Chapter 7

SUPERTREE ALGORITHMSFOR NESTED

TAXA

Philip Daniel and Charles Semple

Abstract:

Keywords:

1.

Most supertree agorithms combine collections of rooted phylogenetic trees
with overlapping leaf sets into a single rooted phylogenetic tree. It is implicit
in all these algorithms that the leaves of the rooted phylogenetic trees in the
input collection, as awhole, represent non-nested taxa. Thus, for example, the
“domestic dog” and “mammal” cannot be represented by two distinct leavesin
such a collection because the former is nested inside the latter. In practice,
however, one often wants to combine rooted trees in which taxa are nested. In
other words, to combine rooted trees in which the leaves as well as some of the
interior vertices are labeled. These interior labels represent taxa at a leve
higher than that of their descendants (e.g., families versus genera, or genera
versus species). Moreover, it could happen that a leaf of one of the input trees
represents ataxon that is represented by an interior label of another tree. In this
chapter, we describe two supertree algorithms for combining rooted trees in
which the leaves as well as some of the interior vertices are labeled. Called
“rooted semi-labeled trees’, these trees are more general than rooted
phylogenetic trees in that not only are their leaves labeled, but some of their
interior vertices might be as well. Both agorithms are polynomial-time in the
size of the input and are motivated by a problem posed by Page in an earlier
chapter called “ Taxonomy, Supertrees, and the Tree of Life’.

BuILD; interior labels; leaf labels; nested taxa; taxonomy

Introduction

Throughout the chapter, we will assume that the reader is familiar with the
basics of phylogenetic trees.

Bininda-Emonds, O. R. P. (ed.) Phylogenetic Supertrees. Combining Information to Reveal
the Tree of Life, pp. 1-21. Computational Biology, volume 3 (Dress, A., seriesed.).
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

2 Daniel and Semple

Figure 1. Two rooted semi-labeled trees.

A rooted semi-labeled tree (on X) is an ordered pair (T; @) consisting of a
rooted tree T with vertex set V and root vertex p, and amap ¢: X — V with
the propertiesthat, for all ve V—{p} of degree at most two, ve ¢(X) and, if
p has degree zero or one, p € @(X). Viewing a rooted tree with edges
directed away from the root, every vertex of out-degree O or 1 is labeled by
an element of X. Intuitively, a rooted semi-labeled tree is simply a rooted
tree in which the leaves and some of the interior vertices are labeed. We
could avoid some of the technicalities of the formal definition, but then some
of the generality is also lost. Rooted semi-labeled trees on X are also called
rooted X-trees. Two rooted semi-labeled trees are shown in Figure 1. Rooted
X-trees extend the notion of rooted phylogenetic X-trees; in the case of the
latter, @ isabijective map from X into the set of leaves of T, and the root has
degree at least two.

Let T = (T; ¢) be a rooted X-tree and let X' be a subset of X. The
restriction of 7'to X', denoted 7' | X', is the rooted X'-tree that is obtained
from the minimal rooted subtree of 7 induced by the elements of the set
#(X') by suppressing all vertices of out-degree O or 1 not in ¢X'). We say a
rooted X-tree T displays a rooted X' tree 7'if X' = X and T|X is a
refinement of 7 For example, in Figure 1, T displays 7. A collection 2of
rooted semi-labeled trees is compatible if there exists a rooted semi-labeled
tree T 'that displays every treein 7 in which case, T displays 2

One of the first supertree methods is due to Aho et al. (1981). Intended
origindly for relationa databases, their method (called BuILD) provides a
polynomial-time solution to the following problem: given a collection 2 of
rooted phylogenetic trees, does there exist a rooted phylogenetic tree that
displays Zand, if so, can we construct such a rooted phylogenetic tree? In
terms of evolutionary biology, where one views arooted phylogenetic tree as
representing the ancestral relationships of a set of present-day species, a
rooted phylogenetic tree T displays Zif, up to “polytomies’, al the ancestral
relationships of every tree in Zis preserved in 7. As noted in Semple and
Steel (2003), BUILD can be extended easily to determine the compatibility of
a collection P 'of rooted semi-labeled trees in polynomial time, and, if they

Supertree agorithms for nested taxa 3

Figure 2. Tperfectly displays T

are compatible, to construct a rooted semi-labeled tree that displays this
collection. However, under this notion of compatihility, it is possible that P’
is compatible, but the only rooted semi-labeled trees that display 2 'al have
aparticular 1abel 1abeling a leaf that labeled an interior vertex of atreein P’
origindly. Hence, this notion of compatibility does not preserve
descendancy and so, for practical purposes, it appears that it might not be of
much use for collections of rooted semi-labeled trees.

In this chapter, we present two polynomial-time supertree agorithms for
rooted semi-labeled trees. The first algorithm provides a solution to a
prablem posed by Page (2004) in another chapter of this book. We call this
problem HIGHER TAXA COMPATIBILITY. A rooted X-tree T perfectly
displays a rooted X'-tree T” if X' = X and T'|X' is isomorphic to 7" In
Figure 2, T perfectly displays 7 Furthermore, a collection 2 of rooted semi-
labeled treesis perfectly compatible if there exists a rooted semi-labeled tree
T that perfectly displays every tree in P, in which case, T perfectly displays
P. Note that if 7 perfectly displays T, then T displays 7' However, the
converse does not hold necessarily.

Problem: HIGHER TAXA COMPATIBILITY

Instance: A collection 2 of rooted semi-labeled trees.
Question: Does there exist arooted semi-labeled tree that perfectly displays
P and, if so, can we construct such arooted semi-labeled tree?

The motivation for HIGHER TAXA COMPATIBILITY arises when one wants
to use a supertree method for combining evolutionary trees the interna
vertices of which as well as their leaves are labeled. Such trees contain taxa
at different taxonomic levels. Indeed, it could happen that a higher taxon
labels an internal vertex in one of the trees we want to combine, but it |abels
a leaf in another. The agorithm that we present to solve this problem is
called SEMI-LABELEDBUILD.

