
A CLASS OF GENERAL SUPERTREE METHODS FOR NESTED

TAXA

PHILIP DANIEL AND CHARLES SEMPLE

Abstract. Amalgamating smaller evolutionary trees into a single parent tree
is an important task in evolutionary biology. Traditionally, the (supertree)
methods used for this amalgamation take a collection of leaf-labelled trees as
their input. However, it has been recently highlighted that, in practice, such
an input is somewhat limiting and that one would like supertree methods for
collections of trees in which some of the interior vertices, as well as all of the
leaves, are labelled [10]. In this paper, we describe what appears to be the
first approach for constructing such methods and show that any method using
this approach satisfies particular desirable properties.

1. Introduction

In evolutionary biology, supertree methods have become a fundamental process
for constructing an evolutionary tree that best represents the information exhibited
by the original input. These methods amalgamate an input collection of smaller
evolutionary trees on overlapping sets of taxa into a single parent tree called a
supertree. The increasing popularity of supertree methods is highlighted by a recent
survey [3] and published book [4].

If the input collection of trees carries no conflicting information, then one would
like the resulting supertree to preserve all of the ancestral relationships displayed
by each of the trees in this collection. For collections of rooted phylogenetic trees,
there is a polynomial-time algorithm that finds such a tree. In practice, however,
incompatibility is more common and so one seeks a method that resolves these
conflicts in a sensible way, while still producing a supertree that has a number of
attractive properties. The following list of desirable properties for any supertree
method applied to a collection P of rooted phylogenetic trees is given in [12]:

(i) The method runs in polynomial time in the size of the input.
(ii) The resulting supertree displays all rooted binary subtrees shared by all of

the trees in P .

Date: 18 January 2005.
1991 Mathematics Subject Classification. 05C05; 92D15.
Key words and phrases. Rooted phylogenetic tree; Rooted semi-labelled tree; Nested taxa;

Supertree method; Supertree.
The first author was supported by the New Zealand Institute of Mathematics and its Appli-

cations funded programme Phylogenetic Genomics and the second author was supported by the
New Zealand Marsden Fund (UOC310).

1



2 PHILIP DANIEL AND CHARLES SEMPLE

(iii) If P is compatible, then the resulting supertree displays each of the trees
in P .

(iv) The method satisfies the following two natural symmetry properties of or-
dering and renaming:
(a) The resulting supertree is independent of the order in which the mem-

bers of P are listed.
(b) If we rename all the species, and then apply the method to this new

collection of input trees, the resulting supertree tree is the one obtained
by applying the method to the original collection P , but with the
species renamed as before.

(v) The method allows a possible weighting of the trees in P .

To date, the algorithms MinCutSupertree [12] and its modified version [9] are
the only two supertree methods for rooted phylogenetic trees that have been shown
to satisfy all of the above properties. We remark here that (iv) may seem trivial to
satisfy but, for collections of unrooted phylogenetic trees, it has been shown that
no supertree method for such collections can simultaneously satisfy (iii) and both
parts of (iv) [14].

In this paper, we present a general supertree method for collections of rooted
semi-labelled trees; that is, rooted trees in which some (possibly none) of the in-
terior vertices as well as all of the leaves are labelled. Making the extension from
rooted phylogenetic trees to rooted semi-labelled trees means that we allow nested
taxa in the input. In particular, the interior labels represent taxa at a higher tax-
onomic level than any of their descendants. For example, families versus genera or
genera versus species. One of the main features of this supertree method is that it
purposely allows for the possibility of variants. Indeed, provided the input satisfies
two natural ancestor-descendant pairwise properties, any such variant constructed
from it satisfies all of the rooted semi-labelled tree analogues of the desirable prop-
erties (i)—(iii) above. Moreover, although the rooted semi-labelled tree analogues
of (iv) and (v) are dependent on the constructed variant, satisfying these additional
properties is not difficult. We highlight this with an example of such an algorithm.
To the best of our knowledge, this is the first time such supertree methods for
rooted semi-labelled trees have been considered. The next section contains some
further background and necessary preliminaries for the rest of the paper.

2. Background and Preliminaries

Throughout this paper, we will assume that the reader has some familiarity with
the basics of phylogenetics. Unless otherwise stated, the notation and terminology
follows Semple and Steel [13].

A rooted phylogenetic tree (on X) is an ordered pair (T ; φ) consisting of a rooted
tree T in which all interior vertices have degree at least three except the root
which has degree at least two and a bijective map φ from X to the leaf set of T .
Rooted phylogenetic trees on X are also called rooted phylogenetic X-trees. Loosely
speaking, a rooted phylogenetic X-tree is a rooted tree whose leaves are bijectively



SUPERTREE METHODS FOR NESTED TAXA 3

a b d c

e
e

a b c
a d b c

Figure 1. A collection P of rooted semi-labelled trees.

labelled with the elements of X . The leftmost tree in Fig. 1 is an example of a
rooted phylogenetic tree, where X = {a, b, c, d}.

Let T ′ be a rooted phylogenetic tree on X ′, and let X be a subset of X ′. The
restriction of T ′ to X is the rooted phylogenetic tree that is obtained from the
minimal rooted subtree of T ′ induced by the elements of X by suppressing all
non-root vertices of degree two. This restriction is denoted by T ′|X . We say
that T ′ displays a rooted phylogenetic X-tree T if, up to isomorphism, T ′|X is
a refinement of T . Intuitively, T ′ displays T if T ′ preserves all of the ancestral
relationships described by T . The reason for allowing refinement is that, from
a biological viewpoint, vertices of outdegree at least three usually represent an
uncertainty to the exact order of speciation as oppose to a multiple speciation event.
A collection P of rooted phylogenetic trees is said to be compatible if there exist a
rooted phylogenetic tree that displays each of the trees in P . Again, intuitively, P
is compatible if it carries no conflicting information.

Traditionally, supertree methods have been applied to rooted phylogenetic trees.
One of the first such methods is Build [2]. This polynomial-time algorithm takes
a collection of rooted phylogenetic trees and determines if they are compatible,
in which case it outputs a tree that displays each of the trees in the collection.
Algorithms like Build are all-or-nothing algorithms as they only return a tree if the
input data meets some criteria. However, despite this limitation, such algorithms
give valuable insight into more general supertree methods. Indeed, the algorithm
MinCutSupertree and its modified version is based on Build.

For nested taxa, the analogues of rooted phylogenetic trees and compatibility are
‘rooted semi-labelled trees’ and ‘ancestral compatibility’. A rooted semi-labelled tree
(on X) is an ordered pair (T ; φ) consisting of a rooted tree T with vertex set V and
root vertex ρ, and a map φ : X → V with the properties that, for all v ∈ V − {ρ}
of degree at most two, v ∈ φ(X) and, if ρ has degree zero or one, then ρ ∈ φ(X).
Rooted semi-labelled trees on X are also called rooted X-trees. Furthermore, if φ is
one-to-one, then (T ; φ) is said to be singularly labelled. Observe that the definition
of rooted semi-labelled trees extends the definition of rooted phylogenetic trees by
allowing (i) some of the interior (non-leaf) vertices as well as all of the leaves to be
labelled by the elements of X and (ii) vertices may be lablelled by more than one
element of X . Examples of rooted semi-labelled trees that are singularly labelled
are shown in Fig. 1.



