
Noname manuscript No.

(will be inserted by the editor)

Analyzing and reconstructing reticulation networks under timing

constraints

Simone Linz · Charles Semple · Tanja Stadler †

the date of receipt and acceptance should be inserted later

Abstract Reticulation networks are now frequently used to model the history of life for various groups

of species whose evolutionary past is likely to include reticulation events such as horizontal gene trans-

fer or hybridization. However, the reconstructed networks are rarely guaranteed to be temporal. If a

reticulation network is temporal, then it satisfies the two biologically motivated timing constraints of

instantaneously occurring reticulation events and successively occurring speciation events. On the other

hand, if a reticulation network is not temporal, it is always possible to make it temporal by adding a

number of additional unsampled or extinct taxa. In the first half of the paper, we show that deciding

whether a given number of additional taxa is sufficient to transform a non-temporal reticulation network

into a temporal one is an NP-complete problem. As one is often given a set of gene trees instead of a

network in the context of hybridization, this motivates the second half of the paper which provides an

algorithm, called TemporalHybrid, for reconstructing a temporal hybridization network that simulta-

neously explains the ancestral history of two trees or indicates that no such network exists. We further

derive two methods to decide whether or not a temporal hybridization network exists for two given trees

and illustrate one of the methods on a grass dataset.

† Corresponding author
All authors contributed equally

Simone Linz
Department of Computer Science
University of California, Davis
USA
E-mail: linzs@cs.ucdavis.edu

Charles Semple
Biomathematics Research Centre, Department of Mathematics and Statistics
University of Canterbury, Christchurch
New Zealand
E-mail: c.semple@math.canterbury.ac.nz

Tanja Stadler
Institute of Integrative Biology
ETH Zürich
Switzerland
E-mail: tanja.stadler@env.ethz.ch
Phone: +41 44 632 4548
Fax: +41 44 632 1271

2

1 Introduction

Evolution is often regarded as a tree-like process in which an ancestral species evolves to a set of present-

day species via a sequence of speciation events. This approach is well-suitable to tackle various questions

arising from evolutionary studies. However, reticulation has now been shown to be an important process

in the evolution of various ancestral and present-day species (for example, see [15,18] and references

therein). Two major reticulation scenarios that are discussed in this paper are horizontal gene transfer

(HGT) and hybridization. In the case of the latter, two organisms of different ancestral species combine

their DNA to create a new species. This process is common in certain groups of plants and fish [15].

On the other hand, in the case of HGT, which is widely observed among bacteria [18], a piece of DNA

(e.g. a gene) is transferred from one organism to another which is not its offspring. Consequently, if the

genome of a species is chimeric as a result of one or more HGT or hybridization events, its evolutionary

history can often be better represented by using a reticulation network rather than a phylogenetic tree.

Recently, a lot of effort has been put into the development of algorithms to reconstruct reticulation

networks for a set of present-day species (for example, see [14] and references therein). However, as

pointed out in [13], although a reticulation network might explain several conflicting signals in a data

set, there may be no process of instantaneously occurring reticulation events that realizes this network.

Consequently, the two (resp. three) species that are involved in an HGT (resp. a hybridization) event

are not guaranteed to exist contemporaneously. Roughly speaking, we say that a reticulation network is

temporal if each reticulation event can be realized between coexisting ancestral species while speciation

events occur successively. Beside the reconstruction of possibly non-temporal reticulation networks, there

exists a number of algorithms that do calculations on networks and implicitly assume that the input

consists of a temporal reticulation network. For example, Jin et al. [11] have developed an algorithm for

computing the parsimony score of a temporal reticulation network.

A reticulation network that is not temporal does not necessarily imply that the network is incorrect.

By allowing for additional taxa that for instance correspond to unsampled or extinct taxa one can

always transform a non-temporal reticulation network into a temporal one without introducing any new

reticulation events [2,17]. For example, consider the reticulation network shown in Figure 1, where the

non-arrowed arcs are directed down the page. If one ignores the dashed arc and its end vertices, then the

network is not temporal. However, by allowing for this dashed arc and the taxon x, the resulting network

is temporal. Given this, a natural task in the study of biologically meaningful reticulation networks is to

calculate the minimum number of additional taxa that must be allowed for, so that the resulting network

is temporal. We call the analogous decision problem AddTaxa and show in the first half of this paper

that this problem is NP-complete.

In the second half of this paper, we focus our attention on hybridization and consider a task that

is one step closer to the initial biological data. Instead of being given a reticulation network, one fre-

quently starts with a set of gene trees. For example, due to hybridization, these gene trees—reconstructed

for different genetic loci—often reveal inconsistencies. Here, a fundamental problem is to calculate the

smallest number of hybridization events needed to simultaneously explain the set of gene trees. While

this problem is NP-hard, Bordewich et al. [3] and, more recently, Collins et al. [8] have implemented

a fixed-parameter algorithm for solving it when the initial set consists of two gene trees, T and T ′

say. This algorithm is dependent on finding an associated optimal agreement forest. For the purposes

of the introduction, simply think of the forest as a smallest collection of (disjoint) subtrees common

to T and T ′. From this forest, the algorithm HybridPhylogeny [2] can be applied to reconstruct a

hybridization network that explains T and T ′, and in which the number of hybridization events equates

to the size of the forest. However, despite its practical application, HybridPhylogeny does not guar-

antee that the resulting network is temporal. In the second half of the paper, we provide an algorithm,

called TemporalHybrid, that constructs temporal hybridization networks from agreement forests. It is

3

z

a b x

u

v

dc

Fig. 1 A temporal hybridization network with one additional taxa x.

worth noting here that there is no guarantee that such networks exist. Furthermore, two applications of

TemporalHybrid are given with the second application being used to analyze a grass data set.

The paper is organized as follows. The next section contains some notation and terminology that is

used throughout the paper and formally defines the decision problem AddTaxa. In Section 3, we show

that AddTaxa is NP-complete. As fixed-parameter algorithms have been shown to often be a valuable

tool for attacking instances of an NP-complete problem that are otherwise not solvable in reasonable time,

we end Section 3 by showing how a fixed-parameter algorithm for another NP-complete problem can be

used to solve AddTaxa. In the first part of Section 4, we present the algorithm TemporalHybrid. Two

methods to decide whether or not a temporal hybridization network for two trees exists are presented in

the end of Section 4.2 and Section 4.3. The second method is illustrated on a grass data set. Section 5

summarizes the paper.

2 Modeling reticulate evolution

In this section, we give some preliminary definitions for acyclic digraphs that are commonly used to

model reticulate evolution, and formally state the decision problem AddTaxa.

Let X be an arbitrary finite set. A reticulation network N on X is a rooted acyclic digraph with the

following properties:

(i) the root has indegree 0 and outdegree 2;

(ii) X is the set of leaves of the network, i.e. vertices with outdegree 0 and indegree 1;

(iii) all remaining vertices are interior vertices, and each such vertex either has indegree 1 and outdegree 2

or has indegree 2 and outdegree 1;

(iv) either one arc or both arcs ending in a vertex with indegree 2 are reticulation arcs, all other arcs in

the network are tree arcs; and

(v) every interior vertex has at least one outgoing tree arc.

