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Abstract An important problem in phylogenetics is the construction of phy-
logenetic trees. One way to approach this problem, known as the supertree
method, involves inferring a phylogenetic tree with leaves consisting of a set
X of species from a collection of trees, each having leaf-set some subset of X.
In the 1980’s, Colonius and Schulze gave certain inference rules for deciding
when a collection of 4-leaved trees, one for each 4-element subset of X, can
be simultaneously displayed by a single supertree with leaf-set X. Recently,
it has become of interest to extend this and related results to phylogenetic
networks. These are a generalization of phylogenetic trees which can be used
to represent reticulate evolution (where species can come together to form a
new species). It has recently been shown that a certain type of phylogenetic
network, called a (unrooted) level-1 network, can essentially be constructed
from 4-leaved trees. However, the problem of providing appropriate inference
rules for such networks remains unresolved. Here we show that by considering
4-leaved networks, called quarnets, as opposed to 4-leaved trees, it is possible
to provide such rules. In particular, we show that these rules can be used to
characterize when a collection of quarnets, one for each 4-element subset of X,
can all be simultaneously displayed by a level-1 network with leaf-set X. The
rules are an intriguing mixture of tree inference rules, and an inference rule
for building up a cyclic ordering of X from orderings on subsets of X of size
4. This opens up several new directions of research for inferring phylogenetic
networks from smaller ones, which could yield new algorithms for solving the
supernetwork problem in phylogenetics.

K. T. Huber - V. Moulton - T.Wu
School of Computing Sciences, University of East Anglia, Norwich, UK
E-mail: k.huber@Quea.ac.uk, v.moulton@Quea.ac.uk, taoyang.wu@uea.ac.uk

C. Semple
Biomathematics Research Centre, University of Canterbury, Christchurch, NZ
E-mail: charles.semple@canterbury.ac.nz



2 Katharina T. Huber et al.

Keywords Inference rules, phylogenetic network, quartet trees, closure,
cyclic orderings, level-1 network, quarnet, gnet

1 Introduction

One of the main goals in phylogenetics is to develop methods for constructing
evolutionary trees, the tree-of-life being a prime example of such a tree [17].
Mathematically speaking, for a set X of species, a phylogenetic X-tree is a
(graph theoretical) tree with leaf set X and no degree-2 vertices; it is binary
if every internal vertex has degree three. A popular approach to constructing
such trees, called the supertree method, is to build them up from smaller trees
[8]. The smallest possible trees that can be used in this approach are quartet
trees, that is, binary phylogenetic trees having 4 leaves (see e.g. Figure 1 for
the quartet tree abled with leaf-set {a,b,c,d} C X). Thus it is natural to
ask the following question: How should we decide whether or not it possible
to simultaneously display all of the quartet trees in a given collection Q of
quartet trees by some phylogenetic tree?

Fig. 1 (i) A level-1 phylogenetic network with leaf-set X = {a,b,...,h}. (ii) Top: a quar-
tet tree with leaf-set {a,b,c,d}, also denoted by ab|cd. Bottom: a quarnet with leaf-set
{a,c, h, g}. Both the quartet tree and quarnet are displayed by the level-1 network in (i).

In case the collection Q consists of a quartet tree for every possible subset of
X of size 4 (which we denote by (i{ )), this problem has an elegant solution that
was originally presented by Colonius and Schulze in 1981 [4] (see also [2] for
related results). We present full-details in Theorem 1 below, but essentially
their result states that, given a collection of quartet trees Q, one for each
element in (i{ ), there exists (a necessarily unique) binary phylogenetic X-tree
displaying every quartet tree in the collection if and only if when the quartet
trees ablcz and ablzd are contained in Q then so is the quartet tree ab|cd.
Rules such as ab|cx plus ablzd implies ab|ed are known as inference rules, and
they have been extensively studied in the phylogenetics literature (see e.g. [19,
Chapter 6.7] and the references therein).



Quarnet inference rules for level-1 networks 3

Although phylogenetic trees are extremely useful for representing evolu-
tionary histories, in certain circumstances they can be inadequate. For exam-
ple, when two viruses recombine to form a new virus (e.g. swine flu), this is not
best represented by a tree as it involves species combining together to form
a new one rather than splitting apart. In such cases, phylogenetic networks
provide a more accurate alternative to trees and there has been much recent
work on such structures (see e.g. [21, Chapter 10] for a recent review).

In this paper, we will consider properties of a particular type of phyloge-
netic network called a level-1 network 1 [9]. For a set X of species, this is a
connected graph with leaf-set X and such that every maximal subgraph with
no cut-edge is either a vertex or a cycle (see Section 2 for more details). Our
main results will apply to binary level-1 networks, where we also assume that
every vertex has degree 1 or 3. We present an example of such a network in
Figure 1. Note that a phylogenetic X-tree is a special example of a level-1 net-
work with leaf-set X. As with phylogenetic X-trees it is possible to construct
level-1 networks from quartets [9]. However, it has been pointed out that there
are problems with understanding such networks in terms of inference rules (see
e.g. [13, p.2540]).

Here, we circumvent these problems by considering a certain type of sub-
network of level-1 network called a quarnet instead of using quartet trees. A
quarnet is a 4-leaved, binary, level-1 network (see e.g. Figure 1); they are dis-
played by binary level-1 networks in a similar way to quartets (see Section 3 for
details). As we shall see, quarnets naturally lead to inference rules for level-1
networks which can be thought of as a combination of quartet inference and
inference rules for building circular orderings of a set. Moreover, in our main
result we show that, just as with phylogenetic trees, the quarnet inference rules
that we introduce can be used to characterize when a collection of quarnets,
one for each element in (i{), is equal to the set of quarnets displayed by a
binary level-1 network with leaf-set X.