4 PHILIP DANIEL AND CHARLES SEMPLE

Let X ⊆ X ′ and let a, b ∈ X . A rooted X ′-tree T ′ ancestrally displays a rooted
X-tree T if T ′|X refines T so that, whenever a is a ‘strict descendant’ of b in T ,
a is a ‘strict descendant’ of b in T ′|X . The formal definition of ‘strict descendant’
is given at the end of this section, but intuition should suffice for the moment.
A collection P of rooted semi-labelled trees is ancestrally compatible if there is a
rooted semi-labelled tree T that ancestrally displays each of the trees in P , in
which case we say that T ancestrally displays P . Observe that if P consists of
rooted phylogenetic trees and is compatible, then P is ancestrally compatible as
none of the trees in P contains any interior labels. Conversely, suppose that P is
ancestrally compatible and consists of rooted phylogenetic trees. Let T be a rooted
semi-labelled tree that ancestrally displays P . Let T ′ be the rooted phylogenetic
tree that is obtained from T by replacing each interior label x with a pendant edge
joining the interior vertex previously labeled by x and labelling the other end-vertex
x. It is now easily checked that T ′ displays P .

Page [10] recently motivated the problem of developing supertree methods for
nested taxa and initially posed the problem of constructing a polynomial-time algo-
rithm for determining the ancestral compatibility of an arbitrary collection of rooted
semi-labelled trees. In answer to this problem, Daniel and Semple [7] presented an
algorithm called AncestralBuild. Analogous to Build, this polynomial-time
algorithm is an all-or-nothing algorithm and determines if a collection P of rooted
semi-labelled trees are ancestrally compatible, in which case it outputs a rooted
semi-labelled tree that ancestrally displays P . With AncestralBuild in hand,
the next natural step forward is to construct a more general supertree method for
rooted semi-labelled trees.

In Section 3 of this paper, we present a supertree method for collections of
rooted semi-labelled trees that are singularly labelled. Called NestedSupertree,
this method either outputs a rooted semi-labelled tree, or a statement indicating
that either there is a pair of taxa that are not ‘pairwise consistent’ or there is an
‘ancestor-descendant contradiction’. Strictly speaking, this is still an all-or-nothing
algorithm. However, such an inconsistency or a contradiction is very particular, and
one that we believe in practice could be resolved separately. Based on Ancestral-

Build, one of the attractions of NestedSupertree is that it is able to be easily
refined to give rise to a number of possible variants each of which is a supertree
method for rooted semi-labelled trees that are singularly labelled. Moreover, we
show in Sections 3 and 4 that any such variant satisfies all of the rooted semi-
labelled tree analogues of properties (i)—(iii) in the introduction. Furthermore, in
Section 5, we describe one particular variant where the rooted semi-labelled trees
in the input are weighted. In addition to (i)—(iii), the resulting algorithm satisfies
the rooted semi-labelled tree analogues of (iv) and (v). The restriction to collec-
tions of rooted semi-labelled trees that are singularly labelled is for simplicity and
functionality (see remarks in Section 3). Indeed, in practice, this is not much of a
restriction as rooted semi-labelled trees are typically singularly labelled.

In the last section of the paper, Section 6, we consider what happens when Nest-

edSupertree is applied to a collection P of rooted phylogenetic trees. In this case,
the minor conditions on P referred to above are redundant and that NestedSu-

pertree applied to P always returns a rooted phylogenetic tree. We show that if



SUPERTREE METHODS FOR NESTED TAXA 5

P is compatible, then the rooted phylogenetic tree returned by NestedSupertree

is the same as that returned by Build. Thus NestedSupertree is a generalisa-
tion of Build. In fact, as we will see, it also generalises AncestralBuild in a
corresponding way.

Before ending this section with some preliminaries we make two comments.
Firstly, in addition to the properties listed in the introduction, one other prop-
erty is given in [12]. This property says that “the resulting supertree displays all
‘nestings’ shared by all of the trees in P”, where one subset of the labels in P
nests in another if the most recent common ancestor of the former is a strict de-
scendant of the most recent common ancestor of the latter. It has been recently
shown by Willson [15] that the proof in [12] that establishes MinCutSupertree

has this property is incorrect and, in fact, that MinCutSupertree does not have
this property. (We note that if one adds the condition that “A is a subset of B”
in the statement associated with this proof, then the proof is correct and Min-

CutSupertree is guaranteed to have the nesting property provided the first set
of labels is a subset of the other). Whether displaying all shared nestings of the
input collection is a desirable property is debatable. We simply note here that
NestedSupertree also does not have this property. For the curious reader, there
is a general supertree method for collections P of rooted phylogenetic trees that
satisfies this nesting property as well as the properties listed in the introduction. In
particular, first use the Build algorithm to either produce a supertree that displays
P , in which case the supertree method outputs this tree, or recognise that P is not
compatible. If the latter happens, construct the “Adams consensus tree” T (see [1]
or [13]) for the set P ′ of rooted phylogenetic trees obtained from P by restricting
each tree to the subset of labels of P that are common to each tree in P . This tree
displays all of the nestings shared by all of the trees in P ′ and hence P . Now, for
each remaining label a in P , adjoin a to the root of T with a distinct new edge. The
supertree method outputs the resulting tree. The second comment is that the ap-
proach taken by NestedSupertree and the approach of MinCutSupertree are
very different. A comparison between these two methods for rooted phylogenetic
trees would make an interesting project.

Finally, some preliminaries. Typically, one views a rooted tree as an undirected
graph. However, it will often be convenient in this paper to view a rooted tree as a
directed graph where each edge is replaced with an arc directed away from the root.
Now let T = (T ; φ) be a rooted semi-labelled tree on X . The set X is called the
label set of T and the elements of X are called labels. We also use L(T ) to denote
the label set of T . If v is a vertex of T , we say that the elements of φ−1(v) label v.
Furthermore, T is fully labelled if every vertex of T is labelled by an element of X .
For a collection P of rooted semi-labelled trees, we denote the union of the label
sets of the trees in P by L(P). Moreover, we call an element x of L(P) common if
x ∈

⋂
T ∈P

L(T ).

There is a natural and useful partial order on the label set L(T ) of a rooted
semi-labelled tree T = (T ; φ). This partial order is obtained by setting b ≤T a

if the path from the root of T to φ(a) includes φ(b), in which case we say that
a is a descendant of b. If b <T a, then we say that a is a strict descendant of
b. Furthermore, a, b ∈ L(T ) are not comparable under ≤T if neither b ≤T a nor



6 PHILIP DANIEL AND CHARLES SEMPLE

a ≤T b holds. Essentially, a and b are not comparable in T if a is not a descendant
of b, and b is not a descendant of a. In Fig. 1, e and c are not comparable in the
middle tree, but c is a (strict) descendant of e in the rightmost tree.

