theorem
holds if P is a collection of fully-labeled trees with no multi-labeled leaf
vertices. Suppose that P is ancestrally compatible, and let T be a semi-
labeled tree that ancestrally displays P. We show that under this assumption,
ANCESTRALBUILD applied to P outputs a rooted semi-labeled tree. Assume
that this is not the case. Then, at some iteration of ANCESTRALBUILD, there
is subset S of L(P) for which all vertices of D(P)⏐S either have in-degree
greater than zero or are incident with an edge. Because T ancestrally
displays P, it is seen easily that T ⏐S ancestrally displays P⏐S. Let P be a
path of T ⏐S from the root to a leaf and consider the first label, y say, that is
met on this path. In D(P)⏐S, either y does not have in-degree zero or it is
incident with an edge. In the first case, this implies that there is another
element, x say, of S such that in some tree of P we have x is a proper
ancestor of y. But y was the first label met in P, and so x is not a proper
ancestor of y in T ⏐S and, in particular, in T; a contradiction. Therefore, we
can assume that, in D(P)⏐S, y has in-degree zero and is incident with an
edge. But then, because P⏐S is a collection of rooted fully-labeled trees (see
remark above), all trees in P⏐S in which y is a label has y as a root label.
This means that, in D(P)⏐S, y cannot be incident with any edge. This last
contradiction completes this direction of the proof.

For the converse, suppose that ANCESTRALBUILD outputs a rooted semi-
labeled tree T. We show that T ancestrally displays P. Let T1 be a member
of P, and let a and b be elements of L(P). If a <T1 b, then, because a is an
element of an arc component, there is an arc from a to b in the associated
descendancy graph. Because ANCESTRALBUILD returns T, there must be
some iteration at which a is an element of S0, but b is a vertex of an arc

20 Daniel and Semple

component of the graph obtained by deleting the elements of S0 including a.
It now follows by the description of the descendancy graph that a <T b.

Next assume that a is not comparable to b in T1. Then, in D(P), the
vertices a and b are joined by an edge. Because ANCESTRALBUILD outputs
T, this edge is deleted eventually, but not until a and b are in separate arc
components of some restriction of D(P). This implies that, in T, there is a
cluster in which a is an element and not b, and there is a cluster in which b is
an element and not a. In other words, a is not comparable to b in T.

Lastly, let X1 denote the label set of T1. We complete the converse and
thus the proof by showing that T ⏐X1 refines T1. Let C1 be a cluster of T1. It
suffices to show that C1 is a cluster of T ⏐X1. Let X'1 be the subset of X1 that
labels the vertex u of T1 corresponding to C1. Because T1 is fully-labeled, X'1
is non-empty. Either X'1 consists of a single element or u is not a leaf vertex.
In the first case, this element is comparable trivially with itself. In the second
case, for all a, b ∈ X'1, there is a label c of T1 such that a <T1 c and b <T1 c,
and so, by an earlier argument, a <T c and b <T c. Hence, a is comparable
with b in T. Furthermore, the same arguments imply that, for all y ∈ C1 –
X'1, for all x ∈ X'1, and for all z ∈ X1 – C1, we have x is a proper ancestor of y
in T, and either z is a proper ancestor of x or x and z are not comparable in T.
It now follows that C1 is a cluster of T ⏐X1. �

A very similar analysis to that used to show that the running time of
SEMI-LABELEDBUILD is polynomial in the size of L(P) shows that the
running time of ANCESTRALBUILD is also polynomial in the size of L(P).
We leave the details to the reader.

Final Remarks.

1. Some extensions of the problems described in this chapter are considered
by Daniel in his Masters thesis (in prep.). One in particular is the
following. In Figure 6, two of the interior vertices are multi-labeled. For
a variety of reasons, such as the labels representing taxa of different
levels or the labels representing different taxa of the same rank (e.g.,
genera), it might have been predetermined that it is not possible for two
such labels to label the same vertex. In some cases, such as the former,
one way to resolve the problem is to include an additional rooted semi-
labeled tree in the input consisting of a root vertex and a leaf where the
higher taxon labels the root vertex. However, for many cases, no such
resolution is be possible. Hence, a desirable extension to the original
problem of HIGHER TAXA COMPATIBILITY is to include a collection of
pairs of labels in the instance and then ask the question of whether there
exists a rooted semi-labeled tree that perfectly displays P and has the

Supertree algorithms for nested taxa 21

property for any such pair {a, b}, a and b label distinct vertices.
Surprisingly, Daniel shows that the resulting problem is NP-complete.

2. Both the algorithms described in this chapter are “all-or-nothing”
algorithms. Each algorithm returns either a rooted semi-labeled tree with
certain properties if one exists or a statement that there is no such tree. In
practice, this limits the use of these algorithms. However, we believe that
there is a MINCUTSUPERTREE-type approach (see Semple and Steel,
2000; Page, 2002) to resolving this limitation, so that the two algorithms
will alway output a rooted semi-labeled tree.

Acknowledgements

We thank Olaf Bininda-Emonds, Sebastian Böcker, and Rod Page for their
valuable comments. The first author was supported by the New Zealand
Institute of Mathematics and its Applications funded programme
Phylogenetic Genomics, and the second author was supported by the New
Zealand Marsden Fund.

References

AHO, A. V., SAGIV, Y., SZYMANSKI, T. G., AND ULLMAN, J. D. 1981. Inferring a tree from
lowest common ancestors with an application to the optimization of relational expressions.
SIAM Journal on Computing 10:405–421.

BRYANT, D., SEMPLE, C., AND STEEL, M. 2004. Supertree methods for ancestral divergence
dates and other applications. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees:
Combining Information to Reveal the Tree of Life, pp. xxx–xxx. Kluwer Academic,
Dordrecht, the Netherlands.

PAGE, R. D. M. 2002. Modified mincut supertrees. In R. Guigó and D. Gusfield (eds),
Algorithms in Bioinformatics, Second International Workshop, WABI 2002, Rome, Italy,
September 17–21, 2002, Proceedings, pp. 537–552. Springer, Berlin.

PAGE, R. D. M. 2004. Taxonomy, supertrees, and the Tree of Life. In O. R. P. Bininda-
Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life,
pp. xxx–xxx. Kluwer Academic, Dordrecht, the Netherlands.

SEMPLE, C. AND STEEL, M. 2000. A supertree method for rooted trees. Discrete Applied
Mathematics 105:147–158.

SEMPLE, C. AND STEEL, M. 2003. Phylogenetics. Oxford University Press, Oxford.