The set X represents in our context a collection of present-day taxa. Furthermore, vertices of N with

indegree 1 are referred to as tree vertices while vertices of N with indegree 2 are referred to as reticulation

vertices. In this paper, a reticulation vertex represents either a hybrid species or a species which evolved

due to horizontal gene transfer. Property (v) in the definition of a reticulation network guarantees that

every species that arises from either a speciation or a reticulation event exists for a certain time before

possibly going extinct. For example, an ancestral species does not yield two new hybrid species and

simultaneously becomes extinct. This is biologically well-motivated since, although hybridization can

result in the extinction of one or both hybridizing species, this process takes at least a few generations,

4

b

v

v1v1 u1

u

vu

a

Fig. 2 A non-temporal HGT network (left) and its associated critical graph (right).

and hybridization and extinction are often only locally observed [16,19]. Ignoring the dashed arc and its

end vertices for the moment, Figure 1 shows a reticulation network, where X = {a, b, c, d}. Here, as in

all figures in the paper, the direction of any non-arrowed arc is down the page.

Let N be a reticulation network with vertex set V and arc set A, and let u, v ∈ V . If there is a

directed path from u to v and u 6= v, we write u < v and refer to u as an ancestor of v and to v as a

descendant of u. If (u, v) is an arc of N , we call (u, v) a parent arc of v, and say that u is a parent of v

and that v is a child of u.

A reticulation vertex due to hybridization is called a hybridization vertex and the parent arcs of such

a vertex are called hybridization arcs. Similarly, a reticulation vertex due to HGT is called an HGT vertex

and exactly one of its two parent arcs is a HGT arc with this arc indicating the direction of the DNA

transfer. Hybridization and HGT arcs are collectively referred to as reticulation arcs (see definition of a

reticulation network). A hybridization network is a reticulation network where all reticulation events are

due to hybridization while an HGT network is a reticulation network where all reticulation events are

due to HGT.

As only one parent arc of an HGT vertex is an HGT arc, a reticulation network can lead to different

HGT networks depending on which parent arc is the HGT arc. In contrast, as both parent arcs of

a hybridization vertex are hybridization arcs, a reticulation network leads to a unique hybridization

network. The discrimination between HGT and hybridization arcs becomes crucial when considering

temporal reticulation networks whose formal definition is given in the next paragraph. Throughout the

paper, whenever we refer to a reticulation network we mean that the network is either a hybridization

network or an HGT network. Furthermore, in the context of figures, reticulation arcs are always drawn

with an arrow while tree arcs are drawn without an arrow. Again ignoring the dashed arc and its end

vertices, Figure 1 and the left figure in Figure 2 show a hybridization network and an HGT network,

respectively. Lastly, we remark that our definition of a hybridization network N coincides with that of

a so-called tree-child phylogenetic network, which has been introduced by Cardona et al. [5]. But note

that an HGT network is not necessarily a tree-child network as the two children of a tree vertex can

both be HGT vertices, see Figure 2.

We next formalize the notion of assigning dates to the vertices of a reticulation network. Let N be

a reticulation network with vertex set V and arc set A, and let V ′ be a subset of V . Let f : V ′ → R
+

be a map such that, for all s, t ∈ V ′, we have f(s) = f(t) whenever (s, t) is a reticulation arc, and

f(s) < f(t) whenever there is a directed path from s to t that contains a tree arc. Then f is a partial

temporal labeling of N . If V ′ = V , then f is a temporal labeling of N , and we say that N is temporal

or has a temporal representation. As an example, consider the hybridization network shown in Figure 3

which illustrates a temporal labeling f of this network.

5

f(x) = 1

f(ρ) = 0

a b c d
f(d) = 6f(c) = 5f(b) = 4f(a) = 3

f(u) = 2

f(s) = 2 f(t) = 2

f(v) = 1 f(w) = 1

Fig. 3 A temporal hybridization network for the 4 taxa a, b, c, and d with a temporal labeling.

Not all reticulation networks have a temporal representation. However, as noted in [2], one can always

make such a network temporal by allowing for additional taxa that do not introduce new reticulation

vertices. Such taxa may correspond to unsampled or extinct taxa. This can be done as follows. Let N be

a reticulation network, and let e = (u, v) be an arc of N . Consider the reticulation network obtained from

N by replacing e with a 2-arc directed path consisting of (u, z) and (z, v), and then adjoining a new taxa

x via the new arc (z, x). We say that the resulting reticulation network has been obtained from N by

adding a new taxa x across (u, v). As an example, consider Figure 1. The hybridization network shown

(including the dashed arc) has been obtained from the underlying solid-arc hybridization network by

adding x across (u, v). We will soon see that by adding new taxa in this way to N it is always possible to

produce a reticulation network that has a temporal representation. This motivates the following decision

problem which is the main focus of the first part of this paper.

Problem: AddTaxa(N , k)

Instance: A reticulation network N and a positive integer k.

Question: Is there a temporal reticulation network that can be obtained from N by adding at most k

new taxa?

If an instance of AddTaxa(N , k) is restricted to HGT or hybridization networks, we refer to the resulting

decision problems as AddTaxaHGT(N , k) and AddTaxaHybrid(N , k), respectively.

3 AddTaxa is NP-complete

In this section, we show that both AddTaxaHGT(N , k) and AddTaxaHybrid(N , k) are NP-complete.

We begin with some further definitions and establish several preliminary results. Let N be a reticulation

network, and let (v, v1) be a reticulation arc. If there exists a reticulation vertex w with w 6= v1 such

that v < w, but v1 6< w, then v is said to be critical, in which case, v1 is a critical reticulation vertex.

Furthermore, we call v1 a critical HGT vertex or a critical hybridization vertex if N is an HGT or a

hybridization network, respectively. To illustrate, consider Figure 2. In the left-hand figure, u is a critical

vertex as the reticulation vertex v1 is a descendant of u, but is not a descendant of u1.

For a reticulation network N , let CN denote the graph whose vertex set is the set of critical vertices

of N and whose arc set is

{(u, v) : u < v1, where (v, v1) is a reticulation arc in N}.

The graph CN is called the critical graph of N . As an example, the critical graph of the HGT network

shown in Figure 2 is shown in the right of that figure.

6

Lemma 31 Let N be a reticulation network. Then N has a temporal representation if and only if there

exists a partial temporal labeling for the set consisting of the critical vertices and the critical reticulation

vertices of N .

Proof Evidently, if N has a temporal representation, then, by restricting the labeling of such a repre-

sentation to the critical vertices and the critical reticulation vertices, we have a partial temporal labeling

of these vertices. Next we prove the converse for hybridization networks and then use this fact to prove

the converse for HGT networks.

Let N be a hybridization network. Suppose that we have a partial temporal labeling fc of the critical

vertices and critical hybridization vertices of N . By assigning values to the other vertices of N , we extend

the labeling of these vertices under fc to a temporal labeling of N . We do this in two steps; we first

extend to all hybridization vertices and their parents, and then, second, extend to all remaining tree

vertices.

For a hybridization arc (v, v1) in which v is critical, it is possible that the other parent of v1, say

v′, is not critical. In this case, extend fc by assigning v′ the same value as v and v1. Since v′ is not

critical, every hybridization vertex that is a descendant of v′ is also a descendant of v1. It is now easily

seen that this extension is a partial temporal labeling of N . Continuing in this way, we eventually assign

appropriate values to all parents of critical hybridization vertices.

Together with the assignment given in the last paragraph, we now extend the partial temporal labeling

fc of a hybridization network to all remaining hybridization vertices and their respective parents so that

the resulting extension is a partial temporal labeling of N . We do this using induction on the number

k of hybridization vertices not currently assigned a temporal label. If k = 0, then this extension is

vacuous. Now suppose that we can extend fc to include an additional k − 1 hybridization vertices and

their respective parents, where k ≥ 1. Let v1 be a hybridization vertex without a label, and suppose that

its parents are v and v′. Let ta denote the maximum value of a temporal label assigned to an ancestor

of v1. If no ancestor of v1 has been assigned such a label, set ta = 0. Let td denote the minimum value

of a temporal label assigned to a descendant of v1. If no descendant of v1 has been assigned such a

label, set td = ∞. Note that, since v1 is unlabeled, neither v nor v′ is critical, and so every hybridization

vertex that is a descendant of v or v′ is a descendant of v1. Therefore, td is also the minimum value

of a temporal label assigned to a descendant of either v or v′. Now ta < td; otherwise we contradict

the induction assumption that we can extend fc to k − 1 additional hybridization vertices and their

respective parents. It now follows that any real number in the interval (ta, td) can be assigned to v1, v,

and v′ to obtain an appropriate extension of fc to k hybridization vertices and their parents. Thus, by

induction, fc can be extended to all such hybridization vertices and their parents.

