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Abstract. For a multi-set Σ of splits (bipartitions) of a finite set X, we
introduce the multi-split graph G(Σ). This graph is a natural extension of
the Buneman graph. Indeed, it is shown that several results pertaining to
the Buneman graph extend to the multi-split graph. In addition, in case Σ is
derived from a set R of partitions of X by taking parts together with their
complements, we show that the extremal instances where R is either strongly
compatible or strongly incompatible are equivalent to G(Σ) being either a tree
or a Cartesian product of star trees, respectively.
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1. Introduction

A fundamental task in areas of classification is to find graphical representations
of a set R of partitions of a finite set X . For example, in evolutionary biology, X
may be a set of species and the elements of R may be induced by given functions on
X (where a pair of elements of X are in the same part of the partition associated
to some character if and only if the character assigns them the same state), and
the biologist often seeks to represent R by a tree.

In case R consists of bipartitions or splits of X that satisfy a certain pairwise
property, there is a very natural graphical representation which we now recall. We
say that a pair A1|B1 and A2|B2 of splits of X is compatible if at least one of the
unions A1 ∪A2, A1 ∪B2, B1 ∪A2, and B1 ∪B2 equals X (where, throughout this
paper, we denote any partition {A1, A2, . . . , Ak} of a finite set by A1|A2| · · · |Ak).
Buneman [6] showed that R is a set of pairwise compatible splits of X if and only if
R can be represented by a canonical tree whose leaves are labelled by the elements
of X and whose edges display the elements of R.

In practice, when studying the evolution of a collection of organisms, sets of
splits of the collection are commonly derived using DNA or protein sequences. As
one might expect, sets obtained in this way are not usually pairwise compatible due
either to noise or the fact that the data is not best explained by a tree (in which
case evolutionary processes such as hybridization or recombination are involved).
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For such data the Buneman graph [7] can provide a useful means to display a set
of splits. If this set is pairwise compatible, then this graph is precisely Buneman’s
canonical tree. Otherwise it allows the visualisation of pairwise incompatible splits
(i.e. splits that are pairwise not compatible) as hypercubes within the graph. These
graphs, that are also known as median networks, have been used to analyse intra-
specific data, such as that arising when studying mitochondrial sequences in human
populations (see, for example, [2, 13]), and more recently to display incongruences
in large collections of trees [9].

Although it can be useful to use Buneman graphs to analyse such data, this
methodology still requires the derivation of splits, which often results in a loss of
information (see, for example, [11]). In such situations, it can therefore be helpful
to consider partitions of the data having larger cardinality (in the case of DNA
sequences partitions with cardinality 4 naturally arise in view of the 4 letter DNA
alphabet). Some graphs have been introduced for representing sets of partitions,
such as the quasi-median graph [3] (which forms the basis for the median-joining
method [1]) and the relation graph [10]. However, even for small data sets, such
graphs can become highly complex. Moreover, in case R is an arbitrary set of
partitions of X the most appropriate graph to represent R is far from clear, even
for “well-behaved” sets of partitions as we now illustrate.

In [8], it was shown that a set R of partitions can be represented by a tree in
case R is strongly compatible (i.e. for every distinct pair of partitions P,Q ∈ R,
there exists some A in P and B in Q with A∪B = X). Consider the following two
methods that can be used to construct such a tree.

(I) Associate the set ΣP = {A|X −A : A ∈ P} of splits of X to each partition P in
R. Since every pair of splits in ΣR =

⋃
P∈R ΣP is necessarily compatible, we can

represent R by the canonical tree associated to ΣR mentioned above.

(II) Associate to R the quasi-median graph QR. By [3, Theorem 2], QR must be a
block graph (i. e. every maximal 2–connected subgraph of QR is a clique). Hence,
we can represent R by the tree obtained through replacing every maximal clique of
size n ≥ 2 in QR with a star tree of size n (i.e. a tree on n leaves with exactly one
non-leaf vertex) in which the leaves of the latter are identified with the vertices of
the former.