4 Daniel and Semple

Our firgt response in trying to solve HIGHER TAXA COMPATIBILITY was
to use the extension of BuiLD for determining the compatibility of a
collection of rooted semi-labeled trees in some way. However, despite SEMI-
LABELEDBUILD having a similar description to this extension, it seems that
no straightforward modification solves this problem.

The notion of perfectly displays is very restrictive in the sense that a
collection 2 of semi-labeled treesis perfectly compatible precisely if thereis
a rooted semi-labeled tree that preserves al the most recent common
ancestor relationships described by P. Thus, perfectly displays does not
allow for the resolution of any polytomies in 2. To accommodate the
possible resolution of polytomies, but still preserve all the descendancy
relationships in P, we introduce a second notion of displays called
“ancestraly displays’ in the second half of this chapter. In comparison with
the other two notions of displays, ancestrally displays is weaker than
perfectly displays because it might not preserve all the most recent common
ancestor relations, but it is stronger than the usual notion of displays because
it preserves descendancy. The second algorithm in this chapter determines
the compatibility of 2 under this second notion.

Unless otherwise stated, the notation and terminology in this chapter
follow Semple and Steel (2003). The chapter is organized as follows. In
Section 2, we describe some necessary preliminaries. In Section 3, we
present SEMI-LABELEDBUILD and show that it does indeed provide a
polynomial-time solution to HIGHER TAXA COMPATIBILITY. The last section
defines ancestrally displays formally and presents a polynomial-time
algorithm for solving the associated compatibility problem.

2. Preliminaries

Let 7= (T; ¢) be arooted semi-labeled tree. The tree T and the map ¢ are
called the underlying tree and labeling map of 7. The domain of ¢ is the
labdl set of T and is denoted £(7T). We shall often refer to the elements of
L(T) aslabels. If visavertex of T, we say that the elements of ¢™(v) label
v. If pis the root of T, then the elements of ¢(p) are called root labels.
Furthermore, T is fully labeled if ¢™(v) is non-empty for all vertices v of T.
For a collection P of rooted semi-labeled trees, we denote the set U, »
L(T) by L(P).

For arooted tree T, a particularly useful partial order <; on the vertex set
V of T isobtained by setting u < v if the path from the root of T to v includes
u. If u<r v, we say that v is a descendant of u or, alternatively, u is an
ancestor of v. Furthermore, u and v are comparable under <; if either u <y v
or v <t u; otherwise u and v are not comparable. Observe that the partial

Supertree agorithms for nested taxa 5

order < has the property that, for every pair of elements, the greatest lower
bound exists. The greatest lower bound of x and y under <; is called the most
recent common ancestor of x and y and is denoted mrcay (X, Y).

The above partial order extends naturally to the label set of a rooted
semi-labeled tree as follows. Let 7= (T; ¢) be arooted X-treeand let a, b €
X. Then, a<;bif ¢*(a) <r ¢™(b), in which case, b is a descendant label of a
or, dternatively, ais an ancestor label of b. Furthermore, for dl a, be X, we
let

mrca, (a, b) = ¢ (mrcar (¢(a), ¢(b))).

Note that, because 7T'is only semi-labeled, this set could be empty. However,
if Tisfully-labeled, then this set is non-empty.

Let 7= (T; ¢) be arooted semi-labeled tree and let u be a vertex of T. An
element a of £(7) is a descendant label of u if u < ¢*(a). The set of
descendant labels of a non-root vertex v of T is caled a cluster and we often
refer to it as the cluster of T corresponding to v. The collection of clusters of
Tis denoted by (7). Up to isomorphism of the underlying trees, no two
rooted semi-labeled trees have the same collection of clusters; thus, arooted
semi-labeled tree 7 is determined completely by its set of clusters (see
Theorem 3.5.2 in Semple and Steel, 2003). Indeed, 7 can be constructed
quickly and easily from H(T).

In Section 1, we defined the restriction of arooted X-tree 7 to a subset X'
of X and denoted it by 7 | X'. An equivalent definition of 7" | X' is the rooted
X'-tree for which

HT|X)={CAX:Ce H(T)and CAX £}

This equivalence will prove useful in this chapter.

3. The SEMI-LABELEDBUILD algorithm

In this section, we describe the algorithm SEMI-LABELEDBUILD. We begin
by defining a particular graph that will play a prominent role in the
algorithm. A vertex of a graph isisolated if it is incident with no edges. Let
P be a coallection of rooted fully-labeled trees. The cluster and root-label
graph of P, and denoted G(2), has vertex set £(2) and an edge set consisting
of three types of edgesthat are added sequentially as follows:

() First, two (not necessarily distinct) vertices are joined by a blue edge
if they appear in the same cluster of a fully-labeled tree in . Note

6 Daniel and Semple

Figure 3. A collection G() of rooted fully-labeled trees.

thisimplies that, for any element of £(?) that isin a cluster, thereis

aloop joining this element to itsalf.

(i) Second, if aisaroot label of afully-labeled tree, T say, in 7 and a
is not isolated, then join a to every other label in £(T) by a blue
edge.

(iii) ~ Third, once al of the edges associated with (i) and (ii) have been
added, do the following:

(a) For all isolated verticesc, if thereisatree T'in Pwith labelsa, b
€ L(7T) such that c € mrca; (a, b), join a and b with ared edge
labeled c. This labeled edge can be in paralel with a blue edge
or other red edges (see remark below).

(b) For any two vertices joined by ared edge labeled ¢, if thereisa
path connecting them consisting of just blue edges, delete every
red edge labeled ¢ and join c to each d € £(2) with ablue edge
if both c and d are in the label set of some particular treein 2.

(c) Repeat (b) until there are no pairs of vertices joined by red edges
that are connected by a path consisting of just blue edges.

(d) Delete all remaining red edges.