Lastly, a rooted triple is a rooted phylogenetic tree that has two interior vertices
and whose label set has size three. We denote the rooted triple T with label set
{a, b, c} by ab|c if the path from a to b does not intersect the path from the root
to c. For a collection P of rooted semi-labelled trees, a rooted triple whose label
set {a, b, c} is a subset of

⋂
T ∈P

L(T ) is common relative to P if, for all T1, T2 ∈ P ,
T1|{a, b, c} is isomorphic to T2|{a, b, c}. Note that none of a, b, c need label a leaf of
T1 or T2. The rooted triple ab|c is common to the three rooted semi-labelled trees
shown in Fig. 1.

3. The Algorithm NestedSupertree

For a collection P of rooted semi-labelled trees that are singularly labelled, the
algorithm NestedSupertree applied to P is based on a particular construction
and two graphs. We described the construction first and then the two graphs.

Let T = (T ; φ) be a rooted semi-labelled tree on X , where T has vertex set V .
We say that a rooted fully-labelled tree T1 = (T ; φ1) on X1, where X ⊆ X1, has
been obtained from T by adding distinct new labels if, for all distinct u, v ∈ V , the
following properties are satisfied:

(1) If φ−1(v) is non-empty, then φ−1

1
(v) = φ−1(v).

(2) If φ−1(v) is empty, then |φ−1

1
(v)| = 1.

(3) If φ−1(u) and φ−1(v) are both empty, then φ−1

1
(u) 6= φ−1

1
(v).

Intuitively, T1 has been obtained from T by adding a distinct new label to each non-
labelled vertex of T . For a collection P of rooted semi-labelled trees, we say that
P1 has been obtained from P by adding distinct new labels if it has been obtained
by adding distinct new labels to each tree in P so that no pair of added labels are
the same. Although NestedSupertree is applied to P , all of the work in the
method goes into constructing a supertree for a collection of rooted fully-labelled
trees that has been obtained from P by adding distinct new labels.

We now describe the two graphs each of which consists of both arcs (directed
edges) and edges. For the purposes of this paper and to avoid confusion, we will
call a graph that contains both arcs and edges a mixed graph. Let P be a collection
of rooted semi-labelled trees and let P ′ be a collection of rooted fully-labelled trees
obtained from P by adding distinct new labels. The descendancy graph of P ′,
denoted D(P ′), is the mixed graph whose vertex set is L(P ′), whose arc set is

{(c, a) : c <T a for some T ∈ P ′},

and whose edge set is

{{a, b} : a is not comparable to b under ≤T for some T ∈ P ′}.



SUPERTREE METHODS FOR NESTED TAXA 7

a b d c

u1 u2

u3

w1

v1

v2

e
e

a b c
a d b c

Figure 2. A collection P ′ of rooted fully-labelled trees.

The descendancy graph is said to be acyclic if, ignoring edges, it has no directed
cycles.

The second graph D′(P ′) is obtained from the descendancy graph D(P ′) of P ′

as follows. For each common rooted triple a1a2|b of P , add a new vertex labelled

a1a2|b, a new arc from a1a2|b to a1, and a new arc from a1a2|b to a2. Vertices of the

form a1a2|b are called rooted triple vertices of D′(P ′); all other vertices of D′(P ′)
are called label vertices. We call D′(P ′) the modified descendancy graph of P ′.

In general, let G be a mixed graph and let G′ be the directed graph obtained
from G by deleting all of the edges in the edge set of G. Thus the arc set of G′ is
equal to the arc set of G. A vertex v of G has indegree zero if v has indegree zero in
G′. Similarly, a subset of the vertex set of G is the vertex set of an arc component
of G if it is the vertex set of a component of G′. Furthermore, for a subset V1 of
the vertex set of G, the restriction of G to V1 is the subgraph of G that is obtained
by deleting all vertices not in V1 together with their incident edges and arcs. This
restriction is denoted by G|V1.

Example 3.1. To illustrate the above construction and mixed graphs, let P be the
collection of rooted semi-labelled trees shown in Fig. 1 and let P ′ be the collection of
rooted fully-labelled trees obtained from P by adding distinct new labels as shown
in Fig. 2.

The modified descendancy graph of P ′ is shown in Fig. 3 where, for simplicity,
the edges as well as the arcs (c, a) where a is not an immediate descendant of c

are omitted. If these edges were included, there would, for example, be an edge
joining the label vertices w1 and c as they are not comparable in the rightmost tree
of Fig. 2. Furthermore, to highlight the one rooted triple vertex, its outgoing arcs
are drawn as dashed arrows. This example will be referred to later in this section
and also in Section 5.

Lastly, let P be a collection of rooted semi-labelled trees that are singularly
labelled, and let a and b be elements of L(P). We say that a and b are pairwise
consistent if, whenever a is a strict descendant of b in some tree in P , a is always
a strict descendant of b in every tree of P whose label set contains both a and b.
Furthermore, P is said to be pairwise consistent if all pairs of labels in L(P) are
pairwise consistent.



8 PHILIP DANIEL AND CHARLES SEMPLE

c

u3

u1

u2

d

w1

ab|c

b

a

e

v2

v1

Figure 3. The modified descendancy graph of P ′.

We now describe NestedSupertree and its subroutine Descendant. An
illustrative example and some informative remarks follow these descriptions. In
brief, NestedSupertree constructs a rooted semi-labelled tree by starting at
the root and working ‘downwards’ towards the leaves. The main workings of the
method is contained within a subroutine called Descendant. This subroutine uses
successive restrictions of a certain modified descendancy graph to determine how
this rooted semi-labelled tree is constructed.

Algorithm: NestedSupertree(P)
Input: A collection P of rooted semi-labelled trees that are singularly labelled.
Output: A rooted semi-labelled tree T with label set L(P), the statement P is not

pairwise consistent, or the statement P has an ancestor-descendant contradiction.

1. For each pair a, b ∈ P , check that a and b are pairwise consistent. If not, then halt
and return P is not pairwise consistent.

2. Construct a collection P ′ of rooted fully-labelled trees from P by adding distinct
new labels.

3. Construct the descendancy graph D(P ′) of P ′.
4. If D(P ′) has a directed cycle, then halt and return P has an ancestor-descendant

contradiction.
5. Construct the modified descendancy graph D′(P ′) of P ′.
6. Call the subroutine Descendant(D′(P ′), v′).
7. Remove the added labels from T ′ (the rooted semi-labelled tree outputted by De-

scendant), suppress any resulting unlabelled vertex that has indegree one and
outdegree one and, if the root is unlabelled and has degree one, relocate the root
to the nearest vertex that is either labelled or has outdegree at least two. Return
the resulting rooted semi-labelled tree T .

Algorithm: Descendant(D′(P ′), v′)
Input: A graph D′(P ′).
Output: A rooted fully-labelled tree T ′ with root vertex v′.



SUPERTREE METHODS FOR NESTED TAXA 9

(b)

e

c

a

db

v2, u3

e, u1, u2

cw1

av1

db

(a)

Figure 4. (a) One possible output of Descendant when applied
to D′(P ′) and (b) the corresponding output of NestedSu-

pertree.