Now that all hybridization vertices and their respective parents are labeled appropriately, we next

label the remaining tree vertices of N . We first partition the set of tree vertices (including the root) of N

as follows. Let C1, C2, . . . , Ck denote the maximal connected subgraphs of N whose vertex sets consist

entirely of tree vertices. For all i, the subgraph Ci is a rooted tree as each vertex is a tree vertex. Without

loss of generality, we may assume that C1, C2, . . . , Ck is ordered so that i < j if and only if either the

root of Ci is an ancestor of the root of Cj or neither the root of Ci nor the root of Cj is an ancestor of

the other. Thus C1 contains the root of N . Beginning with the vertices in C1 and using this ordering,

we can systematically label the remaining unlabeled tree vertices of N as follows. For each i, label the

root with a real number bigger than that of any of its ancestors, but smaller than that of any descendant

that is labeled and, label each of its leaves with a real number bigger than that of any currently labeled

ancestor, but smaller than that of any descendant that is labeled. Now label the rest of the vertices of

Ci appropriately. Note that Ci may contain a vertex v that has already been assigned a label; in which

case v is a parent of a hybridization vertex. However, this is not problematic as it simply means that

each ancestral vertex of v must be labeled with a real number smaller than the label assigned to v, and

7

each descendant vertex of v must be labeled with a real number bigger than the label assigned to v. As

Ci is a rooted tree, this is always possible. The resulting labeling is a temporal labeling of N .

Now, let N be an HGT network and suppose that we have a partial temporal labeling fc of the critical

vertices and the critical HGT vertices of N . Let N ′ be the hybridization network that is obtained from

N by adding a new taxa across the parent tree arc of each HGT vertex and viewing each HGT vertex as

a hybridization vertex. By construction, a vertex is critical in N ′ if and only if it is critical in N . Thus

fc is also a partial temporal labeling of the critical vertices and critical hybridization vertices of N ′. By

assigning values to the other vertices of N ′ as described in the proof for hybridization networks, we can

extend fc to a temporal labeling f ′ of N ′. Restricting f ′ to the vertices of N , it is easily checked that

this restriction gives a temporal labeling of N . This completes the proof of the lemma.

Remark. We remarked prior to the formal description of AddTaxa that a reticulation network N can

always be made temporal by adding new taxa in a certain way. Indeed, because of Lemma 31, we can

do this as follows. Suppose that (v, v1) is a reticulation arc in N such that v is critical, and consider the

reticulation network N ′ obtained from N by adjoining a new taxa x across (v, v1). Let (z, x) denote the

adjoining arc. Since (v, z) is not a reticulation arc, v is not critical in N ′. Furthermore, z is not critical

in N ′. So N ′ has strictly less critical vertices than N . Continuing in this way, we eventually obtain a

reticulation network with no critical vertices and thus, by Lemma 31, a network that is temporal.

We next restrict our attention to HGT networks. The reason for this is that we first prove that

AddTaxaHGT(N , k) is NP-complete and then use this result to show that AddTaxaHybrid(N , k) is

NP-complete.

Lemma 32 Let N be an HGT network, and let (v, v1) be an HGT arc of N such that v is critical. Let

N ′ be the HGT network obtained from N by adding a new taxa across (v, v1). Then the graphs CN ′ and

CN \v are equal.

Proof First observe that, as v is not incident with an HGT arc in N ′, it is not critical. Moreover, the

parent vertex, z say, of the new taxa in N ′ is also not critical since, except for the new taxa, z and v1

have the same descendants. It now follows that the vertex sets of CN ′ and CN \v are equal. Furthermore,

for all vertices u and w in CN ′ , we have that (u, w) is an arc in CN ′ if and only if it is an arc in CN \v.

Thus the graphs CN ′ and CN \v are equal.

Proposition 33 Let N be an HGT network. Then N has a temporal representation if and only if CN
is acyclic.

Proof First suppose that CN is acyclic. To show that N has a temporal representation, it suffices to

show by Lemma 31 that there is partial temporal labeling fc of the critical vertices and critical HGT

vertices of N . We define such a labeling as follows. It is well-known and easily proved that, as CN is

acyclic, it has a vertex v with indegree zero. Let (v, v1) be the HGT arc incident with v in N . Since v

has indegree zero, no vertex in CN is an ancestor of v or v1 in N . Set fc(v) = fc(v1) = 1. Now delete

v in CN and consider the resulting graph. Since this graph is acyclic, it has a vertex of indegree zero.

Repeat the above process for this vertex, but assign it and its child HGT vertex value 2 under fc. By

deleting this vertex and continuing in this way, we eventually assign all critical vertices and critical HGT

vertices of N a value under fc. Moreover, fc is a partial temporal labeling of the critical vertices and

critical HGT vertices of N and so, by Lemma 31, N has a temporal representation.

It remains to show that N having a temporal representation implies CN being acyclic. We establish

this statement by showing that if CN has a directed cycle, then N does not have a temporal representa-

tion. Suppose that CN has a directed cycle v0, v1, . . . , vm−1, v0. For all i, let vi1 denote the child HGT

8

vertex of vi in N . Then, for all i modulo m, there is a directed path from vi−1 to vi1 containing at

least one tree arc. It follows that N has no temporal representation. This completes the proof of the

proposition.

Corollary 34 Let N be an HGT network, and let Vc be a subset of the vertex set of CN . Then the

HGT network obtained from N by adding, for each v ∈ Vc, a new taxa across the HGT arc incident with

v has a temporal representation if and only if CN \Vc is acyclic.

Proof Combining Lemma 32 and Proposition 33 gives the desired result.

We now show that AddTaxaHGT(N , k) is NP-complete. The NP-complete problem that we use for

the polynomial-time reduction is FeedbackVertexSet [12]:

Problem: FeedbackVertexSet(G,m)

Instance: Directed graph G = (V, E) and a positive integer m ≤ |V |.

Question: Is there a subset V ′ ⊆ V with |V ′| ≤ m such that G\V ′ is acyclic?

Remarks.

1. Observe that if N is an HGT network, then, by Corollary 34, the answer to AddTaxaHGT(N , k) is

yes if and only if the answer to FeedbackVertexSet(CN , k) is yes.

2. The authors of [2] have provided the algorithm TempRep which determines whether a given hy-

bridization network N has a temporal representation or not. To describe the idea of TempRep, let

V be the vertex set of N . Ignoring the direction of the arcs of N , an equivalence relation on V is now

defined by setting

[v] = {v} ∪ {u ∈ V : there is a path of reticulation arcs from u to v in N}.

Observe that if v is not incident with a reticulation arc, then [v] = {v}. Set

[V] = {[v] : v ∈ V }.

Essentially, calling TempRep for N results in the following two steps. First, a digraph DN is con-

structed whose vertex set is [V], and for which [u] and [v] are joined by an arc ([u], [v]) precisely if

there exist a ∈ [u] and b ∈ [v] such that (a, b) is a tree arc in N . Second, it is checked whether DN

is acyclic or not. In [2, Theorem 3], it has been shown that N has a temporal representation if and

only if DN is acyclic. Inspecting the associated proof reveals that the same applies for when N is

an HGT network. Note that both steps of the algorithm can be computed in polynomial time. Thus,

TempRep is a polynomial-time algorithm, and AddTaxaHGT(N , k) and AddTaxaHybrid(N , k) are

consequently in NP.