Clearly one would hope that the trees constructed by methods (I) and (II) should
be the same. But, as the following example shows, this is not necessarily the case.
Consider the strongly compatible set R = {12|34, 1|2|34, 12|3|4} of partitions. The
tree associated to ΣR, the quasi-median graph QR, and the tree obtained from QR
by replacing every maximal clique with a star tree of the appropriate size is shown
in Figure 1(a), (b), and (c), respectively.

Motivated by this fact, we observed that we could shed light on the inconsistency
of methods (I) and (II) by considering what we call the multi-split graph. As we
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Figure 1

shall see, this graph is a natural generalization of the Buneman graph, and it is
hoped that it will provide a useful alternative for analysing sets of partitions arising
from molecular data.

In Theorem 4.4 we show that if R is a set of strongly compatible partitions of
X , then the multi-split graph G(ΣR) with ΣR regarded as a multi-set is a tree that
canonically represents R. As a consequence of this theorem and results in [3], it
follows that, in case R is strongly compatible, G(ΣR) is precisely the tree obtained
by method (II).

Intriguingly, this is not the only instance in which G(ΣR) can be obtained from
QR by the replacement process described in (II). In the final section, we show that
G(ΣR) is always a subgraph of a graph StR that is isomorphic to the “Cartesian
product”

∏
P∈R St|P | of star trees where Stn denotes the star tree with n pendant

vertices. For example, suppose R consists of the two partitions 1|23|45 and 125|34
on the set {1, 2, 3, 4, 5}. Then the quasi-median graph QR, which is isomorphic
to K2 × K3, and the multi-split graph G(ΣR) is shown in Figure 2(a) and (b),
respectively. In this example, we clearly see that G(ΣR) is a subgraph of St2×St3.
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Thus, it is desirable to characterize those sets of partitions R for which G(ΣR)
and StR coincide. In Theorem 5.3 we do precisely this, proving, for a set R of
partitions of X , that G(ΣR) equals StR if and only if R is strongly incompatible
(i.e. for every distinct pair of partitions P,Q ∈ R, the intersection A ∩ B is non-
empty for all A ∈ P and B ∈ Q). Since R being strongly incompatible implies that
QR is isomorphic to the Hamming graph

∏
P∈RK|P | [3, Corollary 1], it follows for

such R that G(ΣR) can be obtained from QR by simply replacing each clique K|P |
in the expression

∏
P∈RK|P | by the star tree St|P |.
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The paper is structured as follows. In Section 2, we outline some concepts of
multi-sets and graphs that are needed in this paper. In Section 3, we formally define
the multi-split graph and obtain various properties of it. Theorems 4.4 and 5.3 are
proven in Sections 4 and 5, respectively. Furthermore, in Section 4, we describe the
way in which a set of partitions of X is represented by the associated multi-split
graph; this is stated as Theorem 4.2.

2. Preliminaries

The notation and terminology in this paper follows [12]. Both multi-sets and
graphs play an important role in this paper. We briefly outline some concepts that
we use about these objects.

A multi-set is like a set except that it can contain repeated elements. For exam-
ple, M1 = {a, a, b, b, b, c} is a multi-set in which the elements a and b are repeated
two and three times, respectively. Clearly, a multi-set in which each element is re-
peated precisely once can be regarded as a set and vice-versa. Given a multi-set M ,
we call the set in which repeats of elements are all removed from M the underlying
set of M and denote it by M . Thus, for the multi-set M1, we have M1 = {a, b, c}.
Given two multi-sets M and M ′, we define the difference M −M ′ of M and M ′

to be the multi-set containing the elements from M each of which is repeated the
number of times it occurs in M less the number of times it occurs in M ′ where,
of course, if this difference is non-positive, the element is ignored. For example,
if M2 = {a, a, a, b, b} then M1 − M2 = {b, c}. In addition, we define the union
M ∪M ′ to be the multi-set containing the elements from M and M ′ each of which
is repeated the number of times it occurs in M plus the number of times it occurs
in M ′. Hence M1 ∪M2 = {a, a, a, a, a, b, b, b, b, b, c}. Note that we use the same
symbol for set union and multi-set union, and only explicitly state which one we
are using in case it is not clear from the context. The symmetric difference M ∆M ′

of the multi-sets M and M ′ is the multi-set (M −M ′) ∪ (M ′ −M).

