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1 Introduction

Reconstructing evolutionary trees and, more generally, phylogenetic networks,
is an important problem in evolutionary biology (see e.g. [9,12,17]). Formally
speaking, for a set X of species, an evolutionary or phylogenetic (X)-tree T is
a (graph theoretical) tree with leaf set X, no degree 2 vertices, and a weight
function that assigns a non-negative weight to each edge of T . An example of
such a tree is given in Figure 1(a). The theory of such trees is well-developed
[18], and several methods are available for reconstructing them from biological
data [12,17].

Any phylogenetic tree T may be encoded in terms of the subtrees T ′ of T that
are spanned by the 4-element subsets of X [18, p. 130], cf. Figure 1(b), and
several methods for tree reconstruction rely on this fact (see e.g. [13,19,22]).
With this in mind, let Q(X) denote the set of all bipartitions of the form
a1a2|b1b2, where a1, a2, b1, b2 are distinct elements of X, i.e., Q(X) is the set of
quartets on X. Then, for every quartet a1a2|b1b2, T induces weight u(a1a2|b1b2)
corresponding to the total weight of those edges in the subtree T ′ of T spanned
by {a1, a2, b1, b2} that are neither on the path from a1 to a2 nor on the path
from b1 to b2 (see e.g. Figure 1(b)). In particular, we obtain a quartet-weight
function, i.e. a map u : Q(X) → R≥0.
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Fig. 1. (a) A phylogenetic X-tree with X = {a1, a2, a3, b1, b2, b3, b4}. (b) The subtree
spanned by {a1, a2, b1, b2}. The induced weight of the quartet a1a2|b1b2 is 5, the
total weight of the bold edges. (c) In this phylogenetic tree the split a1a2|a3a4a5 is
associated with edge e.

As we have seen, it is straightforward to associate a quartet-weight function to
a phylogenetic tree, but it is less obvious precisely which quartet-weight func-
tions arise in this way. Even so, Dress and Erdős recently characterized those
quartet-weight functions associated to binary phylogenetic trees [11] (that is,
phylogenetic trees in which every internal vertex has degree 3) and Grünewald
et al. [14] subsequently presented a characterization for phylogenetic trees in
general (see also [1] and [7,8] for related results in the context of unweighted
trees). In this paper we are interested in characterizing quartet-weight func-
tions associated to structures that generalize phylogenetic trees.

To present our main result we first recall some additional facts concerning
phylogenetic trees. To any edge e in a phylogenetic X-tree T we can associate
a bipartition or split of X (see e.g. Figure 1(c)). In particular, we obtain a
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split-weight function, i.e. a map w from the set Σ(X) of all splits of X to
R≥0, that assigns to each split of X associated to edge e of T the weight of
e, and to all other splits weight 0. A fundamental result in phylogenetics [6]
implies that phylogenetic trees correspond to split-weight functions w whose
support, supp(w) = {S ∈ Σ(X) : w(S) > 0}, is compatible (i.e., for any
two splits A1|B1, A2|B2 in supp(w) at least one of the intersections A1 ∩ A2,
A1∩B2, B1∩A2, B1∩B2 is empty). Therefore, since any split-weight function
w induces a quartet-weight function uw defined by

uw(a1a2|b1b2) =
∑

A|B∈Σ(X),
{a1,a2}⊆A, {b1,b2}⊆B or {a1,a2}⊆B, {b1,b2}⊆A

w(A|B), (1)

the above mentioned results in [11,14] can be regarded as characterizations
of quartet-weight functions u for which there exists a split-weight function w

with u = uw such that supp(w) is compatible.

Here, we shall characterize quartet-weight functions u for which there exists
a split-weight function w with u = uw such that supp(w) is weakly compatible
(i.e., for any three splits A1|B1, A2|B2, A3|B3 in supp(w) at least one of the
intersections A1∩A2∩A3, A1∩B2∩B3, B1∩A2∩B3, B1∩B2∩A3 is empty [2]).
The concept of weak compatibility forms the basis for the construction of so-
called split networks [3,10,15], a special class of labeled, weighted, graphs used
to understand complex patterns of evolution [16] that generalize phylogenetic
trees. Our main result is the following.

Theorem 1 Suppose that X is a finite set, u : Q(X) → R≥0 is a quartet-
weight function, and, for q ∈ {≤ 1, = 1,≤ 2, = 2}, consider the following
properties:

(W1)q For every 4 distinct elements a, b, c, d ∈ X at most 1 (precisely 1, at
most 2, precisely 2) of the quantities u(ab|cd), u(ac|bd) and u(ad|bc) are
non-zero.

(W2) For every 5 distinct elements a1, a2, b1, b2, x in X,

u(a1a2|b1b2) = min





u(a1a2|b1b2)

u(a1x|b1b2)

u(a2x|b1b2)





+ min





u(a1a2|b1b2)

u(a1a2|b1x)

u(a1a2|b2x)





.

Then the following statements hold.

(A) There exists a split-weight function w with u = uw and supp(w) weakly
compatible if and only if u satisfies (W1)≤2 and (W2).