We now summarize the contents of the rest of the paper. In the next
section we present some preliminaries concerning phylogenetic trees and level-
1 networks, as well as their relationship with quartets. Then, in Section 3, we
prove an analogous theorem to the quartet results of Colonius and Schulze for
level-1 networks (Theorem 2). In Section 4, we use Theorem 2 to provide a
characterization for when a set of quartets, one for each element of ()4( ), can
be displayed by a binary level-1 network (Theorem 3). In Section 5, we then
define the closure of a set of quarnets. This can be thought of as the collection
of quarnets that is obtained by applying inference rules to a given collection
of quarnets until no further quarnets are generated. We show that this has
similar properties to the so-called semi-dyadic closure of a set of quartets (see
Theorem 4). We conclude with a brief discussion of some possible further
directions.

1 Note that this concept was first introduced for rooted networks — see [12] for more details
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2 Preliminaries

In this section, we review some definitions as well as results concerning the
connection between phylogenetic trees and quartets. From now on, we assume
that X is a finite set with | X| > 2.

2.1 Definitions

An unrooted phylogenetic network N (on X ) (or network N (on X ) for short)
is a connected graph (V, E) with X C V| every vertex has either degree 1 or
degree at least 3, and the set of degree-1 vertices is X. The elements in X
are the leaves of N. We also denote the leaf-set of N by L(N). The network
is called binary if every vertex in N has degree 1 or 3. An interior vertex of
N is a vertex that is not a leaf. A cherry in N is a pair of leaves that are
adjacent with the same vertex. Two phylogenetic networks N and N’ on X
are isomorphic if there exists a graph-theoretical isomorphism between N and
N’ whose restriction to X is the identity map.

Note that a phylogenetic (X-) tree is a network which is also a tree.
For any three vertices ui,us,us in such a tree T, their median, denoted by
med(u1, uz, us) = medr(ui, usz,us), is the unique vertex in 7' that is contained
in every path between any two vertices in {uq, ug, us}.

A cut-vertex of a network is a vertex whose removal disconnects the net-
work, and a cut-edge of a network is an edge whose removal disconnects the
network. A cut-edge is trivial if one of the connected components induced
by removing the cut-edge is a vertex (which must necessarily be a leaf). A
network is simple if all of the cut-edges are trivial (so for instance, note that
phylogenetic trees with more than three leaves are not simple networks). A
network N is level-1 if every maximal subgraph in N that has no cut-edge is
either a vertex or a cycle. Note that we shall say that a network N on X,
where | X| > 3, is of cycle-type if it contains a unique cycle of length |X|, and
the number of vertices in N is 2| X| (so in particular, a network is of cycle-type
if it is simple, binary, level-1 and is not a phylogenetic tree).

In what follows it will be useful to consider a certain type of operation
on a level-1 network, which we define as follows. For a level-1 network N on
X, let u be an interior vertex of N that is not contained in any cycle in .
Furthermore, let (v, va, - - ,vk), where k > 3, be a circular ordering of the set
of vertices in NV that are adjacent to u. Then we obtain a new network N’ on
X from N by removing vertex u and all edges incident with it and inserting
new vertices u; and new edges {u;,v;} and {u;,u;41} for all 1 < i < k (see
Fig. 2). Here we use the convention that k + 1 is identified with 1. We say
that N’ is obtained from N by a blow-up operation on u (using the given
circular ordering of its neighbours). Note that N’ is a level-1 network with
one more cycle than N. Note that blow-up operations on the same vertex but
with different circular orderings of its neighbours may lead to non-isomorphic
networks. We illustrate a blow-up operation in Fig. 2.
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Fig. 2 Example of blow-up operations: N’ is obtained from N by a blow-up operation on
u.

2.2 Quartets, Trees and Networks

We now briefly recall some notation and results concerning quartet systems
(for more details see [5, Chapter 3]).

Although quartets are often considered as being 4-leaved trees, here it is
more convenient to consider a quartet ) to be a partition of a subset Y of X
of size 4 into two subsets of size 2. The set Y is called the support of Q. If
Q = {{a,b},{c,d}} for a,b,c,d € X distinct, we denote @ by ab|cd. The set of
all quartets on X is denoted by Q(X), and any non-empty subset Q C Q(X)
is called a quartet system (on X). Given a quartet system Q on X and a subset
Y e (;f), let m(Y) = mg(Y) be the number of quartets in @ whose support
is Y. For simplicity, we write m({a,b,c,d}) as m(a,b,c,d). If m(Y") > 1 for
every subset Y € (f), then Q is said to be dense.

Following the terminology in [5], a quartet system Q is:

— thin if no pair of quartets in @ have the same support;

— saturated if for all {a,b,c,d,z} € ()5() with abled € Q, the system Q con-
tains at least one quartet in {az|cd, ab|cz};

— transitive if for all {a,b,c,d,z} € ()5(), if {ablcz,ablzd} C Q holds, then
abled is also contained in Q.

These concepts are related as follows:

Lemma 1 Suppose that Q is a quartet system on X. If Q is saturated and
thin, then Q is transitive.

Proof We use a similar argument to that used in [2, Lemma 1]. Suppose
{a,b,c,d,z} € ()5() with {ab|cz, ablzd} C Q. We need to show abled € Q.

Since Q is saturated and ab|cz is contained in Q, we have {ab|cd, ad|cx} N
Q # (. Using a similar argument, ab|dz in Q implies that {ab|cd, ac|dz} N Q #
(). Therefore, we must have ablcd € Q as otherwise {ad|cx,acldz} C O, a
contradiction to the assumption that Q is thin.

