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ABSTRACT. Given an edge-weighted tree 7 with leaf set X, define the weight
of a subset S of X as the sum of the edge-weights of the minimal subtree of 7°
connecting the elements in S. It is known that the problem of selecting subsets
of X of a given size to maximize this weight can be solved using a greedy
algorithm. This optimization problem arises in conservation biology where
the weight is referred to as the phylogenetic diversity of a taxa set S. Here,
we consider the extension of this problem whereby we are only interested in
selecting subsets of the taxa set that are ecologically ‘viable’. Such subsets are
specified by an acyclic digraph which represents, for example, a food web. This
additional constraint makes the problem computationally hard. In this paper,
we analyze the complexity of different variations of the extended problem.

1. INTRODUCTION

In the context of conservation biology, maximizing phylogenetic diversity (PD)
is a prominent selection criteria for deciding which species to conserve (e.g. [2, 3, 4,
10, 11, 14, 13, 18]). Intuitively, given a phylogenetic (evolutionary) tree 7, the PD
of a set of present-day species is the sum of the edges of the minimal subtree of 7
that connects the species in the set. In its most direct application to conservation,
one selects a k-element subset of species that maximizes PD over all k-element
subsets. While PD makes a comparison between species to capture the notion of
diversity, the conservation of individual species are considered in isolation. In real
ecosystems this can be problematic as species frequently depend on other species
for their survival—there is no point conserving a species if all the species it depends
on go extinct [6, 21]. In this paper, we consider an extension of the PD selection
criteria, where only subsets that are ‘viable’ are considered for conservation.

A phylogenetic X -tree T is an unrooted tree with no degree-2 vertices and whose
leaf set is X. Here, 7 represents the evolutionary relationships of the taxa in
X. Ignoring the edge weights and dashed lines, a phylogenetic tree with X =
{a,b,e,d,e, f,g} is shown in Fig. 1(a). Let A be a non-negative real-valued weighting
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FIGURE 1. (a) A phylogenetic X-tree 7 and (b) a food web D on X.

on the edges of 7. The phylogenetic diversity (PD) of a subset S of X is
PDr(S)= > o),

ecE(T(9))

where E(7(S)) is the edge set of the minimal subtree of 7 connecting the leaves
in S. If there is no ambiguity, we frequently denote PDr(S) by PD(S). Referring
to Fig. 1(a), the PD of {a,b, f} is the sum of the edge weights of the subtree of 7
highlighted with dashed lines. In particular, PD({a,b, f}) = 12.

Given a phylogenetic X-tree 7 and a fixed integer k, the PD optimization prob-
lem is to find

max{PD(S) : S is a k-element subset of X}.

Pardi and Goldmann [11] and Steel [18] independently showed that a solution to
this problem can be found in polynomial time using a greedy algorithm.

To allow for ecological dependencies in the conserving of species, we extend the
PD optimization problem to additionally include an acyclic digraph D = (X, A).
Here, D could be an ecological network, for example a ‘food web’, where (u,v) € A
precisely if taxon w feeds or preys on taxon v. We say that a subset S of X is
viable if, for each s € S, there is a directed path in D from s to a vertex with
out-degree zero in which every vertex in the path is in S. In Fig. 1(b), {a,b, f}
is viable. However, {a,b,c} is not viable as there is no directed path in D from ¢
to a vertex with out-degree 0 using only vertices in {a, b, c}. Under the food-web
interpretation, a set S is viable if, for each taxon in S that is not at the bottom
of the food chain, there is a taxon in S that it feeds or preys on. Formally, the
problem we are interested in is the following:

Decision Problem: OpTiMIZING PD wWITH DEPENDENCIES

Instance: A phylogenetic X-tree 7, a non-negative (real valued) weighting A on
the edges of 7, an acyclic digraph D = (X, A), a positive integer k, and a non-
negative real number d.

Question: Is there a viable subset S of X of size at most k with PD(S) > d?