(B) There exists a split-weight function w with u = uw and supp(w) compat-
ible if and only if u satisfies (W1)≤1 and (W2).
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(C) There exists a split-weight function w with u = uw and supp(w) maxi-mal
(and, therefore, maximum) compatible if and only if u satisfies (W1)=1

and (W2).

Note that (B) and (C) are alternative characterizations to those given in [14]
and [11] for when a quartet-weight function arises from a phylogenetic tree and
a binary phylogenetic tree, respectively. Furthermore, (A) can be viewed as a
generalization of Bandelt and Dress’s 6-point condition in [4] that essentially
characterizes quartet sets of the form supp(uw) = {q ∈ Q(X) : uw(q) > 0},
w a split-weight function with the property that supp(w) is weakly compat-
ible. Note that, in contrast to (A), the induced weights of the quartets in
supp(uw) are ignored in [4] and, therefore, also the precise weights of the
splits in supp(w) are not important. This results in a loss of information that
is illustrated by an example given in [4, p. 126] which shows that no char-
acterization of these quartet sets is possible in terms of an i-point condition
with i ≤ 5.

Note also that if a quartet-weight function u satisfies (W2) and (W1)=2, then
one can show — using a completely analogous argument as in the proof of char-
acterization (C) given below — that there exists a split-weight function w with
u = uw and supp(w) maximal weakly compatible (although this does not neces-
sarily imply that supp(w) is maximum weakly compatible [2, p. 70]). However,
the converse statement does not hold. For example, if X = {a, b, c, d, e, f},
and w is the split-weight function on Σ(X) that assigns weight 1 to each of
the following splits of X: ab|cdef , abe|cdf , abef |cd, ad|bcef , adf |bce, adef |bc
and x|X − x for every x ∈ X, and 0 to every other split, then it can be
easily checked that supp(w) is maximal weakly compatible, although for the
4-element subset {b, d, e, f} only uw(be|df) is non-zero.

The rest of the paper is organized as follows. In Section 2, we introduce some
basic notation. In Section 3, we prove some useful results concerning quartet-
weight functions, and use these to prove that characterization (A) holds. In
Section 4, we prove that characterizations (B) and (C) hold. We conclude in
Section 5 with some observations concerning the characterization of quartet-
weight functions which correspond to split-weight functions whose support is
circular, a property that generalizes compatibility but that is more restrictive
than weak compatibility [2]. In particular, we show that it is not possible to
characterize such quartet-weight functions by any i-point condition, i ∈ N.

2 Preliminaries

For any two non-empty subsets A and B of X with the property that A∩B = ∅,
we call A|B a partial split of X. In particular, a quartet is a partial split. We

4



denote the set of all partial splits A|B of X with min{|A|, |B|} ≥ 2 by Σ∗
p(X).

For any two partial splits A1|B1 and A2|B2 of X, we say that A2|B2 extends
A1|B1, denoted by A2|B2 ≻ A1|B1, if A2 ⊇ A1 and B2 ⊇ B1, or A2 ⊇ B1 and
B2 ⊇ A1. For A ⊆ X and x ∈ X − A, we use A + x to denote A ∪ {x}.

Now let U(X) denote the set of quartet-weight functions on Q(X) and W(X)
the set of split-weight functions on Σ(X). Recall that a split A|B of X is called
trivial if min{|A|, |B|} = 1. Note that for every w ∈ W(X) only the non-
trivial splits, i.e., the splits in Σ∗(X) = {A|B ∈ Σ(X) : min{|A|, |B|} ≥ 2},
contribute to uw in Equation (1).

Note that every w ∈ W(X) induces a distance function Dw as follows:

Dw(x, y) :=
∑

S∈Σ(X),S≻x|y

w(S)

for every (x, y) ∈ X × X, i.e, a symmetric map Dw : X × X → R≥0 with the
property that D(x, x) = 0 for every x ∈ X. This function is always a (pseudo-
)metric, that is, it satisfies the triangle inequality Dw(x, z) ≤ Dw(x, y) +
Dw(y, z) for all x, y, z ∈ X. Split decomposition [2] reverses this process. In
particular, given a distance function D, a weight function α = αD on the set
of all partial splits of X is defined as follows:

α(A|B) :=
1

2
min

a1,a2∈A
b1,b2∈B

(max





D(a1, b1) + D(a2, b2),

D(a1, b2) + D(a2, b1),

D(a1, a2) + D(b1, b2)





− D(a1, a2) − D(b1, b2))

for every partial split A|B of X. Obviously, this yields a split-weight function
wD by restricting α to Σ(X).

Central to the theory of split decomposition are the so called totally split-
decomposable metrics. Such a metric D on X can be written as D = Dw where
w ∈ W(X) has the property that supp(w) is weakly compatible. For brevity,
we will call w ∈ W(X) weakly compatible if supp(w) is weakly compatible.
Note that for a totally split-decomposable metric D there exists a unique
weakly compatible split-weight function w with the property that D = Dw

and, in addition, for every split S ∈ Σ(X) we have α(S) = w(S) [2, Theorem
3].