We call a blue edge of G(P) a type (i), (ii), or (iii) edge depending upon
whether it is added at Step (i), (ii), or (iii), respectively, in the construction
of G(P).

Remark. In the construction of G(2), once a blue edge has been added to
join two, not necessarily distinct, vertices, no further blue edge need be
added in paralel with this edge. However, red edges with distinct labels are
added in paralld because each such edge plays a particular role in the
construction.

As an exampl e of the above construction, et 2 be the collection of rooted
fully-labeled trees shown in Figure 3. Then, omitting loops, the construction
of G(P) to the end of Step (ii) is shown in Figure 4. At Step (iii)(a), red
edges are added between pairs {a, b}, {d, a}, {d, b}, {d, ¢}, {d, |}, {e a},
{e, b}, {ec}, {ej}, {ha}, {h b}, {hc}, {hj}, {h d} and{h, €. Thered

Supertree agorithms for nested taxa 7

ke a

Figure 4. Construction of G(P) at the end of steps (i) and (ii).

K a

Figure 5. Completed construction of G(P).

edge between a and b gives blue edges between k and a and between k and b
at Step (iii)(b). All other red edges are deleted at Step (iii)(d) without having
affected the graph. With loops omitted, the final construction of G(?) is
shown in Figure 5.

Before describing SEMI-LABELEDBUILD, we need to define one further
construction. Let 7= (T; ¢) be arooted semi-labeled tree on X, where T has
vertex set V. We say that arooted fully-labeled tree 7; = (T; ¢,) on Xy, where
X < X3, has been obtained from 7 by adding distinct new labels if, for all
distinct u, v € V, the following properties are satisfied:

1. If ¢™(v) isnon-empty, then ¢1'1?v) = ¢ (V).
2. 1f ¢"(v) isempty, then | ¢, (v)| = 1.
3. If ¢™(u) and ¢™(v) are both empty, then ¢:™(u) # ¢1 (V).

Intuitively, 7; has been obtained from 7 by labeling non-labeled vertices of
T singularly with distinct new labels. For a collection 7 of rooted semi-
labeled trees, we say that P, has been obtained from 2 by adding distinct
new labels if it has been obtained by adding distinct new labels to every tree
in 2 so that, for any pair of trees, no two new labels are the same.

Essentialy, all the work in SEMI-LABELEDBUILD is done by a subroutine
called FULLY-LABELEDBUILD. We describe each in turn.

8 Daniel and Semple
Algorithm: SEMI-LABELEDBUILD(P, T)

Input: A collection P of rooted semi-labeled trees.
Output: A rooted semi-labeled tree T that perfectly displays 2 or the
statement not perfectly compatible.

1. Construct a collection 27’ of rooted fully-labeled trees from 2 by

adding distinct new labels.

Call the subroutine FULLY-LABELEDBUILD(P, V', T).

If FULLY-LABELEDBUILD returns not perfectly compatible, then

return not perfectly compatible.

4. If FULLY-LABELEDBUILD returns a rooted fully-labeled tree T, then
remove the added labels and return the resulting rooted semi-labeled
tree 7.

2.
3.

Algorithm: FULLY-LABELEDBUILD(?, V', T

Input: A collection P ‘of rooted fully-labeled trees.
Output: A rooted fully-labeled tree 7' with root vertex V' that perfectly
displays P ‘or the statement not perfectly compatible.

1. Construct the cluster and root-label graph G(?) of P!

2. If G(P) has no isolated vertices, then halt and return not perfectly
compatible.

3. Otherwisg, let S;, S,, ..., S¢ denote the vertex sets of the connected
components of G(2) not consisting of an isolated vertex, and let S,
denote the set of isolated vertices of G(2).

4. |Initialize T'with asingle root vertex V' and assign al labelsin S, to
V.

5. Foreachi e {1, 2, ..., k}, cal FULLY-LABELEDBUILD(?, V, T,
where P/ is the collection of rooted fully-labeled trees obtained from
P 'by restricting each tree in P 'to S;. If FULLY-LABELEDBUILD(?,
V', T') returns atree, then attach 77to V' viathe edge {V';, V'}.

Intuitively, for a set 2’ of rooted fully-labeled trees, FULLY-
LABELEDBUILD attempts to construct a rooted fully-labeled tree 7' that
perfectly displays 2 "by essentialy constructing (7). This is done by
beginning with £(?) and breaking it down successively into digoint
subclusters. How clusters are broken up in this way is determined by the
connected components of the associated cluster and root-label graph.
Components consisting of isolated vertices are distinguished from those not
consisting of isolated vertices. This process continues provided the

Supertree agorithms for nested taxa 9

i, f

e h K,

d g a b ¢

Figure 6. The rooted fully-labeled tree outputted by FuLLY-LABELEDBUILD when
applied to the collection of trees shown in Figure 3.

associated cluster and root-label graph has at least oneisolated vertex at each

iteration, in which case, FULLY-LABELEDBUILD returns a rooted fully-

labeled tree. By contrast, if the associated cluster and root-label graph has no
isolated vertices at some iteration, then FULLY-LABELEDBUILD returns “ 2’
is not perfectly compatible”.

Remark.

1. Itisanimmediate consegquence of Lemma 3.2 below that, for al i in Step
4 of FULLY-LABELEDBUILD, P/ is indeed a collection of rooted fully-
labeled trees asindicated in this step.

2. Using the fact that FULLY-LABELEDBUILD considers proper restrictions
of the input collection of rooted fully-labeled trees successively in Step 4
of the algorithm, it is seen easily that FULLY-LABELEDBUILD returns
either “ 2 'is not perfectly compatible’ or arooted fully-labeled tree with
label set £(P). Consequently, SEMI-LABELEDBUILD returns either “P is
not perfectly compatible” or a rooted semi-labeled tree with label set
L(P).