As stated, this problem has been considered by Moulton et al. [10] and Spillner
et al. [17]. The first paper was interested in the problem in the context of greedoids
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and greedy algorithms, while the second paper noted without proof that the prob-
lem was NP-complete. The purpose of our paper is to establish which variations of
OPTIMIZING PD wITH DEPENDENCIES are computationally easy and which vari-
ations of it are computationally hard. In addition to the immediate significance
of knowing the complexity of the restricted problems, these results increase our
knowledge of the essential elements which made the original problem NP-complete.

The organization of the paper is as follows. The next section contains some
preliminaries that are used throughout the paper. A star tree is a phylogenetic
tree with exactly one interior vertex. In Section 3, we show that OpTIMIZING PD
WITH DEPENDENCIES is NP-complete even if 7 is a star tree. Section 4 considers
polynomial-time instances of OPTIMIZING PD wITH DEPENDENCIES when 7 is a
star tree. Such instances rely on the underlying graph of D containing no (undi-
rected) cycles. The other possibility to consider is when 7 is arbitrary, but the
underlying graph of D is a rooted tree. However, as we show in Section 5, this
particular possibility is also NP-complete. For both intrinsic and practical reasons,
greedy algorithms have been frequently considered in the context of phylogenetic
diversity. A curious feature of the problem OPTIMIZING PD WITH DEPENDENCIES
which gives some additional indication of its hardness is highlighted in Section 6
where we show that it is NP-complete to decide if the feasible solution obtained
by the greedy algorithm can be bettered. Throughout most of the paper, we re-
strict ourselves to unrooted phylogenetic trees. In the last section, we consider the
extension of our earlier results to rooted phylogenetic trees, including such trees
satisfying the molecular clock hypothesis. The notation and terminology of the
paper follows [16].

2. VERTEX COVER AND THE STAR TREE PROBLEM

VERTEX COVER is a classical NP-complete problem and is frequently used for
completeness reductions. As we use VERTEX COVER several times in the paper,
we give a formal definition of it here. Furthermore, we also describe a problem
equivalent to OPTIMIZING PD wITH DEPENDENCIES in case 7 is a star tree.

For a graph G = (V, E), a vertex cover of G is a subset V' of V such that, for
each edge {u,v} € E, at least one of u and v belongs to V’. The NP-complete
problem VERTEX COVER [5] is the following:

Decision Problem: VERTEX COVER
Instance: A graph G = (V, E) and a positive integer m < |V|.
Question: Is there a vertex cover of G of size at most m?

A special instance of OPTIMIZING PD wITH DEPENDENCIES is when 7 is a
star tree. Because a star tree contains no non-pendant edges, this special instance
can be reformulated as a problem on acyclic digraphs. In particular, let w be the
weighting on the vertices of D defined by setting w(v) = A({r,v}) for all v € X,
where 7 denotes the interior vertex of 7. In this setting, for all subsets S of X, set
PD(S) =3 ,cgw(v). It is now easily checked that the following decision problem
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is equivalent to OPTIMIZING PD wITH DEPENDENCIES when 7 is a star tree and
k> 2.

Decision Problem: OPTIMIZING PD IN VERTEX-WEIGHTED FOOD WEBS
Instance: An acyclic digraph D = (X, A), a non-negative (real-valued) weighting
w on the vertices of D, a positive integer k, and a non-negative real number d.
Question: Is there a viable subset S of X of size at most k with PD(S) > d?

The above equivalence will be freely used several times in this paper. Although
the typical model of evolution is a bifurcating tree, there are instances for which
it appears that the underlying model is more star-like than bifurcating (for exam-
ple, see [20] and the references therein). Thus, restricting OPTIMIZING PD WITH
DEPENDENCIES to when 7 is a star tree is also of practical importance.

3. NP-COMPLETENESS OF OPTIMIZING PD wITH DEPENDENCIES

In this section, we show that the decision problem OpTIMIZING PD wIiTH DE-
PENDENCIES is NP-complete even if 7 is a star tree. In particular, recalling the
equivalence in Section 2, we prove the following theorem.