1. Let S0 denote the set of label vertices of D′(P ′) that have indegree zero and no
incident edges.

2. If S0 is empty, then choose S0 to be any non-empty subset of label vertices of
D′(P ′) that have indegree zero.

3. Delete the elements of S0 (and their incident arcs and their incident edges) from
D′(P ′). Furthermore, for each common rooted triple a1a2|b of P , delete the rooted

triple vertex a1a2|b if, in the resulting mixed graph, the arc component containing
a1 and a2 does not contain the label vertex b.

4. Let S1,S2, . . . ,Sk denote the vertex sets of the arc components of the graph ob-
tained at the end of Step 3.

5. For each element i ∈ {1, 2, . . . , k}, call Descendant(D′(P ′)|Si, v
′
i
). Assign the

labels in S0 to v′ and attach T ′
i

to v′ via the edge {v′
i
, v′}.

Example 3.2. As an example of NestedSupertree applied to a collection of
rooted semi-labelled trees that are singularly labelled, let P and P ′ be the collections
described in Example 3.1. On the first iteration of Descendant, the label vertices
v2 and u3 in the modified descendancy graph D′(P ′) have indegree zero and no
incident edges, and no other label vertices have this property. Therefore, in this
iteration, S0 = {v2, u3}. Furthermore, the graph obtained from D′(P ′) by deleting
the elements of S0 has exactly one arc component.

In the second iteration, the label vertices of the inputted graph that have inde-
gree zero are e, u1, and u2, and each of these have an incident edge. Therefore, in
this iteration, we can choose any non-empty subset of {e, u1, u2} to be S0. If we
choose S0 to be the whole set, then, in all subsequent iterations of the algorithm,
there is always a non-empty set of label vertices of the corresponding graph that
have indegree zero and no incident edges. By making this choice, Descendant

eventually returns the rooted fully-labelled tree shown in Fig. 4(a) and Nested-

Supertree returns the rooted semi-labelled tree shown in Fig. 4(b).

Remarks.



10 PHILIP DANIEL AND CHARLES SEMPLE

1. Observe that in Step 2 of Descendant a choice can be made on the make-up
of S0. This is the part of the algorithm that allows for variants. One possible
way of making this choice is described in Section 5. Note that, as we will soon
see, if the subroutine is called, but Step 2 is never invoked, then the supertree
returned by NestedSupertree ancestrally displays P .

2. One of the attractions of a general supertree algorithm is that conflicts are re-
solved in some way so that one always outputs a supertree whether or not the
original collection of input trees is compatible. In the case the input is a collec-
tion of rooted phylogenetic trees, it is reasonable that any supertree algorithm
resolves such conflicts. However, in the case the input is a collection of rooted
semi-labelled trees, it appears to us that there are some fundamental ancestor-
descendant conflicts that should be resolved separately. Two such conflicts are
when P is not pairwise consistent or has an ancestor-descendant contradiction.
Finding such conflicts can be easily done in polynomial time. In the case of
ancestor-descendant contradictions, see the proof of Lemma 3.4.

3. The purpose of adding the rooted triple vertices and associated arcs to the
descendancy graph of P ′ is so that any tree outputted by NestedSupertree

preserves all of the common rooted triples of P . This property and, in particular,
the rooted semi-labelled tree analogue of desirable property (ii) is established in
the next section.

4. Proposition 3.6 shows that, provided P is pairwise consistent and the descen-
dancy graph of P ′ is acyclic, NestedSupertree returns a rooted semi-labelled
tree. Thus we can always find a non-empty set S0 as described in Steps 1 and 2
of the subroutine Descendant.

5. Lastly, the check for the pairwise consistency of P and the restriction that
each tree in the input collection is singularly labelled could be removed from
NestedSupertree. However, if either is done, then there is no guarantee that
the resulting supertree satisfies the rooted semi-labelled tree analogue of (ii) in
the introduction.

The rest of this section establishes some basic properties of NestedSupertree,
in particular, the rooted semi-labelled tree analogues of (i) (Proposition 3.7) and
(iii) (Proposition 3.3). Further properties are established in the next section.

We begin by making the following observation. Recall from the introduction that
AncestralBuild is a polynomial-time algorithm that determines if a collection
of rooted semi-labelled trees is ancestrally compatible, in which case such a tree
is returned [7]. The description of NestedSupertree closely resembles the de-
scription of AncestralBuild. Indeed, the latter can be essentially obtained from
the former as follows: remove Steps 1, 4, and 5 in NestedSupertree; replace the
modified descendancy graph of P ′ with the descendancy graph of P ′ in Descen-

dant; remove the second sentence of Step 3 of Descendant; and, replace Step 2 of
Descendant “If S0 is empty, halt and return P ′ is not ancestrally compatible”, in
which case P is not ancestrally compatible. It follows that NestedSupertree can
be viewed as a generalisation of AncestralBuild. Indeed, we have the following
proposition.



SUPERTREE METHODS FOR NESTED TAXA 11

Proposition 3.3. Let P be a collection of rooted semi-labelled trees that are sin-
gularly labelled, and suppose that P is ancestrally compatible. Then NestedSu-

pertree applied to P returns a rooted semi-labelled tree that ancestrally displays
P.

Proof. Let P ′ be a collection of rooted fully-labelled trees that is obtained from
P by adding distinct new labels. Since P is ancestrally compatible, P is pairwise
consistent and D(P ′) has no directed cycles. It now follows from the description
of how AncestralBuild can be obtained from NestedSupertree that Nest-

edSupertree applied to P returns a rooted semi-labelled tree that ancestrally
displays P . �

The next two lemmas are needed for the proofs of Propositions 3.6 and 3.7.
The first lemma is well-known and an easy exercise. However, we include its proof
as it indicates how one can find all of the ancestor-descendant contradictions of a
collection of rooted semi-labelled trees.

Lemma 3.4. Let D be a connected digraph that contains no directed cycle. Then
there exists a vertex of D whose indegree is zero.

Proof. Assume no vertex of D has indegree zero. Let D′ be the digraph obtained
from D by reversing the orientation of the arcs of D. By assumption, every vertex
of D′ has outdegree at least one. Let u be a vertex of D′. Starting at u, construct
a directed walk. Since each vertex of D′ has an outgoing arc, we must eventually
meet a vertex on this walk that has already been traversed. In particular, this
means that D′ contains a directed cycle, which in turn implies that D contains a
directed cycle. This contradiction completes the proof of the lemma. �

Lemma 3.5. Let P be a collection of rooted fully-labelled trees that are singularly
labelled. Let b ∈

⋂
T ∈P

L(T ), and let x, y ∈ L(P). Suppose that b is pairwise
consistent with each of the labels in L(P). Then the following hold.

(i) If there is a directed path from b to x in D(P), then there is an arc from b

to x in D(P). Furthermore, if there is a directed path from x to b in D(P),
then there is an arc from x to b in D(P).