Using the two previous remarks, we next prove the main result of this section.

Theorem 35 The decision problem AddTaxaHGT(N , k) is NP-complete.

Proof By Remark 2, first note that AddTaxaHGT(N , k) is in NP as we can apply the polynomial-time

algorithm TempRep to determine whether a given HGT network has a temporal representation or not.

Now, making use of Remark 1, to complete the proof it is sufficient to show that, given an instance

G of FeedbackVertexSet, we can construct in polynomial time an HGT network N whose size is

9

unu1 u2

Fig. 4 The base case for the proof of Theorem 35.

v

u1
u

v1

Fig. 5 The bold triangle represents the HGT network N ′ in the proof of Theorem 35. Only the vertices u, u1, v,
and v1 are drawn explicitly as we need them to obtain N from N ′ (see Figure 6). Note that u is not an ancestor
of v1, however, v is an ancestor of u1 if (v, u) is an arc in G′.

polynomial in the size of G and for which CN and G are the same. The proof that such an HGT network

always exists is by induction on the number k of arcs of G.

If k = 0, then G consists of only isolated vertices, u1, u2, . . . , un (where n ∈ N0 arbitrary), and the

HGT network shown in Figure 4 has the property that its critical graph consists of isolated vertices

u1, u2, . . . , un. Since the size of this network is polynomial in the size of G, this establishes the base case

of the induction. Now assume that, if an instance of FeedbackVertexSet has k− 1 arcs, where k ≥ 1,

then there is an HGT network with the desired properties.

Let G′ denote the directed graph obtained from G by deleting an arbitrary arc (u, v). By the induction

assumption, there is an HGT network N ′ that can be constructed in polynomial time and is polynomial

in the size of G′, and has the property that CN ′ and G′ are the same. As u and v are vertices in G′,

they are parents of HGT vertices in N ′. Call the corresponding HGT vertices u1 and v1. Note that u

10

xi

v1

y1
y

ed

z1
z

v u

u1

eh

eg

eb
ef

ea

ec

ew

=ei

Fig. 6 The HGT network N constructed from N ′ in the proof of Theorem 35. The part of the network enclosed
by the solid triangle is the same as that shown in Figure 5 except that vertices u, u1, v, and v1 have been renamed
as y, y1, z, and z1, respectively. Each dashed line ei with i ∈ {a, b, c, d, f, g, h, w} represents a 2-arc directed path
(with the middle vertex omitted) and the attachment of a new taxa xi (also omitted) adjoined to the middle
vertex on the path, see top right of the figure. This means that the endpoint of each dashed line corresponds to
a non-critical HGT vertex.

is not an ancestor of v1 (and therefore also not of v) since (u, v) is not an arc in G′. Furthermore, note

that u and v are tree vertices. A generic picture of N ′ is shown in Figure 5. We complete the proof by

modifying N ′ to obtain an HGT network N such that CN and G are the same. CN and G being equal

implies in particular that u becomes an ancestor of v1 in N .

We modify N ′ in the following way: Rename the vertices u, u1, v, and v1 to y, y1, z, and z1,

respectively. Further, add a new taxa across (y, y1) and (z, z1), so that y and z are not critical vertices.

We add an arc ancestral to the root in N ′, which has four new arcs descending (see Figure 6). The

vertices u, u1, v, and v1 are placed on these four arcs (one on each) and HGT arcs (u, u1) and (v, v1)

are added. In order to preserve all relationships between critical vertices occurring in N ′, we add the

seven HGT arcs ea, eb, ec, ed, ef , eg (and possibly the arc ew if (v, u) is an arc in G′), each with a new

taxa across the arc so that the added HGT vertices are not critical (see Figure 6):

– The arcs ea and eb are included so that each ancestor of the critical HGT vertex v1 in N ′ is also an

ancestor of the critical HGT vertex v1 in the modified HGT network.

– The arcs ec and ed are included so that each ancestor of the critical HGT vertex u1 in N ′ is also an

ancestor of the critical HGT vertex u1 in the modified HGT network.

– The arc ef is included so that each descendant of the critical vertex v in N ′ is also a descendant of

the critical vertex v in the modified HGT network.

– The arc eg is included so that each descendant of the critical vertex u in N ′ is also a descendant of

the critical vertex u in the modified HGT network.

11

– If (v, u) is an arc in G, then the arc ew is also included into the construction so that v is an ancestor

of u1 in the modified HGT network.

Lastly, as (u, v) is an arc in G, the arc eh is added with a new taxa across it so that u is an ancestor of

v1 in the modified HGT network.

We call this resulting HGT network N . Clearly, the construction of N from N ′ takes polynomial

time and so, by the induction assumption the construction of N from G also takes polynomial time.

Moreover, the size of N is polynomial in the size of N ′ and so, again by the induction assumption, the

size of N is polynomial in the size of G.

It remains to verify that the critical graph of N is G. Because of the way in which N is constructed

from N ′ and noting that neither y nor z is critical in N , the set of critical vertices of N is exactly the

same as the set of critical vertices of N ′. Thus the vertex sets of CN and G are the same. Furthermore,

by construction, if w and x are critical vertices of N and {w, x} ∩ {u, v} = ∅, then (w, x) is an arc in

CN precisely if (w, x) is an arc in G. Thus to show that CN and G are the same, it remains to check, for

each j ∈ {u, v}, that (w, j) is an arc in CN precisely if (w, j) is an arc in G and that (j, w) is an arc in

CN precisely if (j, w) is an arc in G. First observe that because of the addition of eh, we have (u, v) in

CN . Furthermore, if (v, u) is in G, then ew is added and so (v, u) is in CN . We next complete the check

for when j = v. The check for when j = u is similar and omitted.

Since any ancestor of v in N ′ remains an ancestor of v1 in N and any ancestor of v1 in N ′ remains

an ancestor of v1 in N because of the addition of ea and eb, respectively, it follows by the induction

assumption that (w, v) is an arc in CN precisely if (w, v) is an arc in G. Furthermore, since any descendant

of v in N ′ remains a descendant of v in N because of the addition of ef , it follows by the induction

assumption that (v, w) is an arc in CN precisely if (v, w) is an arc in G. It now follows that the two

graphs CN and G are equal. This completes the proof of the theorem.

Given an instance of AddTaxaHGT(N , k), consider the instance of AddTaxaHybrid(N ′, k), where

N ′ is obtained from N by adding a new taxa across the parent tree arc of each HGT vertex and then

viewing each such vertex as a hybridization vertex. Observe that N is a temporal HGT network if

and only if N ′ is a temporal hybridization network. Moreover, if N is not temporal, it is easily seen

that the minimum number of new taxa one needs to add to N so that the resulting HGT network is

temporal is equal to the minimum number of new taxa one needs to add to N ′ so that the resulting

hybridization network is temporal. Thus the answer to AddTaxaHGT(N , k) is yes if and only if the

answer to AddTaxaHybrid(N ′, k) is yes. Since the construction of N ′ from N takes polynomial time

in the size of N and since, by Remark 2 prior to the statement of Theorem 35, we can apply the

polynomial-time algorithm TempRep to determine whether a given hybridization network has a temporal

representation, the following corollary now follows from Theorem 35.

Corollary 36 The decision problem AddTaxaHybrid(N , k) is NP-complete.