To illustrate FULLY-LABELEDBUILD, the rooted fully-labeled tree shown
in Figure 6 is the result of applying this algorithm to the collection of rooted
fully-labeled trees shown in Figure 3.

The main result of this chapter isthe following theorem.

Theorem 3.1. Let P be a collection of rooted semi-labeled trees. Then SEMI-
LABELEDBUILD applied to P either:
() returns a rooted semi-labeled tree that perfectly displays 2 if P
is perfectly compatible, or
(i) returnsthe statement 2 is not perfectly compatible otherwise.

To prove Theorem 3.1, we establish first some lemmas.

10 Daniel and Semple

Lemma 3.2. Let P be a collection of rooted fully-labeled trees and consider
the cluster and root-label graph G(P) of P. Let 7 be an element of 2 and let
So denote the set of isolated vertices of G(2). Then the following hold:
() If L(P) N So is non-empty, then all the elements of this set are
root labels of 7. Furthermore, if disaroot label of Tandd € S,
then all root labels of ‘7 are elements of S,.
(i) If no root label of T'is an element of Sy, then £(7T) is a subset of
the vertex set of some connected component of G(2).
(iii) Supposethat a root label of T'is an element of S,. Let A and B be
distinct maximal clusters of 7. Then A and B are subsets of the
vertex sets of distinct connected components of G(2).

Proof. Using the construction of G(2P), the proofs of (i), (ii), and (iii) are
straightforward. We omit the details. O

Lemma 3.3. Let 7; be a rooted fully-labeled tree on X; and let 7, be a
rooted semi-labeled tree on X, such that X; c X,. Then 7, perfectly displays
T, if and only if, for all a, b e Xy,

mrcaz (a, b) = mrcag, (a, b) | Xu.

Proof. For each i € {1, 2}, let #; denote the collection of clusters of T; plus
Xi. Suppose that 7, perfectly displays 7T;. Let a, b, c € X; and suppose that
ce mrcay (a, b). Then, for any C, € 4, {a, b} isasubset of C, if and only
if ce C,. Because H; = 5‘{2|X1, it follows that, for any C, € 7, {a, b} isa
subset of C, if and only if ¢ € C,. Therefore, ¢ is a common ancestor of a
and b in T, and no common ancestor of a and b in 75 is a proper descendent
of cin T,. Thus, c € mrca,, (a, b) | X4, and, more generdly, mrcag (a, b) <
mrcay, (& b) | X For al xin X, — mrcay (a, b), there is either an element of
JH, containing x but not c, or there is an element of #; containing ¢ but not
X. Thus, because H; = H, | Xy, there is either an element of 7, containing x
but not ¢ or there is an element of #, containing ¢ but not x. Therefore, ¢
and x do not labdl the same vertex of 75, and S0 x ¢ mrcag (a, b) | X;. This
shows that mrcay; (a, b) = mrcay, (a, b) | Xu.

Now suppose that, for all a, b € X;, we have mrca; (a, b) = mrca; (a, b)
N Xy, but H; # 5‘{2|X1. If 5‘{2|X1 is a proper subset of #, then 7T; is a
proper refinement of T2|X1 and it is checked easily that there is a pair of
digtinct elements a, b € X; such that mrca; (a, b) # mrcag (a, b)|X1.
Therefore, we can assume that there is an element, C, say, of 74, | X; that is
not an element of ;. Let C, be the minimal cluster of 7; that contains C,
and let x be an element of C, — C.. If x is a label of the vertex of T, that
corresponds to C,, then, by the minimality of C,, there is a pair of distinct

Supertree agorithms for nested taxa 11

dements a, b € C, such that x e mrcay (a, b), but x ¢ mrcay, (8, b) | X.. It
follows that we can assume also that no e ement of C; — C, labels the vertex
of 77 corresponding to C,. But then, if cissuch alabdl, it is seen easily that
mrcag (X, €) # mrcag (X, €) | X1. This completesthe proof of Lemma3.3.]

Lemma 3.4. Let P be a collection of rooted semi-labeled trees. Let P’ be a
set of rooted fully-labeled trees obtained from 2 by adding distinct new
labels. Then P is perfectly compatible if and only if P'is perfectly
compatible. Moreover, if 7'is a rooted semi-labeled tree that perfectly
displays P, then T 'perfectly displays P.

Proof. Suppose that P is perfectly compatible and let 7 be a rooted semi-
labeled tree that perfectly displays 2. For each element ¢ € L(P) — L(P),
there is a unique rooted fully-labeled tree, 7; 'say, in P 'for which c' €
L(T,). Furthermore, because ¢' is one of the added labels, ¢' labels a vertex
of T, 'of degree at |least three and so there exist labels a and b of 7; such that
mrca (a, b) = {c'}, where T; isthe tree in P corresponding to 7; ', because
all leaves of T; must be label ed.

Now let 7" be the rooted semi-labeled tree obtained from 7~ by adding
the labels of L(P) — L(P) so that if ¢' € L(P) - L(P), ¢ € T;', and
mrcag (a, b) ={c'} for somelabelsa and b of 73, then c' € mrcas (a, b). By
the previous paragraph and the fact that 7 perfectly displays 7, it is seen
easily that, for all a, be £(771"),

mrca,; (a, b) = mrca, (a, b) | £(77")

It now follows by Lemma 3.3 that 7' perfectly displays 7; “and hence P!
Therest of the proof of Lemma 3.4 is straightforward and omitted. O

Lemma 3.5. Let P be a collection of rooted fully-labeled trees. If P is
perfectly compatible, then there exists a rooted fully-labeled tree that
perfectly displays P with label set £(P).