A quartet abled on X is displayed by a phylogenetic X-tree T if the path
between a and b in T is vertex disjoint from the path between ¢ and d in T.
The quartet system displayed by T is denoted by Q(T).
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In view of [5, Theorem 3.7] and the last lemma, we have the following
slightly stronger characterisation of quartet systems displayed by a phylo-
genetic tree, which was stated in [2, Proposition 2| using slightly different
terminology.

Theorem 1 A quartet system Q C Q(X) is of the form Q = Q(T) for a (nec-
essarily unique) phylogenetic X -tree T if and only if Q is thin and saturated.

We now turn our attention to the relationship between quartets and level-1
networks.

A split A|B of X is a bipartition of X into two non-empty parts A and B
(note that since A|B is a bipartition, order does not matter, that is, A|B =
BJ|A). Such a split is induced by a network N if there exists a cut-edge in N
whose removal results in two connected components, one with leaf-set A and
the other with leaf-set B. A quartet ablcd is exhibited by a network N if there
exists a split A|B induced by N such that {a,b} C A and {¢,d} C B.

Note that if a quartet abled € Q(X) is exhibited by N, then it is displayed
by N, that is, N contains two disjoint paths, one from a to b, and the other
from ¢ to d. However, the converse is not true. For example, quartet ab|cd
is displayed by the network in Fig. 4(iv), but abled is not exhibited by this
network. Given a network N, we let X(IV) denote the set of quartets exhibited
by N, and let Q(N) be the set of quartets displayed by N. In light of the last
remark, clearly we have X(N) C Q(N).

3 Quarnets

In this section, we shall show that an analogue of Theorem 1 holds for quarnets
and level-1 networks. We begin by formally defining the concept of a quarnet
and how quarnets can be obtained from level-1 networks.

Given a binary, level-1 phylogenetic network N on X and a subset A C X,
we let N|4 denote the network induced on A by N, which is obtained from
N by deleting all edges that are not contained in some path between a pair
of elements in A, removing all isolated vertices, and then repeatedly applying
the following two operations until neither of them is applicable (i) suppressing
degree-2 vertices, and (ii) suppressing parallel edges. Note that N| 4 is a binary,
level-1 phylogenetic network on A.

b b

a a

Fig. 3 The two types of three-leaved networks: tree type (left) and cycle type (right).
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We now consider the different possible phylogenetic networks on three and
four leaves. First note that there are two possible types of phylogenetic net-
works with three leaves (see Fig. 3). We call these cycle-type and tree-type
depending on whether they contain a cycle or not, respectively. Similarly, a
quarnet or gnet, for short 2, is a binary, level-1 phylogenetic network with
four leaves. The leaf-set L(F') of a qnet F is called its support. As illustrated
in Fig. 4, there are four types of gqnets: Type I gnets contain no cycles; Type
IT gnets contain one cycle and one non-trivial cut-edge; Type III gnets contain
two cycles; and Type IV gnets contain no non-trivial cut-edge. A gnet system
F on X is a collection of qnets all of whose supports are contained in X. We
shall say that a qnet F' with support A C X is displayed by a network N
on X if F is isomorphic to N|4. Moreover, we let F(N) be the gnet system
displayed by N, that is,

F(N)={N|4 forall AC X with |A|] = 4}.
b c
a

d a d a d a d
(i) (ii) (iii) (iv)

Fig. 4 Four types of qnets on X = {a,b,c,d}: (i) a Type I qnet a © blc © d; (ii) a Type II
qnet a @ blc © d; (ii) a Type III qnet a ® blc® d; (iv) a Type IV qnet a b P c @ d. Type IV
is of cycle type.

We now turn to characterizing when a gnet system is displayed by a level-1
network. To do this, we introduce some additional concepts concerning qnet
systems.

First, a qnet system F on X is consistent (on subsets of X of size three)
if for all subsets A € ()3(), F| 4 is isomorphic to F’| 4, for each pair of gnets in
F with A C L(F) N L(F’). In addition, a qnet system F on X is minimally
dense if for all Y € (;f), there exists precisely one qnet in F with support Y.

Second, we say that a qnet system F on X is cyclically-transitive or cycla-
tive if for all subsets {a,b,c,d,z} € ()5() with {a®bPchdd,zBadchd} C F,
the system F also contains a @ b @ d & z. Note that this is closely related to
the cyclic-ordering inference rule given in [1, Proposition 1].

Finally, we say that a qnet system F on X is saturated, if for all subsets
{a,b,c,d,z} € ()5(), the following hold:

(S1) If F contains a © blc & d, then a & blcSx, or a©blc P x, or a © z|cSd, or
a ® z|c & d is contained in F.

(S2) If F contains a @ blc© d, then a ® blcO x, or a® blc Dz, or a © x|cO d, or
a ® z|c & d is contained in F.

2 Note that this notion of a qnet is not related to the notion of a gnet introduced in [10]
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(S3) If F contains a @ blc @ d, then a ®blcS x, or a ® blc Bz, or a © x|c B d, or
a® xlc ®d is contained in F.

We next show how these concepts are related. To prove the following result,
given a gqnet system JF, we shall consider the quartet system consisting of those
quartets that are exhibited by some gnet in F, which we shall denote by X(F).

Lemma 2 Suppose that F is a qnet system on X.
(i) If F is minimally dense, then X(F) is thin.
(i) If F is saturated, then X(F) is saturated.

Proof For the proof of (i), as F is minimally dense, for each subset Y of X
with size four, there exists precisely one qnet F' in F whose support is Y.
Hence there exists at most one quartet in X(F) with support Y.