Finally, given a quartet-weight function u ∈ U(X), we define a weight function
γu on the set of all partial splits of X by

γu(A|B) := min{u(q) : q ∈ Q(X), A|B ≻ q}

where A|B ∈ Σ∗
p(X), and γu(A|B) = 0 for all other partial splits of X. In case

the quartet-weight function u is understood from the context, we will write
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γ(A|B) rather than γu(A|B). The restriction of γu to Σ(X) is denoted by wu.
Note that Property (W2) can now be written more concisely as

γu(a1a2|b1b2) = γu(a1a2x|b1b2) + γu(a1a2|b1b2x)

for every five distinct elements a1, a2, b1, b2, x in X. We conclude by rephrasing
a simple but useful fact from [2, p. 60].

Fact 2 Let w ∈ W(X). Then w is weakly compatible if and only if uw satisfies
(W1)≤2.

3 Proof of characterization (A)

The proof is organized as follows. We first show that quartet-weight functions
that are induced by a weakly compatible split-weight function always satisfy
(W1)≤2 and (W2) (Lemma 3). The converse could be shown by proving analo-
gous results on split decomposition theory appearing in [2] for quartet-weight
functions. However, we will use a more direct approach: We first show that it
suffices to prove a key equality (Lemma 4 (ii)) and then establish that equality
in Lemma 5.

Lemma 3 If u ∈ U(X) can be written as u = uw for some weakly compatible
w ∈ W(X), then u satisfies properties (W1)≤2 and (W2).

PROOF. Let w ∈ W(X) be weakly compatible. Then, by Fact 2, u = uw

satisfies (W1)≤2. To show that u satisfies also (W2), put α = αDw
and γ =

γuw
. As a first step, we show that α(A|B) = γ(A|B) for every partial split

A|B ∈ Σ∗
p(X).

To this end, consider an arbitrary partial split A|B ∈ Σ∗
p(X). If α(A|B) >

0, then, since Dw is totally split decomposable, by [2, Theorem 6 (ii)] we
have α(A|B) =

∑
S∈Σ(X),S≻A|B w(S). If α(A|B) = 0, then it follows from the

definition of α that w(S) = 0 for every split S of X such that S ≻ A|B.
Hence, α(q) =

∑
S∈Σ(X),S≻q w(S) = uw(q) for every q ∈ Q(X). Moreover, since

Dw is a metric, it follows from an observation in [2, p. 54] that α(A|B) =
min{α(q) : q ∈ Q(X), A|B ≻ q}, which, by the above, equals min{uw(q) : q ∈
Q(X), A|B ≻ q} = γ(A|B) for every partial split A|B in Σ∗

p(X).

We now show that uw satisfies Property (W2). Since α(A|B) = γ(A|B) for
every partial split A|B ∈ Σ∗

p(X), this follows immediately from [2, Theorem 6
(iii)] which states that α(a1a2|b1b2) = α(a1a2x|b1b2) + α(a1a2|b1b2x) for any 5
distinct elements a1, a2, b1, b2, x ∈ X. �
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The next lemma establishes that to show that the converse of Lemma 3 holds,
it suffices to show that Equation (3) below holds.

Lemma 4 Let u ∈ U(X) satisfy properties (W1)≤2 and (W2).

(i) For every partial split A|B ∈ Σ∗
p(X) and every x ∈ X − (A ∪ B),

γ(A|B) ≥ γ(A + x|B) + γ(A|B + x). (2)

(ii) If
γ(A|B) = γ(A + x|B) + γ(A|B + x) (3)

for every partial split A|B ∈ Σ∗
p(X) and every x ∈ X − (A ∪ B), then

u = uw for some weakly compatible w ∈ W(X).

PROOF. (i) Let A|B ∈ Σ∗
p(X) and x ∈ X − (A ∪ B). Choose two distinct

elements a1, a2 ∈ A and two distinct elements b1, b2 ∈ B such that γ(A|B) =
u(a1a2|b1b2) holds. Then

γ(A + x|B) + γ(A|B + x) ≤ γ(a1a2x|b1b2) + γ(a1a2|b1b2x)

= u(a1a2|b1b2) = γ(A, B),

where the second-to-last equality follows from Property (W2).

(ii) First recall that the split-weight function w = wu is defined as the restric-
tion of γ to Σ(X). Since u satisfies Property (W1)≤2, it follows by Fact 2 that
w is weakly compatible. Thus, it suffices to show that u = uw. To do this, we
use induction on the size k of X − (A∪B), and the induction hypothesis that

γ(A|B) =
∑

S∈Σ(X),S≻A|B

w(S)

holds for every partial split A|B ∈ Σ∗
p(X).

The base case k = 0 states that γ(S) = w(S) for every S ∈ Σ(X). But this
holds by definition.