Theorem 3.1. OPTIMIZING PD IN VERTEX-WEIGHTED FooD WEBS is NP-
complete.

Proof. Evidently, OPTIMIZING PD IN VERTEX-WEIGHTED FOOD WEBS is in NP
since, given a subset S of X of size at most k, one can easily check in polynomial
time if S is viable and PD(S) > d. To complete the proof of the theorem, we show
that there is a polynomial-time reduction from VERTEX COVER to OPTIMIZING
PD IN VERTEX-WEIGHTED FOOD WEBS.

Given a graph G = (V, E) and a positive integer m, we construct an instance
of OPTIMIZING PD IN VERTEX-WEIGHTED FOOD WEBS as follows. Let D be the
acyclic digraph whose vertex set X is the (disjoint) union of V and F, and whose
arc set A is defined to be

A={(e,v):e€ E,veV, vis an end-vertex of e in G}.

Let w be the weight function w : X — RZ0 specified by assigning weight 1 to each
vertex in X N E and weight 0 to each vertex in X N V. Clearly, this construction
can be accomplished in polynomial time.

We now show that there is a vertex cover of G of size at most m if and only if there
is a viable subset S of X of size at most |E|+m with PD(S) > |E|. First, suppose
that V' C V is a vertex cover for G with |V’| < m. Then, the construction of D
implies that V/UE forms a viable subset of X. Since |V'UE| = |V'|+|E| < m+|E|,
and w(V' U E) = |E|, it follows that V' U E is a viable subset of X of size at most
|E| + m and with weight at least |E|. Conversely, suppose that there is a viable
subset S of X of size at most |E| + m and with weight at least |E|. Since the
vertices in X NV have weight 0, the subset S must contain all |E| vertices with
weight 1; that is, it must contain X N E. Therefore S = V' U E for some V' C V.
Since S is viable, there is an arc from each e € E to some vertex v € V’. In terms
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of G, this implies that V' is a vertex cover of G. As |S| < |E|+ m, it follows that
|[V'| < m completing the proof of the theorem. O

Remark. Theorem 3.1 tells us that OpTIMIZING PD WITH DEPENDENCIES is
NP-complete even if 7 is a star tree. However, the proof of this theorem says the
problem remains NP-complete if D is a bipartite digraph with vertex parts V; and
V5, where each vertex in V7 has in-degree 0 and out-degree 2 and each vertex in V5
has out-degree 0. Moreover, it is also interesting to note that we could have used
any restricted version of VERTEX COVER for the reduction provided the version
is NP-complete. For example, it has been shown that VERTEX COVER remains
NP-complete if G is cubic and planar [9]. A graph is cubic if each vertex has degree
three. Thus OPTIMIZING PD WITH DEPENDENCIES remains NP-complete if 7°
is a star tree and D is a bipartite graph as described above with the additional
properties that each vertex in V5 has in-degree 3 and D is planar. To see planarity,
observe that D can be obtained by taking a planar drawing of the planar graph G,
subdivide each edge of G and, for each resulting vertex u, direct the incident edges
away from wu.

4. STAR TREE AND FOOD TREE

In contrast to the NP-completeness results of this paper, we have the following
theorem.

Theorem 4.1. OPTIMIZING PD IN VERTEX-WEIGHTED FOoOD WEBS can be
solved in polynomial time if D is either

(i) a rooted tree with all arcs directed away from the root or
(ii) a rooted tree with all arcs directed towards the root.

Theorem 4.1 is an immediate consequence of what appears to be a well-known
dynamic programming algorithm for solving the following problem (for example,
see [8]). Let T be a rooted tree with root p and let k be a positive integer. Suppose
that the vertices of T' are assigned real-valued weights. The problem is to find a
maximum-weighted subtree of T' with root p and at most k vertices.