We end this section with a brief discussion on solving AddTaxa in reasonable time. For an HGT

network N , the proof of Theorem 35 provides an algorithm for solving AddTaxa(N , k). In particular,

construct the critical graph of N and use an exact algorithm for FeedbackVertexSet(CN , k). For

hybridization networks, we can use the same approach as the analogous results for HGT networks also

hold in this setting.

It is straightforward to check that Lemma 32 and Proposition 33 hold for hybridization networks.

For the analogous proof of Proposition 33, note that, in the context of hybridization networks, if v1 is

a hybridization vertex with parents v and v′, and both v and v′ are in the critical graph, then (u, v)

12

is an arc in CN if and only if (u, v′) is an arc in CN . Thus v and v′ can be labeled appropriately,

similar to the procedure described in the first part of the proof of this proposition for labeling an HGT

network. Since Lemma 32 and Proposition 33 hold for hybridization networks, Corollary 34 holds for

hybridization networks. Hence, one can also solve AddTaxa(N , k) for when N is a hybridization network

by constructing CN and using an exact algorithm for FeedbackVertexSet(CN , k).

It is shown in [6] that FeedbackVertexSet for directed graphs is fixed-parameter tractable. The

authors provide an algorithm which solves FeedbackVertexSet(G,k) in O(4kk!nO(1)) where n is the

number of vertices in G. Thus if k is relatively small, this algorithm will work reasonably quickly in

practice regardless of the size of G.

For a reticulation network N , the size of CN is determined by the number of critical vertices of N .

This number is less than the number of reticulation vertices and we would expect this latter number to

be much less than the size of N . Consequently, k may typically be relatively small and so the algorithm

in [6] should work well in helping to find the solution for many instances of AddTaxa(N , k).

4 Constructing temporal hybridization networks for two trees

In the previous section, we determined the smallest number of taxa that must be added to a reticulation

network so that the resulting network is temporal. However, for many evolutionary studies, we are

initially given a set of gene trees rather than a reticulation network. In such a case, in particular, when

there are no unsampled taxa, it is of importance to decide whether a temporal reticulation network

exists that simultaneously explains the evolutionary histories of the gene trees under consideration. An

example showing that the existence of such a network is not guaranteed is given after some preliminaries.

In this section, we analyze the construction of temporal hybridization networks from so-called agree-

ment forests. Such forests are frequently used to model reticulate evolution for when two rooted binary

phylogenetic trees T and T ′ are given, see for example [1,4,10]. Our analysis centers around a new

algorithm, called TemporalHybrid, which reconstructs a temporal hybridization network for T and

T ′ if one exists. Two applications of the algorithm are given at the end of this section, with the second

application being illustrated on a grass dataset. Throughout this section, we restrict our attention to

hybridization networks.

4.1 The hybridization number

Before detailing TemporalHybrid, we need some additional definitions.

Hybrid phylogenies and the hybridization number. A rooted binary phylogenetic X-tree T is a

rooted tree whose root has degree two and all other internal vertices have degree three, and whose leaf

set is X. The set X is called the label set of T and is denoted by L(T). For a subset A of X, the minimal

rooted subtree of T that connects all the elements in A is denoted by T (A). Furthermore, the restriction

of T to A, denoted by T |A, is the rooted phylogenetic tree obtained from T (A) by contracting every

vertex of degree-2 apart from the root. An example of both types of subtrees is shown in Figure 7.

Let T be a rooted binary phylogenetic X′-tree, and let N be a hybridization network with label set

X, where X′ ⊆ X. We say that N displays T if all of the ancestral relationships described in T are

preserved by N . Formally, N displays T if T can be obtained from N by deleting a subset of arcs and

vertices of N , and contracting any resulting degree-2 vertices apart from the root.

13

e

T T (Y) T |Y

a a ab c d d de e

Fig. 7 A rooted binary phylogenetic X-tree T , and the two subtrees T (Y) and T |Y with Y = {a, d, e}.

d

T ′T

a b c d c d b a

a c d b a b d c a b c d

a d c b b a c d b a d c

b a d c c a b d c b a

Fig. 8 Two rooted binary phylogenetic X-trees T and T ′, and all nine hybridization networks on X displaying
both trees with two hybridization vertices. None of the hybridization networks is temporal.

A fundamental problem for biologists studying a set of present-day species whose evolutionary history

includes hybridization is to determine the extent to which hybridization has influenced their past. For two

rooted binary phylogenetic X-trees T and T ′, a common way to quantify this extent is by determining

the value

h(T , T ′) = min{h(N) : N is a hybridization network on X that displays T and T ′},

where h(N) is the number of hybridization vertices of N . However, Bordewich and Semple [4] showed

that determining this number is an NP-hard problem.

We next give an example of two trees which cannot be displayed in a temporal hybridization network.

Consider the two rooted binary phylogenetic X-trees T and T ′ shown at the top of Figure 8. It is easily

seen that every hybridization network that displays T and T ′ has at least two reticulation vertices.

There are exactly nine hybridization networks on X, each with two hybridization vertices, displaying T

14

and T ′. These networks are shown in the bottom part of Figure 8. None of these networks is temporal.

Moreover, a straightforward check shows that any hybridization network that displays T and T ′ with

more than two hybridization vertices is not temporal either. Thus, there is no temporal hybridization

network on X that displays T and T ′.

Agreement Forests. The approach taken by TemporalHybrid (see Section 4.2) is based on the

concept of a so-called acyclic-agreement forest for two rooted binary phylogenetic X-trees T and T ′.

Loosely speaking, the smallest size of such a forest for T and T ′ equates with h(T , T ′). We next make

this precise.

Let T and T ′ be two rooted binary phylogenetic X-trees. For the upcoming definitions, we regard

the roots of both T and T ′ as an extra vertex ρ adjoined to the original root by an additional edge and

L(T) = L(T ′) = X ∪ {ρ}. An agreement forest for T and T ′ is a collection F = {Sρ,S1,S2, . . . ,Sk}

of rooted leaf-labeled trees, where Sρ is a rooted tree whose label set Lρ contains ρ and S1,S2, . . . ,Sk

are rooted binary phylogenetic trees with label sets L1,L2, . . . ,Lk, respectively, such that the following

properties hold:

(i) The label sets Lρ,L1,L2, . . . ,Lk partition X ∪ {ρ}.
(ii) For all i ∈ {ρ, 1, 2, . . . , k}, Si

∼= T |Li and Si
∼= T ′|Li.

(iii) The trees in {T (Li) : i ∈ {ρ, 1, 2, . . . , k}} and {T ′(Li) : i ∈ {ρ, 1, 2, . . . , k}} are vertex-disjoint

rooted subtrees of T and T ′, respectively.

We sometimes refer to the component Sρ of F as the root component of F . To illustrate, consider the

two trees T and T ′ in Figure 8. Viewing the root of each of T and T ′ as an extra vertex ρ adjoined to

the original root as described above, the restrictions of T (and T ′) to the label sets {ρ, a, d}, {b}, and

{c}, respectively, are the components of an agreement forest of T and T ′.

To make the connection between hybridization networks and agreement forests, we need to extend

the definition of an agreement forest. This extension allows for the biological constraint that species

cannot inherit genetic material from their own descendants. Let GF be the directed graph whose vertex

set is F and for which (Si,Sj) is an arc precisely if i 6= j and

(I) the root of T (Li) is an ancestor of the root of T (Lj) or

(II) the root of T ′(Li) is an ancestor of the root of T ′(Lj).

We say that F is acyclic precisely if GF is acyclic. If F is acyclic and it has the smallest number of

components amongst all such forests of T and T ′, then F is a maximum-acyclic-agreement forest of T

and T ′, in which case we denote |F| − 1 by ma(T , T ′).

The minimum number h(T , T ′) of hybridization events and the size of a maximum-acyclic-agreement

forest of T and T ′ are related through the following theorem [1].