Now suppose k > 0 and suppose A|B ∈ Σ∗
p(X). Then there exists some

x ∈ X − (A ∪ B). Using Equation (3) it follows by induction that

γ(A|B) = γ(A + x|B) + γ(A|B + x)

=
∑

S∈Σ(X),S≻A+x|B

w(S) +
∑

S∈Σ(X),S≻A|B+x

w(S)

=
∑

S∈Σ(X),S≻A|B

w(S),
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and so u(q) = γ(q) =
∑

S∈Σ(X),S≻q w(S) for every quartet q ∈ Q(X), as
required. �

The remainder of this section is devoted to the proof of the following lemma
which establishes that properties (W1)≤2 and (W2) imply Equation (3).

Lemma 5 Let u ∈ U(X) satisfy properties (W1)≤2 and (W2). Then Equation
(3) holds for every partial split A|B ∈ Σ∗

p(X) and every x ∈ X − (A ∪ B).

To prove this lemma we use induction on k := |A ∪ B|. Note that the base
case k = 4 of the induction follows directly from Property (W2). The remain-
der of the inductive proof is divided into two parts. In Part 1 we show that
Equation (3) holds for k = 5. This is the main part of the proof and is some-
what technical. In Part 2 we establish that Equation (3) holds for k ≥ 6. The
following simple fact will be used several times in our proof.

Fact 6 Let A|B ∈ Σ∗
p(X) and x ∈ X − (A∪B) be such that γ(A|B) > γ(A +

x|B). Then there exist a ∈ A and b1, b2 ∈ B, b1 6= b2, such that γ(A + x|B) =
u(ax|b1b2).

Part 1: k = 5

For the purpose of contradiction, we assume that there exists a partial split
A|B ∈ Σ∗

p(X), |A| = 2 and |B| = 3, and x ∈ X − (A ∪ B) such that

γ(A|B) > γ(A + x|B) + γ(A|B + x). (4)

Note that (4) implies that γ(A|B) > 0 and, therefore, u(q) > 0 for every
quartet q that is extended by A|B. Starting with the above assumption, we
generate additional partial splits A′|B′, |A′| = 2 and |B′| = 3, satisfying
Inequality (4) until we obtain a contradiction to (W1)≤2. We use the following
lemma to generate these additional splits.

Lemma 7 Suppose A|B ∈ Σ∗
p(X), with |A| = 2 and |B| = 3, and x ∈ X−(A∪

B) is such that Inequality (4) holds. Then there exist precisely two elements
b ∈ B such that

(i)

γ(A + x|B − b) > γ(A + x + b|B − b) + γ(A + x|B) and

γ(A|B + x − b) = γ(A|B + x),

and there exists precisely one element b ∈ B such that
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(ii)

γ(A + x|B − b) = γ(A + x|B) and

γ(A|B + x − b) > γ(A + b|B + x − b) + γ(A|B + x).

Moreover, no element in B satisfies both (i) and (ii).

PROOF. First note that since γ(A|B) > γ(A|B + x), by Fact 6 there exist
at least two elements b ∈ B such that γ(A|B + x − b) = γ(A|B + x). Also
since γ(A|B) > γ(A + x|B), again by Fact 6, there exists at least one element
b ∈ B such that γ(A + x|B − b) = γ(A + x|B). Clearly, there is no b ∈ B such
that γ(A|B + x − b) = γ(A|B + x) and γ(A + x|B − b) = γ(A + x|B) since
otherwise, applying the induction hypothesis to A|B − b, we have

γ(A|B) ≤ γ(A|B − b) = γ(A + x|B − b) + γ(A|B + x − b)

= γ(A + x|B) + γ(A|B + x)

contradicting (4). Next note that there is no b ∈ B such that

γ(A + x|B − b) = γ(A + x + b|B − b) + γ(A + x|B) and

γ(A|B + x − b) = γ(A|B + x).

To see this, suppose it were otherwise and note that again by applying the
induction hypothesis to A|B − b we have

γ(A|B − b) = γ(A + x|B − b) + γ(A|B + x − b) as well as

γ(A|B − b) = γ(A + b|B − b) + γ(A|B).

But then

γ(A + b|B − b) + γ(A|B) = γ(A + x + b|B − b) + γ(A + x|B) + γ(A|B + x)

which implies γ(A|B) ≤ γ(A + x|B) + γ(A|B + x) since γ(A + x + b|B − b) ≤
γ(A + b|B − b). But this contradicts (4). Similarly we can show that there is
no b ∈ B such that

γ(A + x|B − b) = γ(A + x|B) and

γ(A|B + x − b) = γ(A + b|B + x − b) + γ(A|B + x).

This, together with Lemma 4(i), completes the proof of the lemma. �

We now apply Lemma 7 for the generation of additional partial splits A′|B′

with γ(A′|B′) > 0. Let A = {a1, a2} and B = {b1, b2, b3}. Recall that we
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assume γ(a1a2|b1b2b3) > γ(a1a2x|b1b2b3)+γ(a1a2|b1b2b3x). Applying Lemma 7,
we can assume by symmetry and without loss of generality that

γ(a1a2x|b1b2) > γ(a1a2b3x|b1b2) + γ(a1a2x|b1b2b3),

γ(a1a2x|b2b3) > γ(a1a2b1x|b2b3) + γ(a1a2x|b1b2b3) and

γ(a1a2|b1b3x) > γ(a1a2b2|b1b3x) + γ(a1a2|b1b2b3x).