As usual, a graph is a pair G = (V,E) consisting of a finite set V = V (G) of
vertices, together with an edge set E = E(G) of 2–element subsets of V . A graph
H is a subgraph of a graph G if both V (H) ⊆ V (G) and E(H) ⊆ E(G) hold. If
V ′ is a subset of V (G), then the subgraph of G whose vertex set is V ′ and whose
edge set consists of those edges in G that have both end-vertices in V ′ is called the
subgraph of G induced by V ′. Furthermore, the graph G\V ′ is the graph obtained
from G by deleting the vertices in V ′ and their incident edges. If E′ is a subset of
E(G), the graph G\E′ is the graph obtained from G by deleting the edges in E′.
In case V = {v}, we will write G\v rather than G\{v}.

For all i ∈ {1, 2, . . . , n}, let Gi = (Vi, Ei) be a graph. The (Cartesian) product of
G1, G2, . . . , Gn, denoted

∏
i∈{1,...,n}Gi, is the graph that has vertex set V1×· · ·×Vn,

with an edge joining two vertices (a1, . . . , an) and (b1, . . . , bn) precisely if, for some
i ∈ {1, . . . , n}, we have {ai, bi} ∈ Ei and aj = bj for all j ∈ {1, 2, . . . , n} − {i}.

Lastly, let P be a partition of X , G = (V,E) a graph, and φ : X → V a map.
Denoting G together with the map φ by (G;φ), a subset V ′ of V (respectively, E′
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of E) displays P in G if, for all distinct parts A and B of P , φ(A) and φ(B) are
subsets of the vertex sets of distinct components of G\V ′ (respectively, G\E′ ). In
case V ′ = {v}, we say that v displays P .

3. The Multi-Split Graph

To define the multi-split graph for a multi-set Σ of splits of X or X-splits, we
first need to describe a particular type of map associated with Σ. A Σ–map is a
map ψ : Σ → 2X such that, for all σ, σ′ ∈ Σ,

(S1) ψ(σ) ∈ σ, and
(S2) if ψ(σ) ∩ ψ(σ′) is empty, then ψ(σ) ∪ ψ(σ′) = X .

We call a map ψ : Σ → 2X that satisfies (S1) a weak Σ–map and given a weak
Σ–map ψ, we denote the multi-set {ψ(σ) : σ ∈ Σ} by ψ.

The multi-split graph on Σ, denoted G(Σ), is defined as follows. The vertex set
V (Σ) of G(Σ) is the set {ψ : ψ is a Σ–map}. The edge set E(Σ) of G(Σ) consists
of all 2–element subsets {ψ, ω} of V (Σ) with

|ψ∆ω| = 2.

Note that the Buneman graph on Σ is defined in the same way as the multi-split
graph on Σ except in the former Σ has no repeated elements (see also [5]).

To illustrate the multi-split graph, suppose that Σ is the multi-set

{12|34, 12|34, 13|24, 13|24}.
Then G(Σ) is the graph shown in Figure 3.

Some of the notions associated with the Buneman graph on a set of splits can
be easily extended to the multi-set graph on a multi-set of splits. For example, for
a multi-set Σ of X–splits, let φΣ : X → V (Σ) be the map defined, for all x ∈ X ,
by putting φΣ(x) equal to the necessarily unique vertex of G(Σ) in which every
element contains x. Furthermore, suppose that σ = A|B is a split in Σ. Then two
vertices ψ and ω of G(Σ) disagree on σ if both A and B are elements of ψ∆ω, and
an edge of G(Σ) represents σ if its end-vertices disagree on σ. We denote the set
of edges of G(Σ) that represent σ by E(σ).

Let Σ be a multi-set of splits of X . We next describe a recursive process that
constructs a graph from the Buneman graph on Σ. As we shall soon see, the
resulting graph is the multi-split graph on Σ.

Arbitrarily order the elements of the multi-set Σ−Σ as σ1, σ2, . . . , σn. Set G0 to
be the Buneman graph G(Σ). For all i ∈ {1, 2, . . . , n}, let Gi be the graph obtained
from Gi−1 by performing the following sequence of operations.