(ii) Suppose that (b, x) is an arc in D(P). If (y, x) is also an arc in D(P) and
b 6= y, then either there is an arc from y to b in D(P) or there is an arc
from b to y in D(P).

Proof. We first prove (i). Assume that by1y2 · · · ykx is a directed path in D(P)
from b to x. As y1 is a strict descendant of b in some tree in P and b is pairwise
consistent with y1, it follows that whenever b and y1 are labels of some tree in P ,
y1 is a strict descendant of b. Since there is an arc from y1 to y2, there is a tree T1

in P in which y2 is a strict descendant of y1. Since b is a label of T1, this implies
that y2 is a strict descendant of b in T1, so, by definition, there is an arc in D(P)
from b to y2. Repeating this argument for y2 and y3, we deduce that there is an arc
in D(P) from b to y3. Continuing in this way, we eventually establish that there is



12 PHILIP DANIEL AND CHARLES SEMPLE

an arc in D(P) from b to x. A similar argument shows that there is an arc (x, b)
in D(P) if there is a directed path in D(P) from x to b. This establishes (i).

We now prove (ii). Since (y, x) is an arc of D(P), there is a tree T in P for which
x is a strict descendant of y. But this means that, as (b, x) is an arc of D(P), b is
a common label and is pairwise consistent with x, and all trees in P are singularly
labelled, either b is a strict descendant of y or y is a strict descendant of b in T . In
particular, either (b, y) or (y, b) is an arc in D(P), respectively. �

Proposition 3.6. Let P be a collection of rooted semi-labelled trees that are sin-
gularly labelled and let P ′ be a collection of fully-labelled trees obtained from P by
adding distinct new labels. If P is pairwise consistent and the descendancy graph of
P ′ is acyclic, then NestedSupertree applied to P returns a rooted semi-labelled
tree.

Proof. Because of Lemma 3.4 and the fact that Descendant successively considers
proper restrictions of the modified descendancy graph of P ′, it suffices to show that
one can always choose a non-empty set S0 of label vertices in Steps 1 and 2 at
each iteration of the subroutine Descendant. To see this, suppose that at some
iteration of Descendant the associated connected restriction, D say, of D′(P ′)
has no label vertex of indegree zero. Let S be the set of label vertices of D in which
the only incoming arcs are the ones coming from rooted triple vertices. Since any
restriction of the descendancy graph of P ′ is acyclic, it follows that S is non-empty.
Let a1 be an element of S. By the construction of the modified descendancy graph,
a1 is a label of a common rooted triple, a1a2|b say, of P . Furthermore, a1 is not the
only element of S; for otherwise, every label vertex of D, including a2, would be a
strict descendant of a1. It now follows that, as D is connected, there is a label vertex
w that lies in a directed path from a1 and that also lies in a directed path from a
common label vertex, x1 say, that is distinct from a1 and is in S. By Lemma 3.5(i),
this implies that there exists a tree T1 in P in which w is a strict descendant of a1

and a tree T2 in P in which w is a strict descendant of x1. As a1 and x1 are not
comparable in T1, it follows that w is not comparable to x1 in T1. But w is a strict
descendant of x1 in T2, contradicting the assumption that P is pairwise consistent.
We conclude that at Steps 1 and 2 of each iteration of Descendant, we can always
find an appropriate non-empty set of label vertices. �

Proposition 3.7. Let P be a collection of rooted semi-labelled trees that are sin-
gularly labelled. Then the running time of NestedSupertree applied to P is
polynomial in |L(P)| × |P|.

Proof. Let P ′ be a collection of rooted fully-labelled trees that is obtained from
P by adding distinct new labels. Since the only possible unlabelled vertices of a
rooted semi-labelled tree are either the root vertex or a vertex of degree at least
three, the number of such interior vertices is at most one less than the number of
leaves. Therefore, to prove the proposition, it suffices to show that the running
time of NestedSupertree is polynomial in |L(P ′)| × |P|.

It is clear that checking for pairwise consistency is polynomial time in |L(P ′)| ×
|P|. Furthermore, the construction of the descendancy graph of P ′ can be also be



SUPERTREE METHODS FOR NESTED TAXA 13

done in such a time. Now one can determine if a directed graph has no directed
cycles by successively deleting vertices (and their incident arcs) that either have
indegree or outdegree zero. If this process results in the empty graph, then the
original graph has no directed cycles; otherwise it has a directed cycle. Since the
size of D(P ′) is polynomial in the size of L(P ′), determining whether or not D(P ′)
has no directed cycles is polynomial in the size of L(P ′).

The number of triples of L(P) is polynomial in |L(P)| and so finding the collec-
tion of common rooted triples of P is also polynomial in |L(P ′)| × |P|. It follows
that the construction of the modified descendancy graph of P ′ is polynomial time
in |L(P ′)| × |P|. Lastly, as stated in the fourth remark following Example 3.2, at
each iteration of the subroutine Descendant there is always at least one vertex
with indegree zero. Consequently, at each iteration, S0 is non-empty and so the
mixed graph resulting from deleting the elements in S0 is a proper restriction of
the mixed graph inputted at that particular iteration. Thus the number of such
iterations is bounded by the size of L(P ′). We deduce that the running time of
NestedSupertree is polynomial in |L(P ′)| × |P|. �

4. Other Properties of NestedSupertree

The main purpose of this section is to establish the rooted semi-labelled tree
analogue of desirable property (ii) in the introduction for NestedSupertree.

A rooted semi-labelled tree T is binary if T is singularly labelled and every vertex
has degree at most three except for the root which has degree at most two. The
main result of this section is the following theorem.

Theorem 4.1. Let P be a collection of semi-labelled trees that are singularly labelled
and let T be a rooted semi-labelled binary tree that is ancestrally displayed by each
tree in P. Suppose that NestedSupertree applied to P returns a rooted semi-
labelled tree T ′. Then T ′ ancestrally displays T .

To prove Theorem 4.1, we first establish several results. The first result, Propo-
sition 4.2, is well-known (for example, see [13]).

Proposition 4.2. Let T be a rooted phylogenetic X-tree. Let

R(T ) = {T |S : S ⊆ X, |S| = 3, T |S is a rooted triple}.

If T ′ is a rooted phylogenetic X ′-tree, where X ⊆ X ′, and R(T ) ⊆ R(T ′), then T ′

displays T .

For rooted semi-labelled trees that are singularly labelled, the analogous result is
Proposition 4.3. We will call a rooted semi-labelled tree that is singularly labelled
and has label set of size three a triple. A rooted triple is a particular type of
triple. Up to isomorphism, there are six triples and these are shown in Fig. 5. For
convenience in this paper, we denote these triples as Types (I)(a) and (b), (II),
(III), and (IV)(a) and (b). We will continue to refer to a triple of Type(I)(a) as a
rooted triple.



14 PHILIP DANIEL AND CHARLES SEMPLE

ba

c(IV)(a)

a b

c(IV)(b)

a

b

a

c
b

a b c a b c

(II)(I)(b)(I)(a)

(III)

c

Figure 5. The six triples.