We briefly outline the dynamic programming algorithm here in the language
of this paper. For convenience, we view OPTIMIZING PD IN VERTEX-WEIGHTED
Foop WEBS as an optimization problem. First consider (ii). Let D be a digraph
satisfying (ii) in the statement of Theorem 4.1, and let p be the root of D. Thus
D contains exactly one vertex of out-degree 0, namely p. Let v be a vertex of D.
We denote the subset of vertices u of D for which (u,v) is an arc in D by I(v).
Furthermore, we denote the rooted subtree of D with root v whose vertex set is
precisely the subset of vertices x of D for which there is a directed path from z to
v by D(v).

For a vertex v of T and a non-negative integer ¢ < k, let S(v,q) denote the
optimal solution of OPTIMIZING PD IN VERTEX-WEIGHTED FOOD WEBS when D
is chosen to be D(v) and the size of the viable subset is at most g. Note that S(p, k)
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denotes the optimal solution for the original problem. Clearly, for any vertex v of
T, we have S(v,0) = 0 and, for each vertex u of in-degree 0, S(u, q) = w(u) for all
1 < ¢ < k. The dynamic programming algorithm starts at vertices of in-degree 0
and works itself towards p using the recursion

S(v,q) = w(v) + max S, qu
(v,9) () {qurzuel(u)q“gq_l}ue;(v) ( "

for 1 < ¢ < k. It is shown in [8] that this approach leads to a quadratic-time
algorithm for finding S(p, k).

If D is a digraph satisfying (i) in the statement of Theorem 4.1, then we simply
modify the above algorithm in the obvious way to find a minimum-weight subtree of
D rooted at p with at least n—k vertices. The complement of the resulting solution,
that is 3, ¢y (p) w(u) minus this solution, gives the desired optimal solution.

Despite the above positive results, we end this section with the following conjec-
ture where no constraints are placed on the direction of the arcs.

Conjecture 4.2. OPTIMIZING PD IN VERTEX-WEIGHTED FOOD WEBS when the
underlying graph of D is a tree is NP-complete.

5. ARBITRARY PHYLOGENETIC TREE AND FOOD TREE

In this section, we show that OPTIMIZING PD wITH DEPENDENCIES is still
NP-complete if 7 is an arbitrary phylogenetic tree while D is a rooted tree. In
particular, we establish the following theorem.

Theorem 5.1. OPTIMIZING PD WITH DEPENDENCIES when 7 is an arbitrary
phylogenetic tree and D is either

(i) a rooted tree with all arcs directed away from the root, or
(ii) a rooted tree with all arcs directed towards the root

is NP-complete.

Proof. We prove (i). The proof of (ii) is similar and omitted. Since OPTIMIZING
PD wiTH DEPENDENCIES is in NP, this particular instance of the problem is also
in NP. Like the NP-completeness proof for Theorem 3.1, the reduction is from
VERTEX COVER. However, for this proof, we use the restricted version of VERTEX
COVER in which G is cubic and planar. It is shown in [9] that VERTEX COVER
remains NP-complete under these restrictions.

Let G = (V,E) be a cubic, planar graph. We construct an instance of the
restricted version of OpPTIMIZING PD wITH DEPENDENCIES described by (i) as
follows. Colour the edges of G with three colours {1,2,3} such that no two edges
incident with the same vertex receive the same colour. Due to a classic construction
of Tait [19], this is equivalent to four-colouring the faces of a planar drawing of G
which can be done in quadratic time [12]. For each colour ¢ € {1, 2,3}, let

Ve=Auc:ueV},
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and let T, be the tree with leaf set V. that consists of a (central) vertex z. of degree
|V'|/2, where the |V|/2 neighbours of z. each have degree 3, and the |V| leaves are
arranged so that, for each edge {u,v} of G coloured ¢, the vertices u. and v, are
adjacent to the same degree-3 vertex. As G is a cubic graph, T, is well-defined
for all ¢. Let 7 be the phylogenetic X-tree that is constructed by starting with
components T1, To, and T3, and two new (isolated) vertices z and y, and then
connecting these components with new edges {z,y}, {y,21}, {y, 22}, and {y, z3}.
Observe that the leaf set of 7 is V3 U Vo U V3 U {z}. We specify the weighting
function A by setting