(I) Choose any element, Bi say, of σi and, for each edge e of Gi−1 that repre-
sents σi and has the property that one end-vertex, ψi say, does not contain



6 KATHARINA T. HUBER, VINCENT MOULTON, AND CHARLES SEMPLE

v1 v3v2

v4

v5

v9v8

v7 v6

v1 = {{1, 2}, {1, 2}, {1, 3}, {1, 3}} v6 = {{3, 4}, {1, 2}, {2, 4}, {2, 4}}
v2 = {{1, 2}, {3, 4}, {1, 3}, {1, 3}} v7 = {{1, 2}, {1, 2}, {2, 4}, {2, 4}}
v3 = {{3, 4}, {3, 4}, {1, 3}, {1, 3}} v8 = {{1, 2}, {1, 2}, {2, 4}, {1, 3}}
v4 = {{3, 4}, {3, 4}, {1, 3}, {2, 4}} v9 = {{1, 2}, {3, 4}, {2, 4}, {1, 3}}
v5 = {{3, 4}, {3, 4}, {2, 4}, {2, 4}}

Figure 3

Bi and the other end-vertex contains exactly one Bi, subdivide e and insert
the new vertex ψi ∪ {Bi}.

(II) For each pair of new vertices ψi ∪ {Bi} and ωi ∪ {Bi} such that ψi and ωi

are adjacent in Gi−1, add an edge joining ψi ∪ {Bi} and ωi ∪ {Bi}.
(III) Lastly, replace each non-new vertex ψ, that is, each vertex in Gi−1, by

(a) ψ ∪ {Ai} if Bi 6∈ ψ where Ai = X −Bi, and
(b) ψ ∪ {Bi} otherwise.

The next proposition shows that Gn is equal to G(Σ).

Proposition 3.1. The graph Gn constructed above is equal to G(Σ). Moreover,
suppose that σ = A|B is repeated exactly k times in Σ. Then G(Σ) has the following
properties:

(i) Each component of the subgraph of G(Σ) that has vertex set consisting of the
end-vertices of each edge in E(σ) and edge set E(σ) is a path ψ1, ψ2, . . . , ψk+1

consisting of k edges. Moreover, up to labelling, A appears exactly k−(j−1)
times in ψj for all j ∈ {1, 2, . . . , k + 1}.

(ii) For all j ∈ {1, 2, . . . , k}, the subset of E(σ) consisting of those edges {ψ, ω}
that have the property that A appears exactly j times in ψ and j − 1 times
in ω is a minimal set of edges of G(Σ) displaying σ.

Proof. The proof uses induction on n to simultaneously prove the correctness of the
construction as well as (i) and (ii). The fact that the result holds for n = 0 follows
from results in [5]. Now assume that n ≥ 1 and that the entire proposition holds
for n − 1, in particular, Gn−1 is equal to G(Σ − {σn}). It easily follows from the
induction assumption that Gn satisfies (i) and (ii). Thus, to complete the proof, it
suffices to show that Gn is equal to G(Σ).
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Evidently, it follows by our induction assumption and the fact that only edges
that represent σn are subdivided in the construction process that Gn is a subgraph
of G(Σ). Thus it suffices to show that both V (Σ) ⊆ V (Gn) and E(Σ) ⊆ E(Gn)
hold.

We first show that V (Σ) ⊆ V (Gn) holds. Let ω be a vertex of G(Σ). Since
σn = An|Bn is an element of Σ, it follows that ω can be obtained from a vertex ψ
of G(Σ−{σn}) = Gn−1 by adding An to ψ if An ∈ ψ and adding Bn to ψ if Bn ∈ ψ.
A routine check using the induction assumption shows that all such vertices are in
V (Gn).

Next we show that E(Σ) ⊆ E(Gn) holds. By the construction of the vertex
set of Gn, the only possible case where there may be an edge f in E(Σ) that is
not in E(Gn) is when one end-vertex of f does not, for some split σi = Ai|Bi in
Σ, contain Bi and the other end-vertex does not contain Ai. Since σi must occur
at least twice in Σ, these two end-vertices disagree on at least two splits which is
impossible. This completes the proof of the proposition. �

In reference to the above construction, we call, for all i ∈ {1, . . . , n}, one iteration
of this construction a parallel subdivision of Gi−1 on σi. The next corollary is an
immediate consequence of Lemma 3.1.