Proof. Suppose that P is perfectly compatible and let 7= (T; ¢) be arooted
semi-labeled tree that perfectly displays 2 and has label set £(P). Now
suppose that among all rooted semi-labeled trees that perfectly display 2 and
have label set £(P), the tree T has the least number of unlabeled vertices. If
T has no unlabeled vertices, then the lemma is proved. Therefore, assume
that there is a vertex, u say, of T that is unlabeled. Because 7T is a rooted
semi-labeled tree, u has out-degree at least two. Furthermore, because T
perfectly displays 27 and P is a collection of rooted fully-labeled trees, it
follows by Lemma 3.3 that there is no tree 7; in P with labels a and b such

12 Daniel and Semple

that mrca; (¢(a), #(b)) = u. By Lemma 3.3 again, this in turn implies that if
Vi, Vo, ..., V, are immediate descendants of u in T, then the rooted semi-
labeled tree obtained from T by contracting {u, v} for al i and labeling the
identified vertex with Uicq1 . q)l'l(vi) perfectly displays P. But the latter
tree has one less unlabeled vertex than 7. This contradiction completes the
proof of the lemma. 0

It follows from Lemma 3.4 and the description of SEMI-LABELEDBUILD
that Theorem 3.1 is an immediate consegquence of the following theorem.

Theorem 3.6. Let P be a collection of rooted fully-labeled trees. Then
FULLY-LABELEDBUILD applied to 2 either:
() returns a rooted fully-labeled tree that perfectly displays 2 if P
is perfectly compatible, or
(i) returnsthe statement 2 is not perfectly compatible otherwise.

Proof. First suppose that 7 is perfectly compatible. Under this assumption,
we show that FULLY-LABELEDBUILD applied to 2 outputs a rooted fully-
labeled tree. If this is not the case, then FULLY-LABELEDBUILD outputs not
perfectly compatible, in which case, the associated cluster and root-label
graph, G say, has no isolated vertices at some iteration of the algorithm. Let
S denote the vertex set of G. Because P is perfectly compatible, PlSis
perfectly compatible and so, by Lemma 3.5, there exists a rooted fully-
labeled tree T with labeled set S that perfectly displays P|S. Let c be aroot
label of 7. Then, because T perfectly displays P| S, every tree of P|S in
which cisalabel has the property that cisaroot label. Furthermore, because
G has no isolated vertices, ¢ must be joined to an element of S—{c} in G by
some edge and this edge must be a type (iii) edge; for otherwise, c is a non-
root label of some treein ’P| S. It now follows that there exists atree 77 in
P| S such that a, b, ¢ are distinct vertices of L(Ty), ce mrcag (a, b), and, in
G, there is a path joining a and b. We next show that the existence of this
path impliesthat a and b are elements of a cluster of 7.

Let G, denote the graph with vertex set S and the edge set of which
consists of al type (i) and (ii) edges of G. Let u and v be any two vertices of
Go. If {u, v} is an edge of this graph, then, using the fact that 7 perfectly
displays P, it is checked easily that u and v must be in the same maximal
cluster of 7. Clearly, being in the same maximal cluster of a given rooted
semi-labeled tree is atransitive relation and so if thereis a path in Gg joining
two vertices, then these two vertices are in the same maximal cluster of 7.
Now G is obtained from G, by adding sets of edges iteratively that join a
particular root label of treesin ?| S to dl its descendant labels. Let E;, E,,
..., Ex denote the corresponding sequence of these added sets of edges, and

Supertree agorithms for nested taxa 13

let z, 7, ..., z denote the associated sequence of particular root labels. Let
E, denote the edge set of Gy and, for adl i €{1, 2, ... K}, let G; denote the
graph with vertex set Sandedgeset EpUE; U E, U ... UE.

Consider the graph G;. By the construction of G,, there is arooted fully-
labeled tree T, in P| S with root label z and distinct proper descendant
labels x; and y; such that zz € mrcag; (X1, y1) and, in Gy, there is a path
joining x; and y;. By the existence of this path and the previous paragraph, X;
and y; are in the same maximal cluster of 7. Because T perfectly displays
?| Sand z € mrcag (X, 1), it follows that zz must also be in this particular
maximal cluster of 7. Because all the edges in E; contain z; and because Gy
has the transitive property mentioned in the last paragraph, G; aso has the
property that if there is a path joining two vertices in G,, then these two
vertices are in the same maximal cluster of 7. Continuing in this way for G,
Gs, ..., Gy and lastly for Gy, we deduce that Gy, and hence G(2| S), also
have this edge transitive property. But then, because a and b are joined by a
path in G(?|S), a and b are in the same maximal cluster of 7 and so c ¢
mrcas (a, b). This contradiction shows that FULLY-LABELEDBUILD does
indeed output arooted fully-labeled tree if 2 is compatible.

Now suppose that FULLY-LABELEDBUILD outputs a rooted fully-labeled
tree 7. Here, we show that T perfectly displays P. Let 7; be a rooted semi-
labeled tree in P with label set X; and let a, b € X;. By Lemma 3.3, it
suffices to show that mrcay, (a, b) = mrca, (a, b) | X.

We show first that if ¢ € mrcay (a, b), then ¢ € mrcaz(a, b) | X1.
Throughout this part of the proof, we freely use the fact that, because ¢
mrcaz (a, b), we have c € mrcay (a, ¢) and ¢c € mrcay (b, €). Let S be the
minimal cluster of 7 that contains a, b, and ¢, and consider the graph
G(:P| S). If cisnot isolated, then either a and ¢ are in the same cluster of a
fully-labeled tree in 2 or c is the root label of a fully-labeled tree in 2. In
both cases, it follows that a and ¢ are in the same connected component of
G(:P| S). Similarly, b and c are in the same connected component of G(ZP| S).
It now follows that a, b, and ¢ must be in the same connected component of
G(:P| S). Thisimplies that S is not the minimal cluster of 7 that contains a,
b, and c. Therefore, we can assume that c is an isolated vertex of G(?| S)
and, moreover, that it labels the vertex of T corresponding to S.