Theorem 41 Let T and T ′ be two rooted binary phylogenetic X-trees. Then

h(T , T ′) = ma(T , T ′).

We now define an ordering of an acyclic-agreement forest which will be used as an input to the

algorithm TemporalHybrid. This algorithm constructs a temporal hybridization network if one exists

by iterating through such an ordering. For an acyclic-agreement forest F , a tuple O = (Sρ,S1,S2, . . . ,Sk)

15

is an ordering of the components of F if, for each i, the vertex Si has indegree 0 in the graph obtained

from GF by deleting the vertices Sρ,S1,S2, . . . ,Si−1 and their incident arcs. Since F is acyclic, such an

ordering always exists.

Although not explicitly stated in [1], one direction of Theorem 41 is essentially established by proving

that, if N is a hybridization network on X that displays T and T ′, then there is an acyclic-agreement

forest F for T and T ′ such that |F| ≤ h(N) + 1. Intuitively, one takes N and iteratively cuts off rooted

subtrees by deleting hybridization vertices and their three incident arcs. By viewing the root of N as a

vertex at the end of a pendant arc adjoined to the original root, we obtain an acyclic-agreement forest F

of T and T ′, and so |F|− 1 ≤ h(N). Now, if we extend their argument and suppose that N is temporal,

then we can obtain an acyclic-agreement forest for T and T ′ as follows. First, select a vertex v that

either (i) is a hybridization vertex and, except for v itself, its parents have no hybridization vertex as

a descendant or (ii) is a tree vertex whose parent is a tree vertex that has no hybridization vertex as a

descendant. Now delete v and its three incident arcs if v is a hybridization vertex or delete the parent

arc of v if v is a tree vertex, and contract any non-root degree-2 vertex. Repeating this process so that

every hybridization vertex is selected, and then reversing the order of the selections, we eventually obtain

an ordering of an acyclic-agreement forest for T and T ′. Given an ordering O of an arbitrary acyclic-

agreement forest F of two rooted binary phylogenetic X-trees, we say that a temporal hybridization

network N preserves O if O can be obtained from N in the above way.

4.2 The algorithm TemporalHybrid

In this section, we present the algorithm TemporalHybrid. This algorithm takes two rooted binary

phylogenetic X-trees T and T ′, and an ordering O of an acyclic-agreement forest F of T and T ′ as

input, and outputs either

(i) a temporal hybridization network on X that displays T and T ′, and preserves O, or

(ii) a statement indicating that there is no such network.

Baroni et al. [2], have previously presented a similar algorithm. Called HybridPhylogeny, this algo-

rithm has the same input as TemporalHybrid but without an ordering O of F . The task for Hybrid-

Phylogeny is simply to construct one of potentially many hybridization networks that display T and

T ′. However, in doing so, there is no guarantee that the resulting network is temporal. The correctness

of TemporalHybrid is established after some remarks following the description of the algorithm.

Algorithm: TemporalHybrid(T , T ′,O)

Input: Two rooted binary phylogenetic X-trees T and T ′, and an ordering O = (Sρ,S1,S2, . . . ,Sk) of

an acyclic-agreement forest F for T and T ′.

Output: A temporal hybridization network on X with at most k hybridization vertices that displays T
and T ′ and preserves O, or a statement indicating that there is no such network.

1. For each i ∈ {1, . . . , k}, regard ρi as the label of an extra vertex adjoined to the original root of Si

by an additional edge.

2. Set N0 = Sρ, and set i = 1.

3. Attach Si to Ni−1 via at most two new arcs. Each new arc joins the vertex labeled ρi to a new vertex

which subdivides an arc of Ni−1. The subdivided arcs e = (u, v) and e′ = (u′, v′) are chosen so that

(i) the resulting network displays T |(L(Ni−1)∪L(Si)) and T ′|(L(Ni−1)∪L(Si)), where L(Ni−1) =

L(Sρ) ∪ L(S1) ∪ · · · ∪ L(Si−1), and

16

(ii) no element of {ρ1, ρ2, . . . , ρi−1} is a descendant of either v or v′ and, if e 6= e′, then e and e′ are

not on the same path from the root of Ni−1 to one of its leaves.

Set Ni to be the resulting network. If there is no such attachment for Si, then stop and return there

is no temporal hybridization network on X that displays T and T ′, and preserves O.

4. If i = k, remove the arc incident with the vertex labeled ρ and remove all labels in {ρ, ρ1, ρ2, . . . , ρk}
from Nk, contract any resulting degree-0 and degree-2 vertices apart from the root, and return the

obtained network. If i < k, increment i by 1 and return to Step 3.

Remarks.

1. If N0 consists of an isolated vertex labeled ρ, a slight complication arises in Step 3 of the algorithm

since no arc can be subdivided by a new vertex. In this case, S1 is adjoined to N0 by adding precisely

one new arc that joins the vertex labeled ρ1 with the vertex labeled ρ.

2. For all Si ∈ F , the algorithm TemporalHybrid potentially checks each arc of Ni−1 to decide

whether Si can be appropriately attached to Ni−1. Thus, the running time of the algorithm is at

most O(kn), where n = |X|.

3. If F is a maximum-acyclic-agreement forest, then the attachment of a new component Si to Ni−1

always requires two new arcs in Step 3 of the algorithm; otherwise, F is not optimal.

4. If TemporalHybrid returns a temporal hybridization network, then this is the unique such network

on X that displays T and T ′, and preserves O (see Theorem 42).

We next prove the correctness of TemporalHybrid. In doing this, we additionally show that if the

algorithm returns a hybridization network, then this network is unique relative to the ordering of O.

Theorem 42 Let T and T ′ be two rooted binary phylogenetic X-trees, and let O be an ordering of an

acyclic-agreement forest F for T and T ′ with |F| − 1 = k. Then

(i) TemporalHybrid returns a temporal hybridization network N that displays T and T ′ with h(N) ≤ k

and that preserves O if there exists such a network, or

(ii) TemporalHybrid returns a statement indicating that there is no such network.

Moreover, if TemporalHybrid returns a temporal hybridization network, then, up to isomorphism, this

is the unique network with the properties in (i).

Proof Without loss of generality, let O = (Sρ,S1,S2, . . . ,Sk). The proof is by induction on k. If k = 0,

then Sρ
∼= T ∼= T ′ and the theorem trivially holds. Now assume that k > 0 and that the theorem

holds for all orderings of all acyclic-agreement forests with at most k components of two rooted binary

phylogenetic trees. Let T1 be the rooted binary phylogenetic tree T |(X − L(Sk)), and let T ′
1 be the

rooted binary phylogenetic tree T ′|(X −L(Sk)). Since Sk is the last coordinate in O, the trees T1 and T ′
1

can also be obtained from T and T ′, respectively, by deleting a single edge and contracting the resulting

degree-2 vertex. Let F1 = F−{Sk}. As O is an ordering of F , it follows that O1 = (Sρ,S1,S2, . . . ,Sk−1)

is an ordering of F1. Now observe that the workings of TemporalHybrid applied to (T1, T ′
1 ,O1) and

applied to (T , T ′,O) up to considering Sk are identical. This observation is used in the rest of the proof.

Since |O1| < |O|, it follows by the induction assumption that TemporalHybrid(T1, T
′
1 ,O1) either

returns, up to isomorphism, a unique temporal hybridization network, Nk−1 say, that displays T1 and

T ′
1 and preserves O1, or returns a statement indicating that there is no such network. First suppose

that TemporalHybrid(T1, T
′
1 ,O1) returns the latter. If there is a temporal hybridization network that

displays T and T ′, and preserves O, let v be the vertex of N that corresponds to the root of Sk. Then by

17

deleting v and its incident arcs or the parent arc of v, depending on whether v is a hybridization vertex or

a tree vertex, respectively, and contracting any resulting degree-2 vertices apart from the root, we have

a temporal hybridization network that displays T1 and T ′
1 , and preserves O1; a contradiction. Thus, if

TemporalHybrid(T , T ′,O) returns a statement that there is no such network prior to considering Sk,

then it returns correctly. Therefore, we may suppose that TemporalHybrid(T1, T
′
1 ,O1) returns Nk−1.