0 if e is a pendant edge incident with a vertex in V; or Vs;
N if e is a pendant edge incident with a vertex in Vs;
0 ife={x,y}ore={y,z} for some c € {1,2,3};

1  otherwise,

Ae) =

where N is sufficiently large, say N > |E|. With this construction and weighting,
our phylogenetic tree and corresponding edge weighting is complete. Now let D be
the associated rooted tree with vertex set V4 U Vo U V3 U {z} and arc set

U {(Z‘, U3), (’I,Lg, u2)7 (Ug, U1)}

ueV
Note that x is the root of D. Clearly, both 7 and D can be constructed in polyno-
mial time.

We complete the proof by showing that G has a vertex cover of size at most
m if and only if there is a viable subset S of X of size at most 3m such that
PD(S) > |E| +mN. Suppose first that there is a vertex cover V' C V for G with
|[V'| = m. By selecting S to be the set {u. : ¢ € {1,2,3} and u € V'}, we have a
viable subset of X of size 3m. Moreover, observing that there are exactly |E| edges
in 7 with weight 1 (each corresponding to a distinct edge of G), PD(S) = |E|+mN.

Conversely, suppose that there is a viable subset S of X of size at most 3m
that has PD score at least |E| +mN. Since N > |E| and PD(S) > |E| + mN, it
follows that S must contain at least m leaves of T3 so that the minimal subtree of
T connecting the elements of S includes m edges with weight N. But then, as S
is viable, for each such leave ug in S, the set S also includes u; and us. Therefore
|S| = 3m and consists of exactly these vertices. For PD(S) > |E| 4+ mN, it now
follows that the minimal subtree of 7 connecting the elements in S must contain
all |E| edges with weight 1. In turn, this implies that V' = {u € V : uz € S} is a
vertex cover of G. As |V’| = m, we have completed the proof of the theorem. O

6. IMPROVING GREEDY SOLUTIONS IS HARD

Greedy algorithms have been regularly considered as approaches for solving prob-
lems that optimize some measure of diversity (for example, [1, 2, 11, 7, 10, 18]).
There are a variety of reasons for this consideration. First, they are fast, simple to
use and implement, and, more importantly, solve the original PD problem exactly
[11, 18] and provide sharp approximation algorithms for other PD-related prob-
lems [1, 2]. Indeed, the fact that the original PD problem can be solved in this way,



8 BEATA FALLER!, CHARLES SEMPLE, AND DOMINIC WELSH

motivated Moulton et al. [10] to consider PD and the greedy algorithm in detail.
Second, in the context of conservation biology, they underlie the desirable property
of stability [1]. In particular, one would like the set of species to be targeted for
conservation to be stable as budgets vary. For example, if, given some initial bud-
get, one selects a set of species to conserve resulting from a diversity-based method,
one would like most of that set to remain if the budget was to be adjusted up or
down at a later date and the chosen set of species to conserve was reselected under
the new budget.

In this section, we consider the following greedy approach to solving OPTIMIZING
PD IN VERTEX-WEIGHTED FOOD WEBS.

Algorithm: GREEDY (D, w, k)

Input: An acyclic digraph D = (X, A), a non-negative (real-valued) weighting w
on the vertices of D, and a positive integer k.

Output: A viable subset of X of size k.

Step 1 Let S be the empty set and set counter ¢ = 0.

Step 2 If ¢ = k, STOP; otherwise, select an element z of X — S so that SU{z} is
viable and maximizes PD(S U {z}) — PD(S).

Step 3 Set S =SU{z} and ¢ = ¢+ 1, and return to Step 2.