Proposition 4.3. Let T be a rooted semi-labelled tree on X. Let

B(T ) = {T |S : S ⊆ X, |S| = 3, T |S is a triple of Type (I)(a) or (IV)(a)},

D(T ) = {c <T a : a, c ∈ L(T )},

and
N (T ) = {a is not comparable to b under ≤T : a, b ∈ L(T )}.

If T ′ is a rooted semi-labelled tree on X ′, where X ⊆ X ′, and B(T ) ⊆ B(T ′),
D(T ) ⊆ D(T ′), and N (T ) ⊆ N (T ′), then T ′ ancestrally displays T .

Proof. To prove the proposition, it is clear that we may assume that X and X ′

are the same sets. Let T = (T ; φ). The proof is by induction on the number n

of interior labels of T . If n = 0, then it is straightforward to deduce the result
by Proposition 4.2 and the fact that N (T ) ⊆ N (T ′). Now assume that the result
holds for all rooted semi-labelled trees that have fewer than n interior labels, where
n ≥ 1. Since T has at least one interior label, there exists an interior vertex u

of T that is labelled by an element, d say, of X such that all elements of X that
are strict descendants of d label leaves of T . Let T1 be the rooted semi-labelled
tree obtained from T by replacing the rooted subtree of T that lies below or equal
to u with a single leaf labelled by the elements of φ−1(u). Let T2 be the rooted
semi-labelled tree that is the rooted subtree of T that lies below or equal to d and
in which the elements in φ−1(u) are removed. Note that if u has ‘outdegree’ one,
then u is deleted and the root of T2 is the vertex of T that is immediately below u.

Now consider T ′. Since D(T ) ⊆ D(T ′), each element in φ−1(u) labels an interior
vertex of T ′. Moreover, as there is an element of X that is a strict descendant of
each element in φ−1(u), it follows that, for all pairs a, b ∈ φ−1(u), either a and b

label the same vertex of T ′ or one element, a say, is a strict descendant of b in T ′.
Let c be a least element of φ−1(u) under ≤T ′ and let v be the interior vertex of
T ′ that is labelled by c. Again, as D(T ) ⊆ D(T ′), the set of strict descendants
of c in T ′ is exactly the label set of T2. Analogous to the constructions of T1



SUPERTREE METHODS FOR NESTED TAXA 15

and T2 in the previous paragraph, construct T ′
1 and T ′

2 from T ′ using the vertex
v instead of u. Evidently, B(T1) ⊆ B(T ′

1 ), D(T1) ⊆ D(T ′
1 ), and N (T1) ⊆ N (T ′

1 ),
and B(T2) ⊆ B(T ′

2 ), D(T2) ⊆ D(T ′
2 ), and N (T2) ⊆ N (T ′

2 ). Furthermore, both T1

and T2 have fewer than n labelled interior vertices. Therefore, by our induction
assumption, T ′

1 and T ′
2 ancestrally display T1 and T2, respectively. By definition, it

immediately follows that T ′ ancestrally displays T unless u has ‘outdegree’ one and
the vertex of T ′ labelled by c has ‘outdegree’ at least two. But then, in this case,
there are elements a, b ∈ X such that T |{a, b, c} is of Type (IV)(a) and T ′|{a, b, c} is
of Type (IV)(b), contradicting the assumptions in the statement of the proposition.
This completes the proof of Proposition 4.3. �

Lemma 4.4. Let P be a collection of rooted semi-labelled trees that are singularly
labelled and let a, b ∈ L(P). Suppose that NestedSupertree applied to P returns
a rooted semi-labelled tree T .

(i) If a is a strict descendant of b in some tree in P, then a is a strict descendant
of b in T .

(ii) If a, b ∈
⋂

T ∈P
L(T ), and a is not comparable to b in each tree in P, then

a is not comparable to b in T .

Proof. Part (i) immediately follows from the description of NestedSupertree.

To prove (ii), let P ′ be the collection of rooted fully-labelled trees that is obtained
from P by adding distinct new labels in Step 2 of NestedSupertree. At some
iteration of the running of the sub-routine Descendant, one of the label vertices
a or b in some restriction of the modified descendancy graph D′(P ′) of P ′ has
indegree zero. Consider the first such iteration and let D denote the corresponding
connected mixed graph. Without loss of generality, we may assume that a has
indegree zero in this restriction. To establish the lemma, it suffices to show by the
construction of T that b is not a vertex of D.

Let Va be the subset of vertices of D that are either label vertices lying on
a directed path starting at a or rooted triple vertices where both adjacent label
vertices lie on a directed path starting at a. Since a and b are not comparable
in every tree in P and a has indegree zero, it follows by the contrapositive of
Lemma 3.5(i) that b 6∈ Va. Thus to establish that b is not a vertex of D, it suffices
to show that Va is the vertex set of D. To see this, suppose that D contains an arc
(z, x) where z 6∈ Va, but x ∈ Va. Clearly, x is a label vertex of D. Assume that z

is also a label vertex of D. By Lemma 3.5(i), (a, x) is an arc of D. Therefore, as a

has indegree zero, it follows by Lemma 3.5(ii) that there is an arc from a to z in D.
This implies that z ∈ Va; a contradiction. In fact, by extending this argument, it is
easily seen that, ignoring rooted triple vertices, Va contains all of the label vertices
of D. It now follows by the definition of Va that Va is the vertex set of D. This
completes the proof of the lemma. �

We remark here that the condition a and b are common labels of P in the statement
of Lemma 4.4(ii) cannot be weakened.



16 PHILIP DANIEL AND CHARLES SEMPLE

a b

c

ba

c

(a) (b)

Figure 6. Two triples.

Let P be a collection of rooted semi-labelled trees. A triple whose label set
{a, b, c} is a subset of

⋂
T ∈P

L(T ) is common relative to P if, for all T1, T2 ∈ P ,
T1|{a, b, c} is isomorphic to T2|{a, b, c}.

Lemma 4.5. Let P be a collection of rooted semi-labelled trees that are singularly
labelled, and let T be a common triple of P of Type (I)(a) or (IV)(a). Let {a, b, c}
be the label set of T . Suppose that NestedSupertree applied to P returns a rooted
semi-labelled tree T ′. Then T ′|{a, b, c} is isomorphic to T .

Proof. If T is a triple of Type (IV)(a), then it is easily seen, by interpreting
Lemma 4.4 for a collection of rooted fully-labelled trees that are singularly labelled,
that T ′|{a, b, c} is isomorphic to T . Therefore suppose that T is the rooted triple
ab|c say. Let P ′ be the collection of rooted fully-labelled trees that is obtained from
P by adding distinct new labels in Step 2 of NestedSupertree. Since a, b, and c

are common labels of P , it follows by Lemma 4.4 that every pair of a, b, and c are
not comparable in T . Furthermore, by Step 3 of Descendant, a and b are always
in the same arc component of the restrictions of the modified descendancy graph
of P ′ that are considered throughout the running of NestedSupertree provided
c is in the same restriction. We now deduce from the description of Descendant

that T ′|{a, b, c} is isomorphic to ab|c. �

We now prove Theorem 4.1.