Corollary 3.2. Let Σ be a multi-set of splits of X. Then G(Σ) can be obtained
from the Buneman graph on Σ by a sequence of parallel subdivisions.

In light of Corollary 3.2, many basic properties of the Buneman graph on Σ can
be easily seen to extend to G(Σ). The next two results illustrate this.

A connected graph G is a median graph if, for every three vertices u1, u2, and u3

of G, there is exactly one vertex v of G that simultaneously lies on shortest paths
joining u1 and u2, u1 and u3, and u2 and u3. Since the Buneman graph on a set
of splits is connected [4], it follows by Corollary 3.2 that the multi-split graph on
a multi-set of splits is also connected. Following the proof [4, Theorem 1] that the
Buneman graph is a median graph, one immediately obtains the next proposition.

Proposition 3.3. Let Σ be a multi-set of splits of X. Then G(Σ) is a median
graph.

Recall that two X–splits A|B and A′|B′ are compatible if at least one of the four
intersections A∩A′, A∩B′, B∩A′, and B∩B′ is empty. A multi-set Σ of X–splits
is called pairwise compatible if every pair of splits in Σ is compatible. Evidently, Σ
is pairwise compatible if and only if Σ is pairwise compatible.

A semi-labelled tree on X is an ordered pair (T ;φ), where T is a tree with vertex
set V and φ : X → V is a map with the property that all leaves in T are contained
in φ(X). For those readers familiar with X–trees, an X–tree has the additional
property that all vertices of degree two are also contained in φ(X).

Proposition 3.4. Let Σ be a multi-set of splits of X. Then the following statements
hold:
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(i) The multi-split graph G(Σ) is a tree if and only if Σ is pairwise compatible.
(ii) If Σ is pairwise compatible, then the multi-set of X–splits displayed by the

edges of (G(Σ);φΣ) equals Σ. Moreover, (G(Σ);φΣ) is the only semi-labelled
tree on X with this property.

Proof. We first prove (i). Clearly, G(Σ) is a tree if and only if G(Σ) is a tree since
the construction of G(Σ) from G(Σ) by a sequence of parallel subdivisions described
above introduces no cycles. As (i) holds in the case Σ is a set of X–splits (see [5]),
it follows that (i) holds if Σ is a multi-set of X–splits.

To see that (ii) holds, first note that it holds in case Σ is a set (see [5]). Combining
this fact with part (i) and Proposition 3.1, we deduce that part (ii) holds for a
multi-set of splits of X . �

4. (X,R)–Trees

Let R be a set of partitions of X and let P an element in R. Recall that the
multi-set {A|X − A : A ∈ P} is denoted by ΣP , and the multi-set

⋃
P∈R ΣP is

denoted by ΣR. We first show that, for all elements P in R, there is a canonical
set of vertices of G(ΣR) that displays P . To establish this result, we make use of
the following lemma whose straightforward proof is omitted.

Lemma 4.1. Let R be a set of partitions of X, and suppose that ψ is a ΣR–map.
Then ψ has the property that, for all non-bipartitions P ∈ R,

|P ∩ ψ(ΣP )| ≤ 1.

Theorem 4.2. Let R be a set of partitions of X, and let P be an element of R.
Then the subset VP of V (ΣR) given by

VP = {ψ : ψ ∈ V (ΣR) and X −A ∈ ψ for all A ∈ P}
displays P in (G(ΣR);φΣR).