It is not difficult to construct a counterexample to show that GREEDY does not
necessarily find an optimal solution to OPTIMIZING PD IN VERTEX-WEIGHTED
Foop WEBS. Of course, since GREEDY is trying to solve an NP-hard problem, this
is not surprising. However, what is perhaps unexpected is that deciding if there is a
feasible solution better than that returned by GREEDY is NP-complete as we show
next. It would be interesting to know of other situations where improving greedy
solutions was a provably hard problem.

Decision Problem: GREEDY OPTIMALITY

Instance: An acyclic digraph D = (X, A), a non-negative (real-valued) weighting
w on the nodes of D, a positive integer k, and the PD score g of the solution
returned by GREEDY applied to (D, w, k).

Question: Is there a viable subset S of X of size at most k such that PD(S) > g7

Theorem 6.1. GREEDY OPTIMALITY is NP-complete.

Proof. GREEDY OPTIMALITY is clearly in NP since, given a subset S of X, one can
easily verify in polynomial time whether S is viable and PD(S) > g. To complete
the proof of the theorem, we show that there is a polynomial-time reduction from
VERTEX COVER to GREEDY OPTIMALITY.

Let G = (V, E) and m be a given instance of VERTEX COVER. Let D be the
acyclic digraph whose vertex set is the union of VUE and U = {uq, us, ..., u|E|+m,1},
and whose arc set is the union of

{(e,v) : e € E, v € V, v is an end-vertex of e in G}

and
{(wisui—1) 1i € {2,3,...,|E|+m —1}}.
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Now let w be any function from the vertex set of D to RZY that is defined, for all
x € X, by setting

0 ifzeV,
) J1 HeEn
w(x) =
6 ifx e {u,ua, .., U Em—2];

a if = up4m-1,

where (|E|+m —2)0 +a = |E| — € for some ¢ >0 and 0 < § <
such a function exists.

‘E‘iﬁ . Clearly,

Let k = m + |E| and let g; be the solution of GREEDY applied to (D, w, k).
Observe that g, = |E| — € and that any set corresponding to this solution must
contain all of the elements in U and exactly one element in V. We next show that
there is a vertex cover for G of size at most m if and only if there is a viable subset
S of X of size at most m + |E| such that PD(S) > g.

Suppose first that there is a vertex cover V’ of G of size at most m. Then, by
taking the subset V' U E of the vertex set of D, we have a viable subset of size at
most m + |E| whose weight is |E|. In particular, PD(V' U E) > gj.

For the converse, suppose that there is a viable subset S of X of size at most
m + |E| such that PD(S) > gi. If E C S, then we have a vertex cover for G of
size at most m by choosing the set V' N S. Therefore we may assume that E is
not a subset of S. Furthermore, if u g4,—1 € S, then, as S is viable, U C S.
In this case, as |S| < m + |E|, we have S = U or S = U U {v} for some v € V.
But then PD(S) = |E| — € = gi; a contradiction. Thus we may also assume that
UE|+m—1 € S. Since E is not a subset of S, it follows that

(1) PD(S) < (|[E|+m—2)6 +|E| - 1.
But § was chosen so that § < IEILﬁ’ that is
(Bl +m—-2)¥<1—e
Combining this with (1), we get
PD(S)<(|E|+m—2)0+|E|-1<1—€+|E|—1=|E|—F¢,

contradicting the fact that PD(S) > g, = |E| — e. It follows that E must be a
subset of S and so there is a vertex cover of G of size at most m. Since the reduction
can be done in polynomial time, this completes the proof of the theorem. (I

As noted in the introduction, Moulton et al. considered OPTIMIZING PD wWITH
DEPENDENCIES in the context of greedy algorithms. They observed that, in the
trivial case 7 is a star tree in which all edge weights are equal, the problem is
solvable via a greedy algorithm. One can extend this observation further by showing
that OpTIMIZING PD IN VERTEX-WEIGHTED FOOD WEBS is solvable via GREEDY
if D has the property that, whenever P is a directed path in D, then w(u) < w(v)
for all (u,v) € P. An interesting problem would be to determine precisely when
OPTIMIZING PD IN VERTEX-WEIGHTED FoOD WEBS is solvable via GREEDY.
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However, Theorem 6.1 shows that any such characterization will not be validated
in polynomial time unless P=NP.