Proof of Theorem 4.1. Since each label of T is a common label of P , it immediately
follows by Lemma 4.4 that D(T ) ⊆ D(T ′) and N (T ) ⊆ N(T ′). Furthermore, by
Lemma 4.5, B(T ) ⊆ B(T ′). Hence, by Proposition 4.3, T ′ ancestrally displays
T . �

Corollary 4.6. Let P be a collection of rooted semi-labelled trees that are singularly
labelled. Suppose that NestedSupertree applied to P returns a rooted semi-
labelled tree T ′. Then

(i) If T is a common triple of P, then T ′ ancestrally displays T .
(ii) Let {a, b, c} be a subset of

⋂
T ∈P

L(T ). Suppose that, for all T ∈ P,
T |{a, b, c} is one of the two triples shown in Fig. 6. Then T ′ ancestrally
displays the triple shown in Fig. 6(b).



SUPERTREE METHODS FOR NESTED TAXA 17

Proof. If T is a common triple of any type except Type (I)(b), then (i) follows
from Theorem 4.1. If T is a common triple of Type (I)(b), then (i) follows from
Lemma 4.4(ii).

For (ii), a routine check using both parts of Lemma 4.4 establishes this part of
the corollary. �

We end this section with an observation regarding the last corollary. Observe
that for the two triples in (ii) of this corollary one is a refinement of the other.
Amongst the other triples only one other pair as this property, Types (I)(a) and (b).
Despite part (ii) of Corollary 4.6, it is straightforward to construct an example
where the analogue of (ii) for Types (I)(a) and (I)(b) does not hold. This is not
a weakness of NestedSupertree, but simply highlights the fact shown in [14]
that no general supertree method for rooted phylogenetic trees (and hence rooted
semi-labelled trees) is able to satisfy this analogue.

5. A Variant of NestedSupertree

In this section, we present a particular variant of NestedSupertree. This
algorithm, which we call MinEdgeWeightTree, allows the inputed trees to be
weighted and also satisfies the symmetry properties of ordering and renaming. To
describe MinEdgeWeightTree, we simply note that it is obtained from Nest-

edSupertree by replacing Step 2 of Descendant with the following:

2′. If S0 is empty, then choose S0 as follows:
(a) Let C0 denote the set of label vertices of D′(P ′) that have indegree zero.
(b) For each c ∈ C0, weight c to be the sum of the weights of the trees in P ′ that

induce at least one incident edge with c in D′(P ′).
(c) Let S0 consist of the elements of C0 with minimum weight.

Note that if the input trees are not weighted, choose each tree to have weight one.

Remarks

1. Clearly, at each iteration of the subroutine of MinEdgeWeightTree analogous
to Descendant, S0 is non-empty either at the end of Step 1 or Step 2′. Further-
more, the time taken to find S0 is polynomial in |L(P)|×|P|. It immediately fol-
lows by the results established in Sections 3 and 4 for NestedSupertree that
MinEdgeWeightTree applied to a collection of rooted semi-labelled trees
that are singularly labelled and weighted satisfies the rooted semi-labelled tree
analogues of (i)—(iii) and (v) in the introduction.

2. In comparison with Descendant, the set S0 of label vertices is well-defined
in the corresponding subroutine of MinEdgeWeightTree. Since no appeal is
made to the specific symbols used as labels or to the order in which the members
of P are listed in MinEdgeWeightTree, it follows that MinEdgeWeight-

Tree also satisfies the rooted semi-labelled tree analogues of (iv)(a) and (b) in
the introduction.



18 PHILIP DANIEL AND CHARLES SEMPLE

a

u2

d

w1

ab|c

b

2

3

3

a

u1
u1

u2

d

w1

ab|c

b
3

31

2

(b)

e

(a)

v1

v1

c

c

Figure 7. The associated graphs in the second and third iteration
of DescendantSupertree in Example 5.1.

Example 5.1. To illustrate MinEdgeWeightTree, consider the collection P
of rooted semi-labelled trees described in Example 3.1 and the collection P ′ of
rooted fully-labelled trees obtained from P by adding distinct new labels. For the
purposes of the example, suppose that the three trees in Fig. 1 are weighted so that
the leftmost tree is weighted 3, the middle tree is weighted 2, and the rightmost
tree is weighted 1. The modified descendancy graph of P ′ is the same as that given
in Fig. 3.

Applying MinEdgeWeightTree to P , the first iteration of its subroutine is
the same as that in Example 3.2. In particular, S0 = {v2, u3} at the end of Step 1
and so, in this iteration, no label vertices of the inputted graph are weighted. In the
second iteration of its subroutine, S0 is empty after Step 1. At Step 2′(a), the set
C0 of label vertices of the inputted graph with no incoming arcs is {e, u1, u2}. Since
the label vertex e has exactly one incident edge and this is induced by the tree with
weight 2, we give e weight 2 at Step 2′(b) in this iteration. Similarly, u1 and u2 are
both weighted 3. This weighting together with the associated mixed graph is shown
in Fig. 7(a), where the edges and the arcs (c, a) in which a is not an immediate
descendant of c are omitted. At Step 2′(c), S0 = {e} and so, at this iteration, it is
e and its incident arcs and edges that are deleted from the input graph. The graph
resulting from these deletions is shown in Fig. 7(b), where the weights of the label
vertices with indegree zero are also shown. Continuing in this way, the subroutine
of MinEdgeWeightTree eventually returns the rooted fully-labelled tree shown
Fig. 8(a) and MinEdgeWeightTree returns the rooted semi-labelled tree shown
in Figure 8(b).

Remarks. Although we think MinEdgeWeightTree is a reasonable algorithm,
we expect there to be more elaborate algorithms for supertree construction based
on NestedSupertree. The point is that it highlights how one can use NestedSu-

pertree as a basis for constructing new supertree methods for rooted semi-labelled



SUPERTREE METHODS FOR NESTED TAXA 19

a b d c

e

u1

a b cd

v2, u3

e

w1

v1

u2

(a) (b)

Figure 8. The trees returned by MinEdgeWeightTree and its
subroutine in Example 5.1.

trees that satisfy all of the rooted semi-labelled tree analogues of the properties
listed in the introduction.

6. NestedSupertree Applied to Rooted Phylogenetic Trees

Although not originally intended for phylogenetics, the algorithm Build [2] was
one of the first supertree methods for collections P of rooted phylogenetic trees.
Furthermore, as well as MinCutSupertree and its modified version, the general
approach taken by Build has been used in a number of more recent supertree
algorithms, for example [5, 6, 8, 11]. In the setting of phylogenetics, Build is a
polynomial-time algorithm for deciding if P is compatible. In this section, we de-
scribe how NestedSupertree can be applied to P to determine the compatibility
of P . In the case that P is compatible, we also show that the rooted phylogenetic
tree returned by NestedSupertree is the same as that returned by Build.

Since a collection P of rooted phylogenetic trees is compatible if and only if
it is ancestrally compatible, it follows by the discussion prior to Proposition 3.3
that NestedSupertree can be suitably modified to determine the compatibility
of P . Theorem 6.1 shows that, when applied to the same collection of compatible
rooted phylogenetic trees, the supertrees returned by NestedSupertree with this
modification and Build are identical up to isomorphism.