(Note that this also determines uniquely the remaining equalities that must
hold by Lemma 7.) Similarly, applying Lemma 7 to the partial split b1b2|a1a2x,
we can again assume by symmetry and without loss of generality that

γ(b1b2b3|a1x) > γ(a2b1b2b3|a1x) + γ(b1b2b3|a1a2x).

Now, by Lemma 7(ii), either

γ(b1b2|a2b3x) > γ(a1b1b2|a2b3x) + γ(b1b2|a1a2b3x)

or

γ(b1b2|a1a2b3) > γ(b1b2x|a1a2b3) + γ(b1b2|a1a2b3x).

But γ(b1b2b3|a1a2) 6= γ(b1b2b3|a1a2x) as γ(a1a2|b1b2b3) > γ(a1a2x|b1b2b3) +
γ(a1a2|b1b2b3x), and so the first of these two inequalities must hold. Similarly,
applying Lemma 7 to the partial split b2b3|a1a2x, implies

γ(b2b3|a2b1x) > γ(a1b2b3|a2b1x) + γ(b2b3|a1a2b1x),

and, applying Lemma 7 to the partial split b1b2|a2b3x and then to the partial
split b2b3|a2b1x, implies

γ(a1b1b2|b3x) > γ(a1a2b1b2|b3x) + γ(a1b1b2|a2b3x) and

γ(a1b2b3|b1x) > γ(a1a2b2b3|b1x) + γ(a1b2b3|a2b1x).

Hence, since γ(b1b2b3|a1x) > 0, γ(a1b1b2|b3x) > 0 and γ(a1b2b3|b1x) > 0
and since u(q) > 0 for every quartet extended by b1b2b3|a1x, a1b1b2|b3x, and
a1b2b3|b1x, we must have u(a1x|b1b3) > 0, u(a1b1|b3x) > 0 and u(a1b3|b1x) > 0,
contradicting (W1)≤2. This completes the proof of Part 1 and so Equation (3)
holds for k = 5.

Part 2: k ≥ 6

We first show that Equation (3) holds for k = 6. Note that if γ(A|B) =
γ(A+x|B) or γ(A|B) = γ(A|B+x), then γ(A|B) = γ(A+x|B)+γ(A|B+x) by
Lemma 4(i). So assume that γ(A|B) > γ(A+x|B) and γ(A|B) > γ(A|B +x),
and consider the following two cases.
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Case 1 : max{|A|, |B|} = 4. Without loss of generality assume that |A| =
4 and |B| = 2. By Fact 6, since |A| = 4, we can select a ∈ A such that
γ(A + x − a|B) = γ(A + x|B) and γ(A − a|B + x) = γ(A|B + x). Then

γ(A|B) ≤ γ(A − a|B) = γ(A + x − a|B) + γ(A − a|B + x)

= γ(A + x|B) + γ(A|B + x)

by (3) for k = 5. But then, by Lemma 4(i), γ(A|B) = γ(A+x|B)+γ(A|B+x).

Case 2 : |A| = |B| = 3. By Fact 6, since |A| = 3, we can select a ∈ A such that
γ(A + x − a|B) = γ(A + x|B). By (3) for k = 5 and Case 1, we obtain

γ(A − a|B) = γ(A + x − a|B) + γ(A − a|B + x)

= γ(A + x − a|B) + γ(A|B + x) + γ(A − a|B + x + a),

and, similarly,

γ(A − a|B) = γ(A|B) + γ(A − a|B + a)

= γ(A|B) + γ(A + x − a|B + a) + γ(A − a|B + x + a).

It follows that

γ(A + x − a|B) + γ(A|B + x) = γ(A|B) + γ(A + x − a|B + a)

from which, by the choice of a,

γ(A + x|B) + γ(A|B + x) ≥ γ(A|B)

follows. But then, by Lemma 4(i), γ(A|B) = γ(A + x|B) + γ(A|B + x). This
completes the proof of (3) for k = 6.

So, suppose k ≥ 7. But then max{|A|, |B|} ≥ 4, and so we can apply the same
argument (using induction) as used in Case 1 for k = 6. This completes the
proof of Part 2. �

4 Proof of characterizations (B) and (C)

PROOF. (B) Suppose w ∈ W(X) with supp(w) compatible and u = uw.
Since every compatible split system is weakly compatible, it follows from char-
acterization (A) that u satisfies (W1)≤2 and (W2). To see that u must satisfy
even (W1)≤1 assume for contradiction that there exist 4 distinct elements
a, b, c, d ∈ X such that at least two of the quantities u(ab|cd), u(ac|bd) and
u(ad|bc) are non-zero. Without loss of generality assume u(ab|cd) and u(ac|bd)
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are non-zero. But then, since quartets ab|cd and ac|bd must be extended by a
split in supp(w), it follows that supp(w) is not compatible, a contradiction.