By the observation at the end of the last paragraph, this means that Nk−1 is constructed immediately

prior to considering Sk in TemporalHybrid(T , T ′,O).

If TemporalHybrid(T , T ′,O) returns a statement indicating that there is no appropriate network,

then, because of the uniqueness of Nk−1 and the fact that (i) and (ii) in Step 3 of the algorithm are

necessary conditions for the placement of Sk, the algorithm performs correctly. On the other hand, if

TemporalHybrid(T , T ′,O) returns a network N , it follows by (i) and (ii) in Step 3 that N displays

T and T ′, and N is temporal and preserves O. Furthermore, let e = (u, v) and e′ = (u′, v′) denote the

arcs of Nk−1 that are subdivided in the attachment of Sk. By (ii) in Step 3, no hybridization vertex is a

descendant of v or v′, so the choice of e and e′ is unique. By the uniqueness of Nk−1, it follows that N
is the unique temporal hybridization network that displays T and T ′, and preserves O. Note that this

argument also holds if e = e′ in which case Sk is attached by a single arc. This completes the proof of

the theorem.

We saw earlier that, for two rooted binary phylogenetic X-trees, there may not exist a temporal

hybridization network on X that displays both trees. In general, how does one decide such an outcome

for two rooted binary phylogenetic X-trees T and T ′? Of course, by considering all orderings of all

acyclic-agreement forests for T and T ′, we can repeatedly use TemporalHybrid to decide whether or

not such a hybridization network exists. While still exponential in time, we can do much better than

this by only considering certain orderings and certain forests, as shown in the next proposition.

For two rooted binary phylogenetic X-trees T and T ′, an acyclic-agreement forest F =

{Sρ,S1, . . . ,Sk} of T and T ′ is trivial if |L(Sρ)| = 3 and each of S1, . . . ,Sk consists of an isolated

vertex. Provided Sρ is the first coordinate, any (k + 1)−tuple of F is an ordering of F . The next propo-

sition shows that it is sufficient to consider each such ordering of F to decide whether or not there exists

a temporal hybridization network that displays T and T ′.

Proposition 43 Let T and T ′ be two rooted binary phylogenetic X-trees, and let |X| = n. Deciding

whether there is a temporal hybridization network on X that displays T and T ′ takes at most time

O(n! · p(a)), where p(a) is the polynomial running time of the algorithm TemporalHybrid.

Proof Suppose there is a temporal hybridization network N on X that displays T and T ′. Let X =

{a1, a2, . . . , an}. We next construct an ordering of a trivial forest of T and T ′, that is preserved by N .

Select an element of X so that its parent is a tree vertex and does not have a hybridization vertex as

a descendant. If this is not possible, then, as N is acyclic, there exists a hybridization vertex whose

child is an element of X and whose parents have no hybridization vertex as a descendant. Without

loss of generality, we may assume that the selected element is an. If the parent of an is a tree vertex,

then delete the parent arc of an and contract the resulting degree-2 vertex. Since the parent of an

has no hybridization vertex as a descendant, the resulting network is again a hybridization network. If

the parent of an is a hybridization vertex, then delete the parent vertex of an and its three incident

arcs, and contract the resulting degree-2 vertices. By property (iv) in the definition of a reticulation

network, it is easily checked that the arcs incident with the contracted degree-2 vertices are tree arcs,

and thus, the resulting network is again a hybridization network. Furthermore, in both cases, the resulting

hybridization network is temporal as N is temporal. Selecting another vertex and continuing in this way,

we eventually select (in order) the vertices an, an−1, . . . , a3 say. This gives a trivial forest F of T and

18

Table 1 Results for the Poaceae data set.

Pairwise combination Hybridization

number h(T , T ′)
MAAFsa #MAAFs with a

proper root

component

ndhF phyB 14 2268 0
ndhF rbcL 13 48 0
ndhF rpoC2 12 27 0
ndhF waxy 9 396 18
phyB rbcL 4 4 4
phyB rpoC2 7 1 0
phyB waxy 3 6 6
phyB ITS 8 9 9
rbcL rpoC2 13 9 0
rbcL waxy 7 35 0

rpoC2 waxy 1 1 1
waxy ITS 8 18 0

a Abbreviation for maximum-acyclic-agreement forests.

T ′, where the label set of the root component is {ρ, a1, a2} and the remaining components consist of

isolated vertices labeled a3, a4, . . . , an. Furthermore, the tuple beginning with the root component and

followed (in order) by the components whose label sets are {a3}, {a4}, . . . , {an} is an ordering O of F

and, by construction, N preserves O. Now, by Theorem 42, calling TemporalHybrid(T , T ′,O) returns

N . Thus to decide whether or not there is a temporal hybridization network on X that displays T and

T ′, it suffices to consider all possible acyclic-agreement forests of T and T ′ that are trivial. Since there

are
`n
2

´

· (n − 2)! = 1
2n! such forests, the proposition now follows.

While the above approach is not fast because of the number of orderings to consider, we can do much

better in practice if we restrict our attention to maximum-acyclic-agreement forests. We do this in the

next section.

4.3 Minimal temporal hybridization networks

To provide an indication of the significance of hybridization, biologists are often interested in reconstruct-

ing (temporal) hybridization networks that explain the ancestral history of the species under considera-

tion and simultaneously minimize the number of hybridization events. This minimum number provides

a lower bound on the number of such events, thus it gives an indication of the role that hybridization

has had on the evolution of the present-day species. In this section, we consider an approach to this task

with the view of constructing hybridization networks that are temporal.

Let T and T ′ be two rooted binary phylogenetic X-trees. A (temporal) hybridization network N

that displays T and T ′ is minimal if h(N) = ma(T , T ′). Since we are using a combinatorial framework

to calculate the number of hybridization events, it is likely that there exist several maximum-acyclic-

agreement forests for T and T ′. For example, for the grass (Poaceae) data set that has been analyzed

in [3], the associated gene loci for 12 gene tree pairs, the minimum number of hybridization events, and

the number of maximum-acyclic-agreement forests are given in Table 1. This data set was originally

provided by [9] and contains DNA sequences for the six genetic loci ndhF, phyB, rbcL, rpoC2, waxy, and

ITS. For each locus, up to 65 taxa were sequenced and a maximum likelihood gene tree was reconstructed

(for details, see [3] and references therein).

19

A natural way to decide whether there exists a minimal temporal hybridization network for two rooted

binary phylogenetic X-trees T and T ′ is to apply TemporalHybrid to all orderings of each maximum-

acyclic-agreement forest for T and T ′. However, since the number of maximum-acyclic-agreement forests

can still be quite large (see Table 1), we next establish a quick test that significantly reduces the number

of such forests that one needs to consider.

To describe the test, we need one further definition. Let F be an acyclic-agreement forest for two

rooted binary phylogenetic X-trees T and T ′, and let Sρ be the root component of F . If the roots of

T (Lρ − {ρ}) and T ′(Lρ − {ρ}) coincide with the original roots of T and T ′, respectively, Sρ is said to

be proper.