To prove (ii), consider a quartet Q = abled in Q(F) and an arbitrary
element = in X that is distinct from a, b, ¢, d. Let F' be a qnet in F such that
Q is the quartet exhibited by F. Then F' is Type I, II or ITI. Assume first that
F is Type I, then F' = a © blc © d. Since F is saturated, by (S1),

{a0blcOz,a0bcdz,a0z|cEda®z|codtnQ+I(,

and so one of the quartets ab|cx and ax|cd is contained in X'(F), as required. If
F is of Type IT or I1I, then similar arguments using (S2) and (S3), respectively,
show that ab|cx or az|cd is contained in X'(F).

We now characterize when a minimally dense set of qnets is displayed by
a level-1 network.

Theorem 2 Let F be a minimally dense gqnet system on X with |X| > 4.
Then F = F(N) for some (necessarily unique) binary, level-1 network N on
X if and only if F is consistent, cyclative and saturated.

Proof Clearly, if F = F(N) holds for a binary, level-1 network N, then F(V)
is consistent, cyclative and saturated.

We now show that the converse holds. Suppose that F is a minimally dense
gnet system on X that is consistent, cyclative and saturated. Consider the
quartet system X = X (F). By Lemma 2, X' is thin and saturated. Therefore,
by Theorem 1, there exists a unique phylogenetic tree T with Q(T) = X.

For each interior vertex v in T, let A, denote the partition of X induced
by deleting v from T so that, in particular, the number of parts in A, is equal
to the degree of v. Note that, for all A € A,,if a € A and b € X — A, the path
in T between a and b must contain v, and if a,b € A, the path between a and
b does not contain v.

We next partition the set of interior vertices of T. Let Vi(T') be the set
of degree-3 vertices v in T' with the property that there exist three elements,
one from each distinct part of A,, so that there exists a qnet F' in F whose
restriction to these three elements is of cycle type. Let V(1) be the set of
degree-3 vertices in T not contained in Vi (T'). Lastly, let V2(T') be the set of
interior vertices in T with degree at least 4.
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Claim 1 A degree-3 vertex v in T is contained in Vi (T) if and only if, for
each subsetY of X of size three that contains precisely one element from each
part of A,, the restriction Fly is of cycle type for every gnet F in F with
Y C L(F).

Proof Since F is minimally dense, the “if” direction follows directly from the
definition of V;(T).

Conversely, let Y* = {a},a3,a%} be such that af, 1 < i < 3, are all
contained in distinct parts of 4, and there exists a qnet F* in F such that
F*|y~ is of cycle type. Now let Y = {a1, as, as} with a; all contained in distinct
parts of A, and let F' be an arbitrary qnet in F with Y C L(F'). We shall show
that F'ly is of cycle type by considering the size of the intersection Y N'Y™.

First assume that |Y NY™*| = 3, that is, Y = Y*. Then, as F is consistent,
Fy is of cycle type since it is isomorphic to F™*|y .

Second assume that |Y'NY™*| = 2. By swapping the indices, we may further
assume that a1 = a}, az = a3, and as # a3. In other words, we have ¥ =
{af,a%,a3}. Consider Y’ = {a},a’,as,a} and let F’ be the qnet in F with
L(F") =Y’. Since a3, aj are both contained in A,, the quartet Q' = afa}|aza}
is contained in Q(T'). As F’|y« is of cycle type, this implies that F’ is either
ai @ ajlas © aj or af @ aj @ asz @ aj. In both cases F'|y is of cycle type, and
hence F|y is also of cycle type in view of the consistency of F.

Next assume that |Y NY*| = 0. By swapping the indices, we may further
assume that, for 1 <7 < 3, elements a,; and a} are contained in the same part
of A, but a; # af. Consider the sets Y1 = {af,a}, a3} and Y = {a], as, a3},
and put Yy = Y* and Y3 = Y. Then we have |Y; NY; 11| =2 for 0 <i < 2.
Repeatedly applying the argument used when the size of the intersection is
two, it follows that F'|y is of cycle type, as required.

Lastly, the case |[Y NY*| = 1 can be established using a similar argument
to that when the size of the intersection is zero. This completes the proof of
the claim.

Although we will not use this fact later, note that it follows from Claim 1
that a vertex v in T is contained in V4 (7T') if and only if, for each subset Y of
X of size three whose elements are contained in distinct elements of A,, the
restriction F|y is a tree type for every gqnet F' in F with Y C L(F).

Claim 2 Suppose v € Vo(T). Let x,y,p,q € X be contained in distinct parts
Ay, Ay, Ay, Ay of Ay, respectively. Then the gnet F in F with support A =
{z,y,p,q} is of Type IV. Moreover, if F is x By pdq, then, for allx’ € A,
y €Ay, p €A, and ¢ € Ay, the qnet F' with support A" = {a',y/,p',¢'} is
x/@y/@p/@q/.
Proof Suppose F is not of Type IV. Then ¥(F') contains precisely one quartet,
denoted by @, and L(Q) = A. This implies that Q € X(F) = Q(T'). However,
Q@ is not contained in Q(T') because the path between any pair of distinct
elements in A contains v; a contradiction. Thus F' is of Type IV.

Now, suppose |A N A’| = 3. Then we may further assume without loss of
generality that = 2/, y = ¢/, p = p, and ¢ # ¢'. Hence A’ = {z,y,p,q'}.
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Note that the argument in the last paragraph implies that F’ is of Type IV.
If F’ is not isomorphic to x & y & p & ¢/, then F’ is isomorphic to either
TDYS ¢ DporxzdpPdy®dq. In the first subcase, since F is cyclative and
{z®ydpdq,2Pydq Dp} C F, the quet pdqPy P ¢’ is contained in F. This
implies that the quartet Q' = py|qq’ is not contained in Q(T'), a contradiction
since ¢, ¢’ are contained in A, while p,y are contained in X — A,. The second
subcase follows in a similar way.