To prove the converse, assume that u ∈ U(X) satisfies (W1)≤1 and (W2). Then
u satisfies (W1)≤2 and (W2). Hence, by characterization (A), there exists a
weakly compatible w ∈ W(X) such that u = uw. But now it follows directly
from (W1)≤1 that supp(w) must even be compatible. �

PROOF. (C) Suppose w ∈ W(X) with supp(w) maximal compatible and
u = uw. By characterization (B) it remains to show that this implies (W1)=1.
But this is well-known [7,8,11].

To see that the converse holds, suppose that u ∈ U(X) satisfies (W1)=1 and
(W2). By characterization (B), there exists w ∈ W(X) with the property that
u = uw and supp(w) is compatible. We may assume without loss of generality
that supp(w) contains the trivial splits of X. Now assume for a contradiction
that there exists a split S ′ ∈ Σ∗(X)− supp(w) such that supp(w) + S ′ is still
compatible, and define a split-weight function w′ by w′(S) = w(S) for every
split S ∈ Σ(X)− S ′ and w′(S ′) = 1. Since supp(w′) is compatible, by charac-
terization (B), the quartet-weight function u′ = uw

′ induced by w′ must satisfy
(W1)≤1 and (W2). Furthermore, since w′(S ′) = γu

′(S ′) > γu(S
′) = w(S ′) = 0,

there must exist a quartet q ∈ Q(X) − supp(u) such that q is extended by
split S ′. But since u satisfies (W1)=1 and by construction supp(u) ⊆ supp(u′),
this contradicts the fact that u′ satisfies (W1)≤1. �

5 Circular split systems

We have seen how to characterize weakly compatible quartet-weight functions,
functions that arise in the context of split networks [2,3]. An important sub-
class of these functions that are also widely used in this context are those corre-
sponding to circular split systems. A split system Σ′ ⊆ Σ(X) is called circular
if there exists an ordering x1, x2, . . . , xn of X with the property that for every
split A|B ∈ Σ′ there are i, j ∈ {1, . . . , n}, i ≤ j, such that A = {xi, . . . , xj}
or B = {xi, . . . , xj} [2]. Note that every compatible split system is circular,
and that every maximum weakly compatible split system is (maximum) circu-
lar [2]. Circular split systems and the corresponding quartet-weight functions
arise in the construction of planar split networks [5,13].

In view of our above results, it is natural to ask whether it is possible to give
i-point characterizations for quartet-weight functions that are induced by split-
weight functions whose support is circular. Note that Bandelt and Dress [2]
characterized the quartet sets supp(uw) that arise from a split weight function
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Fig. 2. Examples of forbidden split systems. Elements in X are represented as dots
and splits by curves or curve segments, for example, in (a), x5x6|x1x2x3x4 and
x1x3x5|x2x4x6 are splits. The split system pictured in (a) is Ψ and the split system
in (b) is Γ9.

w with the property that supp(w) is maximum circular by a 5-point condition
(see also [21]). However, we shall now show that in general there is no such
i-point characterization, i ∈ N.

Given a split system Σ′ ⊆ Σ(X) and some subset Y ⊆ X, define the split
system induced by Σ′ on Y by Σ′

|Y = {A ∩ Y |B ∩ Y : A|B ∈ Σ′} ∩ Σ(Y ). In
[20, p. 18], it is shown that a split system Σ cannot be circular if there is a
6-element subset Y = {x1, x2, . . . , x6} ⊆ X and Σ′ ⊆ Σ such that the split
system induced by Σ′ on Y is the split system Ψ in Figure 2 (a) or there is a
k-element subset Y = {x1, x2, . . . , xk} ⊆ X, k ≥ 4, and Σ′ ⊆ Σ such that the
split system induced by Σ′ on Y is the split system

Γk = {{xi, xi+1}|X − {xi, xi+1} : 1 ≤ i ≤ k − 2} ∪

{{xk−1, x1}|X − {xk−1, x1}}

(see Figure 2 (b) where the split system Γ9 is pictured). We will refer to the
split systems Ψ and Γk, k ≥ 4, as the forbidden split systems.

It follows immediately that no i-point condition, i ∈ N, characterizes quartet-
weight functions corresponding to split-weight functions with circular support.
Even so, we next present a result of independent interest that implies that the
above configurations are in some sense enough to characterize circular split
systems.

Theorem 8 A split system Σ on X is circular if and only if there are no
subsets Σ′ of Σ and Y of X such that the split system Σ′

|Y is one of the
forbidden split systems.

Note that an alternative characterization of circular split systems that employs
a set theoretical closure operation may be found in [20, Theorem 1.29]. The
remainder of this section is devoted to the proof of Theorem 8. In view of
the discussion above, it suffices to show that if Σ is clean on X, i.e. there are
no subsets Σ′ of Σ and Y of X such that the split system Σ′

|Y is one of the
forbidden split systems, then Σ is circular.

Assume for a contradiction that there exists a split system Σ on some set X
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such that Σ is clean on X but not circular. Fix such a Σ with |X| minimal.
Then it follows that |X| ≥ 4, since every split system on a set with at most 3
elements is circular.