If a, b, and c label the same vertex of 73, then, by symmetry, a, b, and ¢
are all isolated vertices of G(’.P| S) and s0 &, b, and c label the vertex of T
corresponding to S. Hence, inthiscase, ce mrcaz(a, b) | X1

Now assume that a and b do not label the same vertex of 73, but that b
and c do. Then, because c is isolated, it follows by the argument above that b
isaso an isolated vertex of G(’P| S). Furthermore, b aso labels the vertex of
T corresponding to S. Because ¢ € mrca; (a, b), aisnot isolated in G(’.P| S)
and so c € mrcar(a, b) | Xu.

14 Daniel and Semple

Lastly, assume that no pair of a, b, and c label the same vertex of 7.
Because c is isolated, ¢ must have been isolated after Step (ii) in the
construction of G(’.P| S), and so the relation c € mrcay (a, b) implies that a
and b are joined by a red edge labeled ¢ in Step (iii)(a) of this construction.
Moreover, because ¢ remains isolated at the end of the construction, a and b
must be in separate connected components of G(:P|S). Therefore, ¢ €
mrca; (a, b) | Xu.

We have now established mrcay; (a, b) = mrca, (a, b) | X, It follows
from Lemma 3.2 that, for al a, b e £(7T7), aand b label the same vertex of T
precisely if a and b label the same vertex of 7;. By the argument in the
preceding paragraph, mrca (a, b) » mrca;(a, b) | X is non-empty. Hence,
mrcaz (a, b) = mrca,(a, b) | X;. O

We now consider the running time of SEMI-LABELEDBUILD applied to a
collection P of rooted semi-labeled trees. Because it is more than likely that
there is a faster method for determining if P is perfectly compatible, a
detailed andysis is omitted. The point is to show that there exists a
polynomial-time agorithm (in the size of £(?P)) for determining perfect
compatibility of P.

Let 2 'be a collection of rooted fully-labeled trees obtained from 2 by
adding distinct new labels. Because al vertices of degree at most two are
labeled in arooted semi-labeled tree, the only possible unlabeled vertices are
interior vertices with degree at least three. The number of such interior
vertices is at most one less than the number of leaves. Summing over all
trees in P, this implies that |£(P)| - | 2(P)| < | £(P)| —1. Thus, it
suffices to show that the running of SEMI-LABELEDBUILD is polynomial in
| L(P) |. Clearly, the construction of the cluster and root-label graph at each
iteration of FULLY-LABELEDBUILD can be donein such atime. Furthermore,
because we consider only proper restrictions of the input collection of rooted
fully-labeled trees at Step 4 of FULLY-LABELEDBUILD, the number of
iterations of FULLY-LABELEDBUILD is bounded by £(?). It now follows
that the running time of SEMI-LABELEDBUILD is polynomial in the size of
L(P).

Supertree agorithms for nested taxa 15

X
\ /<\~ /<\
a c d e a C a C

Figure 7. A collection of semi-labeled trees.

a b ¢ d f° e

Figure 8. The rooted semi-labeled tree outputted by ANCESTRALBUILD when applied
to the rooted semi-labeled treesin Figure 7.

4, Ancestrally displays

If T is a rooted semi-labeled tree that perfectly displays a collection 2 of
rooted semi-labeled trees, then 7 preserves all the most recent common
ancestor relationships described by . As a consequence, no polytomiesin P
are resolved in 7. Thus, as mentioned in Section 1, the notion of perfectly
compatible is very strong. In this section, we introduce a notion of
compatibility that allows the resolution of polytomies, but still maintains all
the descendancy relationships of a collection of rooted semi-labeled trees.
Moreover, we present a polynomial-time algorithm for determining if a
collection of rooted semi-labeled trees is compatible under this new notion.

Let X' < X. A rooted semi-labeled tree 7 on X ancestrally displays a
rooted semi-labeled tree T7on X' if 7| X' refines 77 and for al a, be X, the
following hold:

1. ifa<; b,thena<;b, and
2. if aisnot comparableto bin 7" under <. then a is not comparable to b
in 7'under <.

Intuitively, (1) and (2) imply that 7 preserves the ancestor-descendant
relationships of 7', but might not preserve the most recent common ancestor
relationships of 7, which is required for the notion of perfectly displays.
Consequently, perfectly displays is a stronger notion than ancestraly
displays. Each of the rooted semi-labeled trees in Figure 7 are ancestrally
displayed by the rooted semi-labeled tree in Figure 8. However, the first tree

16 Daniel and Semple

in Figure 7 is not perfectly displayed by the rooted semi-labeled tree in
Figure 8. In comparison with the standard notion of displays, ancestrally
displays is stronger because the former does not preserve descendancy. A
collection P of rooted semi-labeled trees is ancestrally compatible if thereis
a rooted semi-labeled tree T that ancestrally displays every tree in 2, in
which case, T ancestrally displays 2.

In this section, we present a polynomial-time algorithm (called
ANCESTRALBUILD) for solving the following problem.

Problem: HIGHER TAXA ANCESTOR COMPATIBILITY

Instance: A collection 2 of rooted semi-labeled trees.
Question: Does there exist a rooted semi-labeled tree that ancestrally
displays 7 and, if so, can we construct such arooted semi-labeled tree?

Before describing ANCESTRALBUILD and its subroutine DESCENDANT,
we need first to define a particular graph and a construction. This graph
consists of a mixture of arcs (directed edges) and edges. Let P be a
collection of rooted fully-labeled trees. This graph, caled the descendancy
graph of P and denoted D(?P), is defined as follows. The vertex set of D(P)
isL(P). Thearc set A(P) of D(P) is

{(c,a): c<,afor someTin P},
and the edge set E(P) of D(P) is
{{a, b} : aisnot comparable to b under <, for some T'in 7}.

As an example of a descendancy graph, let P be the collection of fully-
|abeled trees formed from the treesin Figure 7 by adding u, to the root of the
|eftmost tree, us to the root and u, to the other unlabeled vertex of the middle
tree, and u, to the unlabeled vertex of the rightmost tree. Figure 9 shows the
descendancy graph of 2 where, to avoid clutter, only edges and arcs from
parents to immediate descendants are shown.