Lastly, if |A N A’| < 2, then note that there exists a list of 4-element
subsets A = Ag,---,A; = A’ for some t > 1 such that, for 0 < i < ¢, we
have |A; N A;41] = 3 and the two elements in (4; — A;11) U (A;41 — 4;) are
contained in the same part of A,. Claim 2 follows by repeatedly applying the
argument in the last paragraph to the list.

Using the last claim we next establish the following

Claim 3 For each vertex v € Vo(T), there exists a unique circular ordering
of the parts A',..., A™ of A, such that, for each tuple A = (a;,aj,ax,a;) €
Al x AT x AF x AL with 1 < i < j < k <1< m, the gnet in F with support
{a;,aj,ar,a;} is isomorphic to a; ® a; & ap S q;.

Proof In light of Claim 2 we can define a quaternary relation || on the parts
of A, by setting AB||CD, for all distinct parts A, B,C, D € A,, if and only
if, forallz € A, y € B, p € C and g € D, the qnet with support {z,y,p,q} is
T@®p®y P q. Put differently, the distance between x and p in the qnet with
support {z,y,p, ¢} is two, and so is the distance between y and q.

Now, for all distinct A, B,C, D, E € A,, we show that
(BD-1): AB||CD implies BA||C'D and CD||AB;

(BD-2): either AB||CD, or AC||BD, or AD||BC (exclusively);
(BD-3): AC||BD and AD||CE implies AC||BE.

Indeed, let z € A,y € B,pe C, q € D, r € E. Then (BD-1) holds since
T@p®yDq is isomorphic to y®pdx ® q and to pd x d ¢ Dy. Next, (BD-2)
follows immediately since F is minimally dense. To see (BD-3) holds, note
that since AD||CE and AC||BD imply that t®r®q®p and zDqgdp Dy are
contained in F, using the fact that F is cyclative implies that c @ r & p Gy
is in F, and hence AC||EB holds. Using (BD-1) it follows that AC||BE, as
required.

Since the quaternary relation || on A, satisfies the conditions (BD-1)—(BD-
3) as specified in Proposition 1 on page 73 of [1], it follows that || determines
a unique circular ordering of the parts in A, as specified in Claim 3.

Now let V! = Vi(T) U Vo(T), and for each vertex u € V', fix a circu-
lar ordering of its neighbourhood N, (T') induced by the ordering of A, in
Claim 3 if uw € V5(T'), or the necessarily unique circular ordering (clockwise
and anticlockwise are treated as the same) of N, (T') if u € V4 (T') (and hence
|N,(T)| = 3). Let N be the level-1 network obtained from T' by blowing up
each vertex u in V’ using the given circular ordering of N, (T'). We next show
that 7 C F(N). To this end, fix four arbitrary elements a, b, ¢,d in X and let
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F be the qunet in F with support {a, b, c,d}. We need to show that F' € F(N).
There are four cases depending upon whether F'is Type I, II, III, or IV.

First suppose F' is of Type I. Without loss of generality, we may assume
that F' = a©b|cod. Let u = medr(a, b, c). if u € Vi(T)UV,(T), then a, b, c are
contained in three distinct parts in the partition A4, of X on u. By Claim 1 and
Claim 2, it follows that F'|4 with A = {a, b, ¢} is of cycle type, a contradiction.
Thus v € Vo(T) and so there exists a cut-vertex in N whose removal induces
three connected components, containing a, b and ¢ respectively. Similarly, the
median v = medr(a, ¢, d) is contained in V5 (T'). Hence there exists a cut-vertex
in N whose removal induces three connected components, containing a, ¢ and
d respectively. Let F” be the gnet in F(NN) whose support is {a, b, ¢, d}. Thus,
by inspecting all possible qnets on {a,b, ¢, d}, it follows that F’ is isomorphic
to a © blc © d, and hence F € F(N).

Second, suppose that F' is of Type II. Without loss of generality, we may
assume that F = a ® blc © d. Let F’ be the qunet in F(N) whose support is
{a,b,c,d}. Let u be the median of a, ¢, d in T'. Then, by an argument similar to
the one used in the last paragraph, it follows that there exists a cut-vertex in
N (and hence also a cut-vertex in F’) whose removal results in three connected
components, containing a, ¢ and d respectively. On the other hand, let v be the
median of A ={a,b,c} in T. Then a, b, ¢ are contained in three distinct parts
of A,. Since F| 4 is of cycle type, by Claim 2 it follows that v € V4 (T') UVa(T),
which implies that F’|4 is also of cycle type. Thus, by inspecting all possible
qnets on {a,b, ¢, d}, it follows that F’ is isomorphic to a @ blc © d, and hence
F e F(N).

Next, suppose that F' is of Type III. Without loss of generality, we may
assume that F' = a ® blc ® d. Let F’ be the qunet in F(N) whose support is
{a,b,c,d}. Let u be the median of A = {a,b,c} in T and v be the median
of B = {a,c,d} in T. Since the quartet ab|cd is contained in Q(T'), we know
that u and v are distinct. Hence, there exists a cut-edge whose deletion puts
a and b in one component and ¢ and d in the other connected component.
By an argument similar to that used for analysing when F' is of Type II, it
follows that F’|4 and F’|p are both of cycle type. Hence, by inspecting all
possible gnets on {a,b,c,d}, the qnet F’ is isomorphic to a & blc & d, and
hence F' € F(N).