Now select an arbitrary element z ∈ X and define Z = X − {z}. Note that
the induced split system Σ|Z is clean on Z. Thus, since n = |Z| < |X|, by the
minimality of |X|, there exists a circular ordering Θ = x1, . . . , xn of Z that is
compatible with Σ|Z , i.e., for every split A|B ∈ Σ|Z there are i, j ∈ {1, . . . , n},
i ≤ j, such that A = {xi, . . . , xj} or B = {xi, . . . , xj}. In the following, when
dealing with indices taken from the set {1, 2, . . . , l} for some integer l ≥ 1, it
will be convenient to allow also index l+1 and agree that the element indexed
by l + 1 is the same as the element indexed by 1.

Since the trivial splits of X are compatible with every ordering of X, we can
assume without loss of generality that Σ does not contain any trivial splits.
Then, for each split S ∈ Σ, we let AS denote the element in S that does not
contain z. Note that for every split S ∈ Σ there exists some S ′ ∈ Σ|Z such
that AS ∈ S ′. We continue the proof of Theorem 8 with the following lemma.

Lemma 9 There are two splits S1 and S2 in Σ such that (shifting ordering Θ
suitably if necessary)

AS1
= {x1, . . . , xa} and AS2

= {xb1 , . . . , xn, x1, . . . , xb2}

with 1 ≤ b2, b2 + 2 ≤ b1, b1 ≤ a, and a < n.

PROOF. We divide our argument into two cases.

Case 1 : There exists some c ∈ {1, . . . , n} such that there is no split S ∈ Σ
with the property that {xc, xc+1} is a subset of AS. Then the ordering Θ′ =
x1, . . . , xc, z, xc+1, . . . , xn of X is compatible with Σ, contradicting our choice
of Σ.

Case 2 : For every c ∈ {1, . . . , n} there exists a split S ∈ Σ such that {xc, xc+1}
is a subset of AS. Then there must exist splits S1, . . . , Sl in Σ and elements
z1, . . . , zl in Z, l ≥ 2, such that for every i ∈ {1, . . . , l} element zi is contained
in ASi

and ASi+1
but in no other set ASj

, j ∈ {1, . . . , l} − {i, i + 1}.

It remains to show that l ≤ 2. To see this suppose for a contradiction that
l ≥ 3. Define Z ′ = {z, z1, . . . , zl} and Σ′ = {S1, . . . , Sl}. Then Σ′

|Z′ is the
forbidden split system Γl+1, a contradiction. �

Now let S1 and S2 be two splits in Σ with the properties given in Lemma 9.
Define C1 = {x1, . . . , xb2}, D1 = {xb2+1, . . . , xb1−1}, C2 = {xb1 , . . . , xa} and
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D2 = {xa+1, . . . , xn}. Select S1 and S2 such that |C1 ∪ C2| is minimal. This
induces a bipartition of the split system Σ as described in the following lemma.
The routine proof is omitted.

Lemma 10 Every split in Σ is contained in precisely one of the following
subsets of Σ,

Σ1 = {S ∈ Σ : C1 ∪ C2 ∪ Di ⊆ AS, i ∈ {1, 2}}

Σ2 = {S ∈ Σ : AS ⊆ Ci ∪ Dj, i, j ∈ {1, 2}}.

Next we further study the structure of the splits in Σ2. To this end define two
elements p, r ∈ Z to be clustered, p ∼ r, if there exists a split S ∈ Σ2 such that
{p, r} ⊆ AS. Consider the transitive closure of the binary relation ∼ which we
denote by the same symbol. The resulting relation ∼ is an equivalence relation
on Z. Denote the set of equivalence classes with respect to ∼ by F and call any
element in F a cluster. Note that by construction, for every cluster F ∈ F, the
split F |Z − F of Z is compatible with ordering Θ. The next lemma concerns
the structure of the clusters in F.

Lemma 11 (a) For every cluster F ∈ F, there exist i, j ∈ {1, 2} such that
F ⊆ Ci ∪ Dj.

(b) There are no two clusters F1, F2 ∈ F, F1 6= F2, such that
(i) F1 ∩ C1 6= ∅, F1 ∩ D1 6= ∅, F2 ∩ D1 6= ∅ and F2 ∩ C2 6= ∅, or
(ii) F1 ∩ C1 6= ∅, F1 ∩ D2 6= ∅, F2 ∩ D2 6= ∅ and F2 ∩ C2 6= ∅.

PROOF. (a) Assume for contradiction that there exists a cluster F ∈ F

that is not contained in Ci ∪ Dj for some i, j ∈ {1, 2}. The argument can be
divided into four very similar cases. We only consider the case that F∩D1 6= ∅,
F ∩D2 6= ∅ and C2 ⊆ F . Then, by the definition of the binary relation ∼, there
exist splits S̃1, . . . , S̃l, l ≥ 2, in Σ2 and xi0 , . . . , xil ∈ Z such that xi0 ∈ D1,
{xi1 , . . . , xil−1

} ⊆ C2, xil ∈ D2, b2 + 1 ≤ i0 < i1 < · · · < il ≤ n, and
AS̃j

∩ {xi0 , . . . , xil} = {xij−1
, xij} for all j ∈ {1, . . . , l}.