Proof. Suppose P = A1|A2| . . . |Ak, where k ≥ 2. Consider the pair (G(ΣR);φΣR).
For all i ∈ {1, 2, . . . , k}, let E(Ai) denote the subset of E(ΣR) consisting of those
edges that represent Ai|X − Ai and have the property that one end-vertex does
not contain X − Ai. By Proposition 3.1, for all i, E(Ai) is a minimal set of edges
of G(ΣR) that displays Ai|X − Ai. For all i, let Gi denote the component of
G(ΣR)\E(Ai) that displays Ai. Then, for all i, no vertex of Gi contains X − Ai,
but every vertex in V (ΣR)−V (Gi) contains X−Ai, and so φΣR(Ai) ⊆ V (Gi). It is
easily seen that, for |P | = 2, the intersection V (G1)∩V (G2) is empty. Furthermore,
it follows, using Lemma 4.1 for the case |P | ≥ 3, that V (Gi) ∩ V (Gj) is empty for
all distinct i, j ∈ {1, 2, . . . , k}. Thus G(ΣR) is of the form shown in Figure 4. It is
now easily seen that VP is the set

V (ΣR) −
⋃

i∈{1,...,k}
V (Gi),

and so VP does indeed display P . �
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Figure 4

Recall that two partitions P and Q of X are called strongly compatible if either
P = Q or there is an element A in P and an element B in Q with A ∪ B = X .
A set R of partitions of X is strongly compatible if every pair of partitions in R is
strongly compatible. The following lemma relates pairwise compatibility to strong
compatibility. Its straightforward proof is omitted.

Lemma 4.3. Let R be a set of partitions of X. Then the following statements are
equivalent.

(i) ΣR is pairwise compatible.
(ii) For all pairs of partitions P,Q ∈ R, either P and Q are strongly compatible,

or every element A of the set P ∪Q is the disjoint union of elements in the
multi-set (P ∪Q) −A.

For a set R of partitions of X , an (X,R)–tree (T ;φ;κ) is a semi-labelled tree
(T ;φ), where T = (V,E), together with an additional labelling map κ : R → V
with the property that, for all P ∈ R, the vertex κ(P ) displays P . For example,
the semi-labelled tree on R = {12|345, 12|3|45, 45|123} depicted in Figure 5 is an
(X,R)-tree, where the leftmost interior vertex displays 12|345 the middle interior
vertex displays 12|3|45 and the rightmost interior vertex displays 45|123.

1

2 3 4

5

Figure 5

The next theorem can be viewed as an extension of Proposition 3.4 from bipar-
titions to partitions.

Theorem 4.4. Let R be a set of partitions of X. Then there exists an (X,R)–tree
if and only if R is strongly compatible. Moreover, if such a tree exists, then, up to
isomorphism and choice of vertex that displays a bipartition in R, there is a unique



10 KATHARINA T. HUBER, VINCENT MOULTON, AND CHARLES SEMPLE

(X,R)–tree for which the multi-set of splits displayed by its edges is equal to ΣR,
and this tree is precisely G(ΣR).

Proof. Suppose that there exists an (X,R)–tree (T ;φ;κ). Let P1 and P2 be ele-
ments of R, and let v1 and v2 be the vertices of this tree displaying P1 and P2,
respectively. Let A1 be the part of P1 displayed by the component of T \v1 that
contains v2, and let A2 be the part of P2 displayed by the component of T \v2 that
contains v1. It is easily seen that A1 ∪ A2 = X holds. It follows that R is indeed
strongly compatible.

Now suppose R is strongly compatible and consider the pair (G(ΣR);φΣR) where
we write ΣR instead of ΣR. By Lemma 4.3, ΣR is a pairwise compatible multi-set
of X–splits. It will be useful for the proof of Theorem 4.4 to now establish the
following result.

4.4.1. If Q is an element of R with |Q| ≥ 3, then there is a unique vertex of G(ΣR)
that displays Q.

Proof. Since ΣR is pairwise compatible, (G(ΣR);φΣR) is an X–tree (see [5]). In
particular, every degree-two vertex u of G(ΣR) is contained in φΣR(X). Suppose
Q = {A1, A2, . . . , Ak}, where k ≥ 3. Then, for all i ∈ {1, 2, . . . , k}, it follows by
Proposition 3.4 that there is a unique edge ei of G(ΣR) that displays Ai|X − Ai.
Since A1, A2, . . . , Ak partitions X , it is now easily seen that either e1, e2, . . . , ek are
incident with a common vertex v, in which case, v displays Q and no other vertex
has this property, or G(ΣR) is of the form shown in Figure 6 where j ≥ 2 and
k − r ≥ 2 both hold.