Proposition 44 Let T and T ′ be two rooted binary phylogenetic X-trees, and let F be a maximum-

acyclic-agreement forest of T and T ′ with root component Sρ. Let O be an ordering of F. If Sρ is not

proper, then TemporalHybrid applied to (T , T ′,O) returns a statement indicating that there is no

temporal hybridization network on X that displays T and T ′, and preserves O. In particular, there is no

minimal temporal hybridization network on X that displays T and T ′, and preserves O.

Proof Suppose that Sρ is not proper, and consider TemporalHybrid applied to (T , T ′,O). If this

application returns a hybridization network N , then, as F is maximum, N has exactly |F|−1 hybridiza-

tion vertices and so, at each iteration i, two (distinct) new arcs are used to adjoin Si to Ni−1. Now, at

some iteration i, the component Si gets adjoined to Ni−1 via an arc that is incident with a new vertex

that subdivides the arc leaving the vertex labeled ρ. But this means that wherever the second new arc

is placed to adjoin Si to Ni−1 we contradict (ii) in Step 3. Thus, by Theorem 42, there is no temporal

hybridization network on X that displays T and T ′, and preserves O. The proposition now follows.

By checking which maximum-acyclic-agreement forests for a given pair of gene trees have a proper

root component, the number of such forests that can yield a minimal temporal hybridization network

can be reduced significantly. For example, in reference to Table 1, the highest number of maximum-

acyclic-agreement forests for a pair of trees is 2268. However, as shown in the last column, none of these

forests has a proper root component. Hence, for the first pair of gene trees (ndhF and phyB) in this

table, there is no minimal temporal hybridization network that displays the two trees. Moreover, for

the 12 analyzed gene tree pairs of the grass data set, at most 18 maximum-acyclic-agreement forests

need to be checked in order to determine whether any associated ordering leads to a minimal temporal

hybridization network for the gene trees under consideration. In general, we can check in time O(rk! ·

p(a)) if a minimal temporal hybridization network exists, where r is the number of maximum-acyclic-

agreement forests (with a proper root component) for a pair of trees, each such forest consists of k + 1

components, and p(a) is the polynomial running time of the algorithm TemporalHybrid. Note that k!

is an upper bound on the number of orderings that are associated with a maximum-acyclic-agreement

forest containing k+1 components. Furthermore, we are assuming here that we have the list of maximum-

acyclic-agreement forests with a proper root component. Such a list can be found by using the recently

implemented extended version (unpublished) of the fixed-parameter algorithm HybridInterleave [7,

8]. Despite the theoretical exponential time of calculating this list, the practical running times presented

in [8] essentially show that computing maximum-acyclic-agreement forests is remarkably quick for many

biological instances.

5 Summary

In the first part of this paper, we showed that AddTaxa—the decision problem associated with deter-

mining the minimum number of taxa to add to a reticulation network so that the resulting network has

20

a temporal representation—is an NP-complete problem. However, in establishing the result, this deter-

mination comes down to finding the minimum number of vertices to delete so that the associated critical

graph is acyclic. In practice, we expect this graph to be relatively small for many biological instances

and thus even brute-force algorithms might be feasible.

In the second part of this paper, we presented the polynomial-time algorithm TemporalHybrid.

This algorithm takes as input two rooted binary phylogenetic X-trees T and T ′ and an ordering O of an

associated acyclic-agreement forest, and outputs a temporal hybridization network that displays T and

T ′ and preserves O, or the statement that no such network exists. As many biological studies consider

the reconstruction of minimal hybridization networks to provide an indication of the significance of

hybridization in evolution, we focused our attention to the potentially exponential-time task of finding a

temporal hybridization network whose number of hybridization vertices is minimized in the last section.

By using a simple and quick check prior to the application of TemporalHybrid, we showed that—

applied to a grass data set—the number of maximum-acyclic-agreement forests that need to be considered

for finding a minimal temporal hybridization network is significantly reduced and that most inferred

minimal hybridization networks are not temporal.

6 Acknowledgements

We thank two anonymous reviewers for their helpful comments. S.L. was supported by NSF grants SEI-

BIO 0513910 and IIS-0803564, and the New Zealand Marsden Fund. C.S. thanks the New Zealand Mars-

den Fund for supporting this work. T.S. was funded by the Deutsche Forschungsgemeinschaft through the

graduate program “Angewandte Algorithmische Mathematik” at the Munich University of Technology.

All authors thank the Allan Wilson Centre for Molecular Ecology and Evolution for its support.

References

1. M. Baroni, S. Grünewald, V. Moulton, and C. Semple. Bounding the number of hybridization events for a
consistent evolutionary history. Journal of Mathematical Biology, 51:171–182, 2005.

2. M. Baroni, C. Semple, and M. Steel. Hybrids in real time. Systematic Biology, 44:46–56, 2006.
3. M. Bordewich, S. Linz, K. John, and C. Semple. A reduction algorithm for computing the hybridization

number of two trees. Evolutionary Bioinformatics, 3:86–98, 2007.
4. M. Bordewich and C. Semple. Computing the minimum number of hybridization events for a consistent

evolutionary history. Discrete Applied Mathematics, 155:914–928, 2007.
5. G. Cardona, F. Rossello, and G. Valiente. Comparison of tree-child phylogenetic networks. IEEE/ACM Trans-

actions on Computational Biology and Bioinformatics, 6:552–569, 2009.
6. J. Chen, Y. Liu, S. Lu., B. O’Sullivan, and I. Razgon. A fixed-parameter algorithm for the directed feedback

vertex set problem. In: Proceedings of the Fourtieth Annual ACM Symposium on Theory of Computing,
pages 177–186, 2008.

7. J. Collins. Rekernelisation Algorithms in Hybrid Phylogenies. MSc Thesis, University of Canterbury, Christ-
church, New Zealand, 2009.

8. J. Collins, S. Linz, and C. Semple. Quantifying hybridization in realistic time, submitted.
9. Grass Phylogeny Working Group. Phylogeny and subfamilial classification of the grasses Poaceae. Annals of

the Missouri Botanical Garden, 88:373–457, 2001.
10. J. Hein, T. Jiang, L. Wang, and K. Zhang. On the complexity of comparing evolutionary trees. Discrete

Applied Mathematics, 71:153–169, 1996.
11. G. Jin, L. Nakhleh, S. Snir, and T. Tuller. Efficient parsimony-based methods for phylogenetic network

reconstruction. Bioinformatics, 23:e123–e128, 2007.
12. R. M. Karp. Reducibility among combinatorial problems. In: Complexity of Computer Computations, pages

85–103. Plenum Press, 1972.
13. W. Maddison. Gene trees in species trees. Systematic Biology, 46:523–536, 1997.
14. V. Makarenkov, D. Kevorkov, and P. Legendre. Phylogenetic Network Construction Approaches. In: Applied

Mycology and Biotechnology. International Elsevier Series 6, Bioinformatics, pages 61–97. 2006.

21

15. J. Mallet. Hybridization as an invasion of the genome. Trends in Ecology and Evolution, 20:229–237, 2005.
16. G. Martinsen, T. Whitham, R. Turek, and P. Keim. Hybrid populations selectively filter gene introgression

between species. Evolution, 55:1325–1335, 2001.
17. B. M. E. Moret, L. Nakhleh, T. Warnow, C. R. Linder, A. Tholse, A. Padolina, J. Sun, and R. Timme.

Phylogenetic networks: modeling, reconstructibility, and accuracy. Transactions on Computational Biology
and Bioinformatics, 1:13–23, 2004.

18. H. Ochman, J. Lawrence, and E. Groisman. Lateral gene transfer and the nature of bacterial innovation.
Nature, 405:299–304, 2000.

19. D. Wolf, N. Takebayashi, and L. Rieseberg. Predicting the risk of extinction through hybridization. Conser-
vation Biology, 15:1039–1053, 2001.