7. ROOTED PHYLOGENETIC TREES AND THE MOLECULAR CLOCK

In practice, one frequently works with rooted phylogenetic trees and therefore
the rooted analogue of PD. In this short section, we review the implications of our
earlier results in this setting.

A rooted phylogenetic X -tree T is a rooted tree with no degree-2 vertices except
perhaps the root and whose leaf set is X. Such a tree commonly describes the
evolution of the set X of extant species from their common hypothetical ancestor
(the root). Let A denote a non-negative real-valued weighting on the set of edges of
7. For a subset S of X, the rooted PD (RPD) of S is the sum of the edge lengths
of the minimal subtree of 7 that connects the elements in S and the root of 7 [3].
The rooted analogue of OPTIMIZING PD wiTH DEPENDENCIES, called OPTIMIZING
RPD wiTH DEPENDENCIES, is the same as that in the unrooted setting but with
the rooted phylogenetic tree replacing the (unrooted) phylogenetic tree and using
RPD instead of PD. A rooted star tree is a rooted phylogenetic tree in which the
only interior vertex is the root. As in the unrooted setting, when 7 is a rooted star
tree, OPTIMIZING RPD WITH DEPENDENCIES is equivalent to OPTIMIZING PD
IN VERTEX-WEIGHTED FooD WEBS. A minor point to note is that, unlike the
unrooted setting where k > 2 for this equivalence to work, there is no restriction on
k in the rooted equivalence. It is now easily seen that Theorems 3.1, 4.1, and 6.1
apply to OPTIMIZING RPD WITH DEPENDENCIES too. Furthermore, the rooted
analogue of Theorem 5.1 also holds. This can be easily checked by making minor
changes to the proof of Theorem 5.1. In particular, distinguishing the interior
vertex y as the root in the constructed tree and using RPD instead of PD in the
course of the reduction.

In biology, it is sometimes reasonable to assume that mutations in evolution
occur at a constant rate. This assumption is called the molecular clock assumption.
Mathematically speaking, this assumption implies that, in a rooted phylogenetic
tree, the sum of the lengths of the edges from the root to each leaf is the same.
The notion of the existence of a molecular clock first appeared in [22] followed by
[15]. Now consider OPTIMIZING RPD wITH DEPENDENCIES under the assumption
that the edge-weights of 7 satisfy the molecular clock. If 7 is a star tree, then
OPTIMIZING RPD wWITH DEPENDENCIES is trivially solvable in polynomial time
[10]. However, if 7 is arbitrary and D is a food tree, then OPTIMIZING RPD WITH
DEPENDENCIES is NP-complete.

Theorem 7.1. OPTIMIZING RPD WITH DEPENDENCIES when T is a rooted phy-
logenetic tree with the molecular clock assumption and D 1is either

(i) a rooted tree with all arcs directed away from the root, or
(ii) a rooted tree with all arcs directed towards the root

is NP-complete.
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Proof. We just outline the proof of (i). The proof of (ii) is similar. We use a
reduction from the restricted version of VERTEX COVER in which G is cubic and
planar. The proof is essentially the same as that of the proof of Theorem 5.1, and
so we just highlight the necessary changes.

Distinguish the interior vertex y of the phylogenetic tree constructed in the proof
of Theorem 5.1 to obtain a rooted phylogenetic tree 7, with root y. Using the
original weighting function A , we make 7, clock-like with the following weighting
function Ay:

N+1 ife={z,y};

Ay(e) = NV if e € {{y, 21}, {y, 22}};
Ae)  otherwise.

Setting k = 3m+1 and d = |E|+ (m+3)N +1 completes the necessary changes. O
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