The descendancy graph plays an important role in ANCESTRALBUILD.
However, unlike SEMI-LABELEDBUILD, where a cluster and root-label graph
is constructed at each iteration, the descendancy graph for 2 is constructed
just once and then successive iterations consider particular restrictions of it.
To this end, we will denote the subgraph of D(2) that isinduced by a subset
S of the vertex set £L(P) by D(P) | S; that is, D(P) | S denotes the subgraph of
D(P) obtained by deleting al vertices of £L(P) — S and their incident arcs and
edges. In association with D(2P) (or any of its vertex-induced subgraphs), the

Supertree agorithms for nested taxa 17

Figure 9. The descendancy graph of 2. Arcs are indicated by dashed lines, edges by
solid lines.

in-degree of a vertex a is the number of arcs directed into a (edges are
ignored), and an arc component is a connected component of the graph
obtained by deleting all edges.

Lastly, we define our construction. Let 7 = (T; ¢) be a rooted semi-
labeled tree. We say that a rooted semi-labeled tree 7; has been obtained
from T by adding descendants to leaves if, for each multi-labeled |leaf vertex
u of T, we adjoin anew leaf vertex v to u by a new edge, and then label each
new leaf vertex with a distinct new label. For a collection 2 of rooted semi-
labeled trees, 2; has been obtained from 2 by adding descendants to leaves
if it has been obtained by adding descendants to leaves to every tree in P so
that al the new labels are distinct.

Algorithm: ANCESTRALBUILD(P, T)

Input: Let P be acollection of rooted semi-labeled trees.
Output: A rooted semi-labeled tree T that ancestraly displays 2 or the
statement 2 is not ancestrally compatible.

1. Construct a collection 27’ of rooted fully-labeled trees from 2 by

adding descendants to leaves and then adding distinct new labels to

the resulting collection.

Construct the descendancy graph D(?) of P!

Call the subroutine DESCENDANT(D(?), V', T).

If DESCENDANT returns no possible labeling, then return 2 is not

ancestrally compatible.

5. If DESCENDANT returns a rooted semi-labeled tree 7, then remove
the added |abels and return the resulting rooted semi-labeled tree 7.

Ao

18 Daniel and Semple
Algorithm: DESCENDANT(D(?), V', T

Input: The descendancy graph of a collection 2’ of rooted fully-labeled
trees.

Output: A rooted fully-labeled tree 7'with root vertex V' that ancestrally
displays P ‘or the statement no possible labeling.

1. Let S, denote the set of vertices of D(2) that have in-degree zero
and no incident edges.
2. If Spisempty, then halt and return no possible labdling.
3. Otherwise,
(@) Delete the elements of S, (and their incident arcs) from D(P)
and denote the resulting graph by D(2)\S,.
(b) Let Sy, S, ..., Sk denote the vertex sets of the arc components of
D(P N\So.
(c) Delete al edges of D(P)\S, the end vertices of which are in
distinct arc components of this graph.
(d) For each dlementi e {1, 2, ..., k}, call DESCENDANT(D(?)| S,
vy, T). If DESCENDANT(D(’_P)|Si, Vi, T7) returns a tree, then
assign the labelsin Sy to V' and attach 77 to V' viathe edge {V/,
v}.

The genera approach of the algorithm DESCENDANT is the same as that
of FULLY-LABELEDBUILD. In particular, it attempts to construct a rooted
fully-labeled tree that ancestrally displays 2 "beginning with the root and
moving towards the leaves. To illustrate ANCESTRALBUILD, the rooted semi-
labeled tree shown in Figure 8 is the result of applying this algorithm to the
collection of rooted semi-labeled trees shown in Figure 7.

Remark.

1. Because DESCENDANT considers proper restrictions of D(P)
successively, it is clear that DESCENDANT returns either “no possible
labeling” or a rooted semi-labeled tree. ANCESTRALBUILD consequently
returns either “2 is not ancestrally compatible” or a rooted semi-labeled
tree.

2. Because every treein P 'is fully-labeled, it follows that the only labelsin
So at any iteration are root labels of the corresponding restrictions of P!
Thus, in regards to the last step of DESCENDANT, P | S; is a rooted fully-
labeled tree for al i. Thisfact will be useful later.

Supertree agorithms for nested taxa 19

Theorem 4.1. Let P be a collection of rooted semi-labeled trees. Then
ANCESTRALBUILD applied to 2 either:
(i) returns a rooted semi-labeled tree that ancestrally displays 2 if P is
ancestrally compatible, or
(i) returnsthe statement 2 is not ancestrally compatible otherwise.

The proof Theorem 4.1 makes use of the following lemma. The proof
follows the approach used in the proof of Lemma 3.4 and is omitted.

Lemma 4.2. Let P be a collection of rooted semi-labeled trees. Let P 'be a
set of rooted fully-labeled trees obtained from 2 by adding descendants to
leaves and then adding distinct new label s to the resulting collection. Then P
is ancestrally compatible if and only if 27’ is ancestrally compatible.
Moreover, if T'is a rooted semi-labeled tree that ancestrally displays 27,
then 7 'ancestrally displays P.