Let y be an arbitrary element in C1. Then {S1, S2, S̃1, . . . , S̃l}|{xi0
,...,xil

,z,y} is
the forbidden split system Γl+3. Thus, Σ is not clean on X, a contradiction.

(b) We only show (i), then (ii) follows by symmetry. Suppose for contradiction
that two clusters F1, F2 ∈ F, F1 6= F2, with property (i) exist. Then, by
the definition of the binary relation ∼, there exist splits S̃1, S̃2 in Σ2 and
xi0 , . . . , xi3 ∈ Z such that xi0 ∈ C1, {xi1 , xi2} ⊆ D1, xi3 ∈ C2, 1 ≤ i0 <

i1 < i2 < i3 ≤ a, AS̃1
∩ {xi0 , . . . , xi3} = {xi0 , xi1}, and AS̃2

∩ {xi0 , . . . , xi3} =
{xi2 , xi3}.

Select an arbitrary element y ∈ D2. Then {S1, S2, S̃1, S̃2}|{xi0
,...,xi3

,y,z} is the
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forbidden split system Ψ, a contradiction. �

The next lemma helps to simplify the remainder of the proof.

Lemma 12 Without loss of generality, we can assume that neither {x1, xn}
nor {xb1−1, xb1} is contained in a cluster in F.

PROOF. By Lemma 11(b) at most one of {x1, xn} and {xa, xa+1} can be
contained in a cluster in F and, similarly, at most one of {xb2 , xb2+1} and
{xb1−1, xb1} can be contained in a cluster in F.

Now consider the case that {xb1−1, xb1} and {xa, xa+1} are each contained in
a cluster in F (all other cases can be dealt with similarly). Then we must
have that neither {x1, xn} nor {xb2 , xb2+1} are contained in a cluster in F.
Furthermore, by Lemma 11(a), there must exist some c ∈ {b1, . . . , a} such
that {xc, xc+1} is not contained in a cluster in F. Moreover, by our assumption
above, {xb2 , xb2+1} is not contained in a cluster in F.

Now it can be checked that every split in Σ|Z is compatible with the ordering

Θ′ = x1, . . . , xb2 , xc, xc−1, . . . , xb2+1, xc+1, xc+2, . . . , xn.

So, we could use ordering Θ′ instead of ordering Θ and then would have that
neither {x1, xn} nor {xb1−1, xb1} is contained in a cluster in F. �

Now we construct an ordering of X that is compatible with Σ. This yields a
contradiction to the fact that Σ is not circular and finishes the proof. To this
end we define

Z ′
1 = {x1, . . . , xb1−1, y, z} and Z ′

2 = {xb1 , . . . , xn, y, z}

where y is a new element not contained in X. With respect to Z ′
1, the new

element y can be thought of as representing an arbitrary element in D2. Simi-
larly, with respect to Z ′

2, the new element y can be thought of as representing
an arbitrary element in D1. Note that |Z ′

1| ≤ n and |Z ′
2| ≤ n.

Define the bipartitions Σ1 = Σ1
1 ∪ Σ2

1 and Σ2 = Σ1
2 ∪ Σ2

2 by

Σ1
1 = {S ∈ Σ1 : D1 ⊆ AS}, Σ2

1 = {S ∈ Σ1 : D2 ⊆ AS},

Σ1
2 = {S ∈ Σ2 : AS ⊆ C1 ∪ D1}, Σ2

2 = {S ∈ Σ2 : AS ⊆ C2 ∪ D2}.

For every split S ∈ Σ, we define BS = X − AS. Now we construct a split
system Σ′

1 on Z ′
1 as follows:

{BS|Z
′
1 − BS : S ∈ Σ2

1} ∪ {AS|Z
′
1 − AS : S ∈ Σ1

2} ∪ {{y, z}|Z ′
1 − {y, z}}
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Similarly, we construct a split system Σ′
2 on Z ′

2:

{BS|Z
′
2 − BS : S ∈ Σ1

1} ∪ {AS|Z
′
2 − AS : S ∈ Σ2

2} ∪ {{y, z}|Z ′
2 − {y, z}}

Bearing in mind that y can be thought of as an element in D1 and D2, respec-
tively, it follows that the split system Σ′

i is clean on Z ′
i, i ∈ {1, 2}. Hence, by

the minimality of |X|, there exists a circular ordering Θ′
1 = p1, . . . , pl1 of Z ′

1

that is compatible with Σ′
1. Since the split {y, z}|Z ′

1−{y, z} is compatible with
Θ′

1 we can assume that pl1−1 = z and pl1 = y. Similarly, by the minimality of
|X|, there exists a circular ordering Θ′

2 = r1, . . . , rl2 of Z ′
2 that is compatible

with Σ′
2 and we can assume that r1 = y and r2 = z.

Now define the ordering Θ̃ = p1, p2, . . . , pl1−1, r3, r4, . . . , rl2 of X. It is not hard
to check that every split in Σ is compatible with Θ̃. But this contradicts our
assumption that Σ is not circular, completing the proof of Theorem 8. �
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