Lastly, suppose that F'is of Type IV. Without loss of generality, we may
assume that F = a® b @ ¢ ® d. Let F’ be the qnet in F(N) whose support
is A = {a,b,c,d}. Hence, there exists no quartet in Q(F) whose support is
A. Therefore, medr(a,b,c) = medr(a,b,d) = medr(a,c,d) = medr(b,c,d).
Denoting this median by u, it follows that u is necessarily contained in V5 (T),
and hence Np(u) contains m > 4 vertices. Now let (vi,ve,...,v,) be the
unique circular ordering of vertices Nr(u) induced by the circular ordering
Al ... A™ of A, in Claim 3. Without loss of generality, we may assume that
a € A'. Then there exists 1 < j < k < [ < m such that (b, c,d) € A7 x A¥ x AL,
By the construction of N (which locally is the blow-up at u with respect to the
circular ordering), it follows that F’ is isomorphic to F, and hence F € F(N).
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This shows that 7 C F(N). Since F and F(N) are both minimally dense,
we have F = F(N). Finally, the uniqueness statement concerning N is a
direct consequence of the uniqueness of T' and the unique way in which N is
constructed from T

4 A characterization of level-1 quartet systems

We now use Theorem 2 to characterize when a quartet system is equal to the
set of quartets displayed by a binary level-1 network. This characterization is
given as Theorem 3. Let Q be a quartet system on X. A quartet Q) in Q is
distinguished if @ is the only quartet in Q with support equal to the leaf-set
of Q. Moreover, a network N is called 3-cycle free if it does not contain any
cycle consisting of three vertices.

Theorem 3 Let Q be a dense quartet system on X with |X| > 4. Then Q =
Q(N) for some binary level-1 network N on X if and only if the following
three conditions hold:

(D1) For allY € ({f), we have mg(Y) =1 or mg(Y) = 2.

(D2) If {ab|cd, ad|be, ax|cd, aclzd} C Q, then {abldx,bd|lax} C Q, for a,b,c,d €
X distinct.

(D3) If abled is a distinguished quartet in Q, then, for each x € X — {a,b,c,d}
where a,b,c,d € X are distinct, either ax|ced or ablcx is a distinguished
quartet in Q.

Moreover, if Q satisfies (D1)—(D3), then there exists a unique level-1, 3-cycle
free network N with Q(N) = Q.

Proof It is easily checked that, if @ = Q(N) holds for some binary level-1
network N, then (D1)—(D3) holds. Conversely, let Q be a dense quartet system
satisfying (D1)—(D3). Let Q; C Q be the set consisting of the distinguished
quartets contained in Q. We first associate a phylogenetic X-tree T to Q. If
Q1 = 0, then we let T' denote the phylogenetic X-tree which contains precisely
one vertex that is not a leaf (i.e. a“star tree”). If Q1 # (), then let Q = ablcd be
some quartet contained in Qi, a,b,c,d € X. Suppose that there exists some
x € X —{a,b,c,d}. Then by (D3), either azx|cd € Q1 or ablcx € Qy. It follows
that Ugeo, L(Q) = X. Moreover, as Q; is clearly thin and by (D3) Qi is
saturated, it follows by Theorem 1, that there exists a phylogenetic X-tree T
with Q(T) = Q;.

Now we construct a qnet system F as follows. Let II; be the subset of
(i{) consisting of those Y with mg(Y) = 1, and II, = ()4() \ II;. To each
m ={a,b,c,d} € IT) we associate a qnet F (1) as follows. Swapping the labels of
the elements in 7 if necessary, we may assume that Q = ab|cd is the (necessarily
unique) quartet in Q; with leaf-set . Now let v; and v} be the median of
{a,b,c} in Q and T, respectively. Similarly, let v and v5 be the median of
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{a,c,d} in Q and T, respectively. Then F(r) is the qnet on {a, b, ¢, d} obtained
from @ by performing a blow-up on each of v;, where i € {1, 2}, if and only if
the degree of v} in T is at least four.

We also associate a quet F(m) to each m = {a,b,c,d} € IIy as follows.
Swapping the labels of the elements in 7 if necessary, we may assume that the
quartets in Q with leaf-set {a, b, ¢, d} are ab|ed and ad|bc. We then define F(rr)
to be the qnet a @b P c P d.

Now, let F = {F(n) : 7 € (f)} By construction F is minimally dense.
Moreover, Q(F) = Q, and F is cyclative in view of (D2).

Next, we shall show that F is consistent. Fix a subset {a,b,c} € ();) and
consider its median v in T'. By construction, it suffices to establish the claim
that the degree of v is three in T if and only if, for each d € X — {a, b, ¢}, the
set m = {a, b, c,d} is not contained in ITs.

To see that this claim holds first note that if v has degree three, then each
of the three components of T'— {v} contains precisely one element in {a, b, c}.
Without loss of generality, we may assume that element d is contained in the
connected component containing element c¢. But this implies that ab|ed is a
quartet in Q(T'), and hence {a, b, ¢,d} € II;. On the other hand, if v has degree
at least four, then there exists an element z € X — {a,b,c} such that z,a,b,c
belong to four different connected components of T' — {v}. Therefore, Q(T)
and {ab|cz, ac|bx, ax|bc} are disjoint. This implies that 7 = {a, b, c,z} is not
contained in I17, and so it is contained in I15. This establishes the claim.

Next, we show that F is saturated. We shall show that (S2) holds; the fact
that F satisfies (S1) and (S3) can be established by a similar argument. Let
{a,b,c,d} € (;f) be a set that satisfies the condition in (S2), that is, a®blcSd
is contained in F. Then ablcd is a quartet in Q; = Q(T). Furthermore, put
u = medrp(a,b,c) and v = medr(a,c,d), then the degree of u is at least four
and the degree of v is three. Now, fix an element z € X — {a,b,¢,d}. If z and
a are in the same connected component resulting from deleting v from T, then
ax|ed is a quartet in Qp. Since the median of a,c,d in T has degree three,
by construction either a © z|c © d or a @ z|c © d (but not both) is contained
in F. Otherwise, ab|cx is a quartet in Q;. Since the median u of a,b,c in T
has degree greater than three, by construction we can conclude that either
a®blcox or a®blc®d x is contained in F (but not both). This completes the
verification of (S2).