Proof of Theorem 4.1. By Lemma 4.2, it suffices to show that the theorem
holds if P is a collection of fully-labeled trees with no multi-labeled leaf
vertices. Suppose that P is ancestraly compatible, and let 7 be a semi-
labeled tree that ancestrally displays 2. We show that under this assumption,
ANCESTRALBUILD applied to 2 outputs a rooted semi-labeled tree. Assume
that thisis not the case. Then, at some iteration of ANCESTRALBUILD, there
is subset S of £(P) for which al vertices of D(P) | S either have in-degree
greater than zero or are incident with an edge. Because 7 ancestrally
displays P, it is seen easily that T |s ancestrally displays P|S. Let Pbea
path of T° | S from the root to a leaf and consider the first label, y say, that is
met on this path. In D(P) | S, either y does not have in-degree zero or it is
incident with an edge. In the first case, this implies that there is another
element, x say, of S such that in some tree of 7 we have X is a proper
ancestor of y. But y was the first label met in P, and so x is not a proper
ancestor of yin T’ |'Sand, in particular, in T; a contradiction. Therefore, we
can assume that, in D(?P) |s, y has in-degree zero and is incident with an
edge. But then, because P| Sisacollection of rooted fully-labeled trees (see
remark above), al trees in P| S in which yisalabel hasy as aroot label.
This means that, in D(P) |s, y cannot be incident with any edge. This last
contradiction completes this direction of the proof.

For the converse, suppose that ANCESTRALBUILD outputs a rooted semi-
labeled tree 7. We show that 7 ancestrally displays 2. Let 7; be a member
of P, and let a and b be elements of £(P). If a <j b, then, because ais an
element of an arc component, there is an arc from a to b in the associated
descendancy graph. Because ANCESTRALBUILD returns 7, there must be
some iteration at which a is an element of S,, but b is a vertex of an arc

20 Daniel and Semple

component of the graph obtained by deleting the elements of S including a.
It now follows by the description of the descendancy graph that a <, b.

Next assume that a is not comparable to b in 7;. Then, in D(P), the
vertices a and b are joined by an edge. Because ANCESTRALBUILD outputs
7, this edge is deleted eventually, but not until a and b are in separate arc
components of some restriction of D(P). This implies that, in 7, thereis a
cluster in which aiis an element and not b, and there isa cluster in which b is
an element and not a. In other words, a is not comparabletobin 7.

Lastly, let X; denote the label set of 7;. We complete the converse and
thus the proof by showing that 7 | X, refines 77. Let C, be acluster of 75. It
suffices to show that C; isacluster of 7 | X;. Let X'; be the subset of X; that
labels the vertex u of T; corresponding to C;. Because 7 is fully-labeled, X',
is non-empty. Either X'; consists of asingle element or u is not a leaf vertex.
In the first case, this dement is comparable trivialy with itself. In the second
casg, for all a, be X'y, thereisalabd ¢ of 7; such that a<; cand b < ¢,
and so, by an earlier argument, a <, c and b <; c. Hence, a is comparable
with b in 7. Furthermore, the same arguments imply that, for al y e C; —
X'y, fordl xe X'y, andfor all ze X; —C,, we have x is a proper ancestor of y
in 7, and either zis a proper ancestor of x or x and z are not comparablein 7.
It now followsthat C; is a cluster of T|X1. 0

A very similar analysis to that used to show that the running time of
SEMI-LABELEDBUILD is polynomial in the size of £(?) shows that the
running time of ANCESTRALBUILD is aso polynomial in the size of £(P).
We |eave the details to the reader.

Final Remarks.

1. Some extensions of the problems described in this chapter are considered
by Daniel in his Masters thesis (in prep.). One in particular is the
following. In Figure 6, two of the interior vertices are multi-labeled. For
a variety of reasons, such as the labels representing taxa of different
levels or the labels representing different taxa of the same rank (eg.,
genera), it might have been predetermined that it is not possible for two
such labels to label the same vertex. In some cases, such as the former,
one way to resolve the problem is to include an additiona rooted semi-
labeled tree in the input consisting of a root vertex and a leaf where the
higher taxon labels the root vertex. However, for many cases, no such
resolution is be possible. Hence, a desirable extension to the origina
praoblem of HIGHER TAXA COMPATIBILITY is to include a collection of
pairs of labels in the instance and then ask the question of whether there
exists a rooted semi-labeled tree that perfectly displays 7 and has the

Supertree agorithms for nested taxa 21

property for any such pair {a, b}, a and b labe distinct vertices.
Surprisingly, Daniel shows that the resulting problem is NP-complete.

2. Both the agorithms described in this chapter are “al-or-nothing”
algorithms. Each algorithm returns either a rooted semi-labeled tree with
certain propertiesif one exists or a statement that thereis no such tree. In
practice, this limits the use of these algorithms. However, we believe that
there is a MINCUTSUPERTREE-type approach (see Semple and Sted,
2000; Page, 2002) to resolving this limitation, so that the two algorithms
will alway output a rooted semi-labeled tree.

Acknowledgements

We thank Olaf Bininda-Emonds, Sebastian Bécker, and Rod Page for their
valuable comments. The first author was supported by the New Zealand
Ingtitute of Mathematics and its Applications funded programme
Phylogenetic Genomics, and the second author was supported by the New
Zealand Marsden Fund.

References

AHO, A. V., SAGlv, Y., SZYMANSKI, T. G., AND ULLMAN, J. D. 1981. Inferring a tree from
lowest common ancestors with an application to the optimization of relational expressions.
S AM Journal on Computing 10:405-421.

BRYANT, D., SEMPLE, C., AND STEEL, M. 2004. Supertree methods for ancestral divergence
dates and other applications. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees:
Combining Information to Reveal the Tree of Life, pp. xxx—xxx. Kluwer Academic,
Dordrecht, the Netherlands.

PaGg, R. D. M. 2002. Modified mincut supertrees. In R. Guigé and D. Gusfield (eds),
Algorithms in Bioinformatics, Second International Workshop, WABI 2002, Rome, Italy,
September 17-21, 2002, Proceedings, pp. 537-552. Springer, Berlin.

PAGE, R. D. M. 2004. Taxonomy, supertrees, and the Tree of Life. In O.R. P. Bininda
Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life,
pp. Xxx=xxx. Kluwer Academic, Dordrecht, the Netherlands.

SempLE, C. AND STEEL, M. 2000. A supertree method for rooted trees. Discrete Applied
Mathematics 105:147-158.

SemPLE, C. AND STEEL, M. 2003. Phylogenetics. Oxford University Press, Oxford.