In the latter case, it again follows by Proposition 3.4 that A1 ∪ · · · ∪ Aj |X −
(A1 ∪ · · · ∪ Aj) is an X–split contained in ΣR, and so one part of this split is a
part of a partition P in R. Without loss of generality, we may assume that this
part is Y = X − (A1 ∪ · · · ∪ Aj). Since j ≥ 2, there is no element Ai of Q such
that Y ∪ Ai = X . Furthermore, as k − r ≥ 2, there is no element B of P − Y
such that B ∪Ai = X . This implies that P and Q are not strongly compatible; a
contradiction. Thus there is a unique vertex of G(ΣR) that displays Q. �

A1

Aj

A2

Ak

Ar

Ar+1

Figure 6



REPLACING CLIQUES BY STARS IN QUASI-MEDIAN GRAPHS 11

We now complete the proof of the Theorem 4.4. Since G(ΣR) is a tree, it follows
by Corollary 3.2 that the graph G(ΣR) can be obtained from G(ΣR) by simply
subdividing edges and relabelling vertices and φΣR is induced by φΣR . Let P be
an element of R. If |P | ≥ 3, then (4.4.1) implies that the vertex of G(ΣR) that
displays P also displays P in G(ΣR). Moreover, this is the only such vertex that
displays P .

Now assume that |P | = 2. Then P is a bipartition and appears at least twice
in ΣR. Therefore, by Proposition 3.1, there are two adjacent edges of G(ΣR) that
display P and it follows that the vertex incident with both of these edges displays
P . Hence there exists an (X,R)–tree. The fact that this tree has the desired
uniqueness property follows by Proposition 3.4(ii). �

Remark. In [8, Theorem 5.6], it is shown that, for a finite set X and a family χ
of characters on X , there exists an “(X,χ)–tree”, a semi-labelled tree analogous to
an (X,R)–tree, if and only if every pair of characters in χ are strongly compati-
ble. Since, as described in the introduction, any character on X can be naturally
associated to a partition of X and vice-versa it is straight-forward to see that The-
orem 3.4 provides an independent proof of this result. In addition, in case χ is
strongly compatible, Theorem 4.4 provides an explicit description of the unique
(X,χ)–tree associated to χ that was alluded to in [8, Remark 5.7].

5. Strong Incompatibility

It is well-known that the Buneman graph on a set Σ consisting of k splits of
X is a vertex induced subgraph of the k–cube, that is, the graph with vertex set
{ψ : ψ is a weak Σ–map} and an edge joining two vertices ψ and ω precisely if
|ψ∆ω| = 2. We begin this section by describing an analogous result for the multi-
split graph that is derived from a set of partitions.

Let R be a set of partitions of X . For a weak ΣR–map ψ, let (S3) denote the
following property (see Lemma 4.1).

(S3) For all non-bipartitions P ∈ R, |P ∩ ψ(ΣP )| ≤ 1.

Now let StR denote the graph that is defined as follows. The vertex set of StR is
the set

{ψ : ψ is a weak ΣR–map satisfying (S3)}
and the edge set of StR consists of all pairs {ψ, ω} such that |ψ∆ω| = 2. The
reason for the notation “StR” is that, as we shall now show, StR is isomorphic to
a product of star trees. For a partition P , let StP denote the star tree whose set
of pendant vertices equals P .

Proposition 5.1. Let R be a set of partitions of X. Then StR is isomorphic to∏
P∈R StP .
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Proof. Let P be an element of R. It is straightforward to check that the map Φ
from the vertex set of StP into the vertex set of G(ΣP ) defined, for all A ∈ V (StP ),
by

Φ(A) =

{
{A} ∪ ⋃

B∈P−A{X − B}, if A is a pendant vertex;⋃
B∈P {X −B}, otherwise,

induces an isomorphism between StP and G(ΣP ). Consequently,
∏

P∈R StP is
isomorphic to

∏
P∈RG(ΣP ). Denote the latter Cartesian product by CΣR . To see

that CΣR is isomorphic to StR, view each |R|–tupled vertex of CΣR as the multi-set
that is the union of the components of the |R|–tuple. Then the vertex set of CΣR
is equal to the vertex set of StR. Furthermore, under this viewpoint, e is an edge
of CΣR precisely if the symmetric difference of the end-vertices of e is equal to 2.
Hence CΣR , and in particular

∏
P∈R StP , is isomorphic to StR. �

By Lemma 4.1, V (ΣR) is a subset of V (StR). The next proposition is an im-
mediate consequence of this fact, and the definitions of the edge sets of G(ΣR) and
StR.