It follows that F is minimally dense, cyclative, consistent and saturated.
By Theorem 2, there exists a unique binary level-1 network N on X such that
F(N) = F. By construction, it also follows that Q(N) = Q(F(N)) = Q(F) =
Q. The uniqueness statement in the theorem follows from the uniqueness of
N and the fact that Q(N) = Q(N’) for two binary level-1 networks N and N’
if and only if N and N’ on X differ only by 3-cycles (see e.g. [13, Lemma 2]).
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5 Quarnet inference rules and closure

For a quartet system Q on X, we write Q I ab|cd precisely if every phylogenetic
X-tree that displays Q also displays ab|cd. The statement Q F ab|ed is known
as a quartet inference rule [19]. A well-known example of such a rule is

{ab|cd, ac|de} + ab|ce

which leads to the concept of the semi-dyadic closure cla(Q) of the set Q, that
is, the minimal set of quartets that contains @ and has the property that if
{ab|cd, aclde} C cla(Q), then ab|ce € cla(Q).

In this section, we define analogous concepts for qnets and show that they
have similar properties to those enjoyed by phylogenetic trees. If F is a qnet
system, we write F = F for some qnet F if every binary level-1 network that
displays F also displays F. Now, let x,¢,0 denote symbols in {&,®}. For
example, a * blc ¢ d is equivalent to a © blc ® d when * = & and © = ©. We
introduce three gnet inference rules on F:

(CL1): {axblcod,bocldoe}axblcoe for all x,0,0 € {©,®};

(CL2): {a®blcxd,a®cPed®b} F ade|cxd and {a®b|cxd,a®cdbDe} F ade|cxd
and {a ®blcxd,aDe®cdbFadelcxd for all x € {0, B};

(CL3): {a®db®cddedadcddiFadbddde.

We illustrate two of these rules in Figure 5.
b c c e a c
a d a b € d

a :b e :a a :b
d c d c e d
Fig. 5 An illustration of the (CL2) and (CL3) inference rules. Top: The first part of the

(CL2) inference rule with x = ©. Bottom: the (CL3) inference rule.

We remark in passing that the qnet system {a*bljcod,boc|doe : *,0,0 €
{6,8}}U{a®blcxd,a®c@De®b,a®cdbde,aPedcdb: x€ {O,d}}U
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{a®@bDcdd,e®adcdd} implies that inference rules (CL1) — (CL3) are
independent from one another.

Using Theorem 2, it is straightforward to show that the above three rules
are well defined. That is, given three quets Fy, Fy and F such that {Fy, Fo} - F
holds for one of the above three rules, then every binary level-1 network that
displays {F, F»} must display F.

For a gnet system JF, we define the set clo(F) to be the minimal gnet
system (under set-inclusion) that contains F such that if cla(F) F F holds
under (CL1)-(CL3), then F € cla(F) holds. We call clo(F) the closure of F.

The following key proposition is analogous to that for semi-dyadic closure
for quartet systems (cf. [18] and [16, Proposition 2.1]). It follows from the fact
that the closure of a qnet system F can clearly be obtained from F by repeat-
edly applying the gnet rules (CL1)—(CL3) until the sequence of sets so obtained
stabilizes. Note that this process must clearly terminate in polynomial time.

Proposition 1 Let F be a qnet system and let N be a binary, level-1 network.
Then N displays F if and only if N displays cla(F).

We now show that cly(F) behaves in a similar way to the semi-dyadic
closure of a quartet system (cf.[19, Exercise 19, p. 143]).

Theorem 4 Suppose that F is a minimally dense, consistent set of gqnets on
X with | X| > 5. Then the following statements are equivalent:

(i) F = F(N) holds for a (necessarily unique) binary, level-1 network N on X ;
(ii) cla(F) = F;

(iti) For every 3-element subset F' of F, the subset F' is displayed by some
binary level-1 network on X.

Proof The fact that (i) implies (ii) and (i) implies (iii) are straightforward. We
complete the proof by showing that (ii) implies (i) and (iii) implies (i).

For the proof of (ii) implies (i), suppose that cly(F) = F. Note first that
by (CL3) F is cyclative. Moreover, F is minimally dense and consistent by
assumption. Hence, by Theorem 2, it suffices to show that F is saturated.
To this end, let w,x,y, 2,t be five pairwise distinct elements in X such that
F = w* x|y o z is contained in F with *,¢ € {®,6} and (x,0) # (©,®). We
need to show that F satisfies (S1)—(S3).

For p € {w,z,y, 2}, let F, be the qnet on {w,z,y,z,t} — {p} that is con-
tained in F (which must exist as F is minimally dense). First assume that
there exists some element p in {w, z,y, z} such that the qnet F), is of Type IV.
Without loss of generality, assume p = w (the other cases can be established
in a similar manner). Since F, is of Type IV, by the consistency of F we have
F = y ® z|lw * x. Now, applying (CL2) with a = y, b = 2z, ¢ = w, d = x,
e =t implies that y @ t|lw*x € cla(F) = F, by (ii). Therefore, F satisfies (S2)
and (S3) (corresponding, respectively, to taking * = © and * = @). It follows
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that in the remainder of the proof we can assume that none of the qnets in
{Fw, Fy,F,, F.} is of Type IV.