Before stating Theorem 6.1, we first give a description of Build. Let P be a
collection of rooted phylogenetic trees and let S be a subset of L(P). Let [P ,S]
be the graph that has vertex set S and has an edge joining two vertices a and b

precisely if there exists a c ∈ S and a T ∈ P such that

T |{a, b, c} ∼= ab|c.



20 PHILIP DANIEL AND CHARLES SEMPLE

Algorithm: Build(P , v)
Input: A collection P of rooted phylogenetic trees.
Output: A rooted phylogenetic tree T that displays P with root vertex v, or the
statement P is not compatible.

1. Set S to be the label set of P .
2. If |S| = 1, then output the rooted phylogenetic tree consisting of the single vertex

v labelled by the element in S.
3. If |S| ≥ 2, construct [P , S].
4. Let S1,S2, . . . ,Sk denote the vertex sets of the components of [P ,S]. If k = 1,

then halt and return P is not compatible.
5. For each i ∈ {1, 2, . . . , k}, call Build(Pi, vi), where Pi is the collection of rooted

phylogenetic trees obtained from P by restricting each tree in P to Si. If Build(Pi, vi)
returns a tree, then attach Ti to v via the edge {vi, v}.

Theorem 6.1. Let P be a collection of rooted phylogenetic trees, and suppose that
P is compatible. Then, up to isomorphism, the rooted phylogenetic trees returned
by NestedSupertree with the above modifications and Build when applied to P
are identical.

Proof. We begin the proof with two observations. Let S denote the label set of
P , and let P ′ be a collection of rooted fully-labelled trees that is obtained from P
by adding distinct new labels. The first observation is that the vertex set of each
component of the graph [P ,S] is a union of maximal proper clusters of the trees in
P . For the second observation, consider the descendancy graph of P ′, and let S0

denote the set of vertices of D(P ′) that have indegree zero and no incident edges.
Then the vertex sets of each arc component of D(P ′)\S0 is also a union of maximal
proper clusters of the trees in P ′. From these two observations, it is easily deduced,
for all a, b ∈ S, that a and b are in the same component of [P ,S] if and only if a

and b are in the same arc component of D(P ′)\S0.

Let Si be the vertex set of a component of [P ,S] and let S ′
i

be the vertex set
of the arc component of D(P ′)\S0 that contains Si. Let Pi be the collection of
rooted phylogenetic trees obtained from P by restricting each tree in P to Si, and
let P ′

i
be the collection of rooted semi-labelled trees obtained from P ′ by restricting

each tree in P ′ to S′
i
. It is easily seen that all of the trees in P ′

i
are fully labelled.

Now the equivalence at the end of the last paragraph implies that P ′
i

could have
been obtained from Pi by adding distinct new labels. Furthermore, the arc compo-
nent of D(P ′) containing the elements of Si is equal to the descendancy graph of
D(P ′

i
). Since [P ,S] contains at least two components, this implies that the maximal

proper clusters of the trees returned by NestedSupertree with the appropriate
modifications and Build when applied to P are the same. Repeatedly applying
this argument to Pi for all i, we eventually deduce that the two rooted phyloge-
netic trees returned by NestedSupertree with the appropriate modifications and
Build are identical. �

We end this section by remarking on what happens when NestedSupertree

is applied to an arbitrary collection P of rooted phylogenetic trees. Let P ′ be a



SUPERTREE METHODS FOR NESTED TAXA 21

collection of rooted fully-labelled trees that is obtained from P by adding distinct
new labels. Since each of the trees in P are phylogenetic, P is pairwise consistent
and the descendancy graph of P ′ is acyclic. It is now easily seen from the description
of Descendant that NestedSupertree applied to P returns a rooted semi-
labelled tree and that this tree is phylogenetic. It now follows by Propositions 3.7
and 3.3, and Theorem 4.1 that NestedSupertree is a general supertree method
for rooted phylogenetic trees that satisfies the desirable properties (i)—(iii) in the
introduction.

Acknowledgments. We thank the anonymous referees for their constructive and
valuable comments.

References

[1] E. N. Adams III (1986), N-trees as nestings: complexity, similarity and consensus, J. Classi-
fication, 3, pp. 299-317.

[2] A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman (1981), Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions, SIAM J.
Comput., 10, pp. 405-421.

[3] O. R. P. Bininda-Emonds, J. L. Gittleman, and M. A. Steel (2002), The (super)tree of
life: procedures, problems and prospects, Annual Reviews of Ecology and Systematics, 33,
pp. 265-289.

[4] O. R. P. Bininda-Emonds, ed. (2004), Phylogenetic Supertrees: Combining Information to
Reveal the Tree of Life, Computational Biology Series, Kluwer.

[5] D. Bryant, C. Semple, and M. Steel (2004), Supertree methods for ancestral divergence dates
and other applications, in Phylogenetic Supertrees: Combining Information to Reveal the
Tree of Life, O. Bininda-Emonds, ed., Computational Biology Series, Kluwer, pp. 129-150.

[6] M. Constantinescu and D. Sankoff (1995), An efficient algorithm for supertrees, J. Classifi-

cation, 12, pp. 101-112.
[7] P. Daniel and C. Semple (2004), Supertree algorithms for nested taxa, in Phylogenetic Su-

pertrees: Combining Information to Reveal the Tree of Life, O. Bininda-Emonds, ed., Com-
putational Biology Series, Kluwer, pp. 151-171.

[8] M. P. Ng and N. C. Wormald (1996), Reconstruction of rooted trees from subtrees, Discrete
Appl. Math., 69, pp. 19-31.

[9] R. D. M. Page, Modified mincut supertrees, in Proceedings of the Second International Work-
shop on Algorithms in Bioinformatics (WABI 2002), R. Guig and D. Gusfield, eds, Springer,
2002, pp. 537-552.

[10] R. D. M. Page (2004), Taxonomy, supertrees, and the Tree of Life, in Phylogenetic Supertrees:
Combining Information to Reveal the Tree of Life, O. Bininda-Emonds, ed., Computational
Biology Series, Kluwer, pp. 247-265.

[11] C. Semple (2003), Reconstructing minimal rooted trees, Discrete Appl. Math., 127, pp. 489-
503.

[12] C. Semple and M. Steel (2000), A supertree method for rooted trees, Discrete Appl. Math.,
105, pp. 147-158.

[13] C. Semple and M. Steel (2003), Phylogenetics, Oxford University Press.
[14] M. Steel, A. W. M. Dress, and S. Böcker (2000), Simple but fundamental limitations on

supertree and consensus tree methods, Syst. Biol., 49, pp. 363-368.
[15] S. Willson (2003), Private communication.

Biomathematics Research Centre, Department of Mathematics and Statistics, Uni-

versity of Canterbury, Christchurch, New Zealand

E-mail address: pjd62@student.canterbury.ac.nz, c.semple@math.canterbury.ac.nz