Proposition 5.2. Let R be a set of partitions of X. Then G(ΣR) is a vertex
induced subgraph of StR.

Note that the inclusion in Proposition 5.2 can be proper. For example, suppose
that R consists of the partitions 12|34|56 and 123|456 of the set {1, . . . , 6}. Then
no vertex of G(ΣR) contains both {1, 2} and {4, 5, 6}, but there is such a vertex in
StR.

The main purpose of the rest of this section is to characterize sets R of partitions
for which G(ΣR) equals StR.

Recall that two partitions P and Q of X are strongly incompatible if A ∩ B is
non-empty for all A ∈ P and B ∈ Q. Observe that, if P and Q are strongly
incompatible, then P and Q must be distinct. A set R of partitions is strongly
incompatible if every pair of partitions in R is strongly incompatible. Note that in
case R is a set of splits, strong incompatibilty is equivalent to incompatibility as
defined in the introduction.

To illustrate, the partitions 135|246 and 12|34|56 of the set {1, 2, 3, 4, 5, 6} are
strongly incompatible. Furthermore, we note that it is straightforward to see that
a pair of partitions cannot be both strongly incompatible and strongly compatible.
Also, of course, a pair of partitions can be neither strongly incompatible nor strongly
compatible.

Theorem 5.3. Let R be a set of partitions of X. Then G(ΣR) is equal to StR if
and only if R is strongly incompatible.

The proof of Theorem 5.3 uses the following two lemmas whose proofs are routine
and omitted.

Lemma 5.4. Let R = {P1, P2, . . . , Pn} be a set of partitions of X. Then

|V (StR)| = (|P1| + 1) × (|P2| + 1) × · · · × (|Pn| + 1).
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Lemma 5.5. Suppose R is a set of strongly incompatible partitions of X. Let
σ1, σ2 ∈ ΣR, and let A1 ∈ σ1 and A2 ∈ σ2. Then

(i) A1 ∩ A2 6= ∅ if and only if A1 and A2 are not parts of the same partition
contained in R.

(ii) A1 ∪A2 = X if and only if {A1, A2} is a partition in R.

Proof of Theorem 5.3. Let R = {P1, P2, . . . , Pn}, and suppose that G(ΣR) is equal
to StR. Then, by Lemma 5.4,

(1) |V (ΣR)| = (|P1| + 1) × (|P2| + 1) × · · · × (|Pn| + 1).

Let P and Q be distinct partitions in R, and let A ∈ P and B ∈ Q. To complete
the “only if” part of Theorem 5.3, it suffices to show that A ∩B is non-empty. By
Proposition 5.2 and Equation (1), there must be a vertex ψ in G(ΣR) that contains
both A and B. Assume that A ∩ B is empty. Then, by definition of the vertices
of G(ΣR), X is the disjoint union of A and B. Therefore, if A′ ∈ P − A and
B′ ∈ Q−B, then A′ ⊆ B and B′ ⊆ A. But, again by Proposition 5.2 and Equation
(1), there is a vertex of G(ΣR) that contains both A′ and B′, and so A′ = B and
B′ = A. Thus P = {A,B} = Q, contradicting the assumption that P and Q are
distinct, and so A ∩B is indeed non-empty as required.

Now suppose that R is strongly incompatible. To show that G(ΣR) is equal to
StR, it suffices, by Proposition 5.2, to show that every vertex in StR is a vertex in
ΣR. Combining Lemma 5.5 with the definition of the vertex set of StR, it is easily
seen that this is indeed the case. This completes the proof of the theorem. 2
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