For convenience, in the following, we will use the convention that when we
apply (CL1), we will write a 5-tuple and assume that the i-th element in the
5-tuple will correspond to the i-th element in the tuple (a, b, ¢, d, e) of elements
used in (CL1) for 1 < ¢ < 5.

To show that F satisfies (S1), suppose that FF = w&z|y© z. Note first that
if F,, = w & y|z xt, then applying (CL1) to (z,w,y, 2,t) implies z O w|ly &t €
clo(F) = F, and hence (S1) holds. Similarly, if F, = w ©y|x xt, then applying
(CL1) to (z,y,w,x,t) implies zOy|lwot € F, and hence (S1) holds. Therefore,
if (S1) does not hold, then, by consistency, we may assume F,, = w © z|y * t
and F, =z © ylw x t with * € {©,®}. Considering F, and F,, and applying
(CL1) to (z,y,t,w, z) implies x S y|t * z € F. On the other hand, considering
F and F, and applying (CL1) to (z,y,x,w,t) implies that z©O ylx &t € F, a
contradiction to the fact that F is minimally dense. Thus F satisfies (S1).

Using an argument similar to the one that we used to show that F satisfies
(S1), it is straightforward to deduce that F satisfies (S2) and (S3).

We next prove that (iii) implies (i). Since F is minimally dense and con-
sistent by assumption, it follows by Theorem 2 that it suffices to show that F
is cyclative and saturated.

First we show that F is cyclative. If not, then there exist five elements
Y = {w,z,y,2,t} such that F; = w®adydzand Frb =tQwdy Dz
are contained in F but F = w @z @ 2z @ ¢ is not contained in F. Let F’ be
the (necessarily unique) quet in F whose leaf set is {w, z, z,t}. Then F’ # F.
Consider the set F' = {F’, Fy, F5}. The assumption (iii) implies that F’ is
displayed by a binary level-1 network N on X. Consider N’ = N|y. Then
F' C F(N'). By Theorem 2, F(N') is minimally dense and cyclative. Since
{F1,F} C F(N'), it follows that F € F(N’), a contradiction in view of
F' e F(N').

Second we show that F is saturated. Here we only show that F satisfies
(S2) as showing that F satisfies (S1) and (S3) can be done in a similar manner.
If F does not satisfy (S2), then there exists a 5-element set Y = {w, x,y, 2, t}
such that F = w @ x|y © z is contained in F while, for the qnet system

Fr={woryot,wdzlydt,wotlyoz,wdtly o 2},

we have F* N F = 0. Let I, and I, be the qnets in F with leaf sets A =
{w,z,y,t} and B = {w,t,y, 2z}, respectively which must exist as F is mini-
mally dense by assumption. Then neither F} nor F is contained in F*.

Lastly, consider the subset F' = {F, Fy, F»} of F. Then as assumption
(iii) holds it follows that F' is displayed by a binary level-1 network N on X.
Consider N’ = N|y. Then F' C F(N’). By Theorem 2, F(N’) is minimally
dense and saturated. Using the fact that F(N') is saturated, it follows that
F*NF(N')# 0 as F € F(N'). Therefore, F(N') contains either two distinct
quets on A or two distinct qnets on B, a contradiction to the fact that F(N')
is minimally dense. Thus (iii) implies (i), thereby completing the proof of the
theorem.
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Note that it follows from Theorem 4 that we can decide whether or not
a given minimally dense set of qnets F is displayed by a level-1 binary phy-
logenetic network on n > 2 leaves in O(n°) time. This follows since we can
compute cly(F) in O(n®) time. It would be interesting to see if this time bound
can be improved upon.

6 Discussion

We have shown that by considering quarnets we can define natural inference
rules, as well as the concept of quarnet closure. With quartets there are various
types of inference rules, which imply alternative definitions of closure for quar-
tet systems (see e.g. [3,19]). It would thus be of interest to explore whether
there are other types of inference rules for quarnets and, if so, what their prop-
erties are. In this paper, we have focused on understanding the closure for a
minimally dense set of quarnets. For real data, there can be cases where it
may be necessary to consider non-minimally dense sets (e.g. in case there is
missing data). Hence it could be useful to develop results for such situations.
However, it should be noted that understanding the closure of a non-minimally
dense set quartets is already quite challenging (for example, as opposed to the
minimally dense case, deciding whether or not an arbitrary set of quartets can
be displayed by a phylogenetic tree is NP-complete [20]).

In many applications, biologists prefer to use weighted phylogenetic trees
and networks to model their data, where non-negative numbers are assigned
to edges of the tree or network to, for example, represent evolutionary dis-
tance. The problem of considering when a dense set of weighted quartets can
be represented by a weighted phylogenetic tree has been considered in [6,11].
Given the results in this paper, it could therefore be of interest to consider how
weighted level-1 networks may be inferred from dense sets of weighted quar-
nets. In applications, it can also be useful to consider rooted networks, which
are essentially leaf-labelled, directed acyclic graphs. Edges in such networks
have a direction which represents the fact that species evolve through time
from a common ancestor (represented in graph theoretical terms by a root
vertex). For such networks, the concept of level-1 networks can be defined in a
similar way to the unrooted case, and algorithms are known for deciding when
minimally dense collections of 3-leaved, rooted level-1 phylogenetic networks
(which are known as trinets) can be displayed by a single phylogenetic net-
work [14,15]. It would thus be of interest to consider inference rules for trinets.
Moreover, for both the rooted and unrooted case, it could be worth exploring
whether there are inference rules for more complicated networks (e.g. networks
with level higher than one, as defined in e.g. [9]). Although results in [7] in-
dicate that such inference rules might exist, if they do, then we expect that
these will probably be quite complicated.
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