
RECONSTRUCTING MINIMAL ROOTED TREES

CHARLES SEMPLE

Abstract. For a set T of rooted binary leaf-labelled trees, we present an
algorithm that finds all of the minor-minimal trees that are compatible with
T . The running time of this algorithm is polynomial up to the number of trees
with this property. This type of problem arises in several areas of classification,
particularly evolutionary biology.

1. Introduction

Let T be a leaf-labelled tree. If T has exactly one distinguished non-pendant
vertex (called the root), while the remaining non-pendant vertices each have degree
at least three, then T is called a rooted phylogenetic tree. A fundamental task in
evolutionary biology, and in other areas of classification, is to combine a collection
of rooted phylogenetic trees (the input trees) into a single rooted phylogenetic tree
(the output tree) whose leaf set consists of the union of the leaf sets of the input
trees. If it is possible, we would like the output tree to “display” each of the input
trees. In general, however, the set of input trees will carry conflicting information,
in which case, no output tree can possibly display each of the input trees.

In this paper, we consider the case where the set of input trees carry no con-
flicting information. Let T be a rooted phylogenetic tree, and let A be a subset
of the leaf set of T . Consider the minimal subtree T (A) of T containing A. Let
T |A denote the rooted phylogenetic tree obtained from T (A) by distinguishing the
vertex of T (A) closest to the root of T , and by suppressing all vertices with de-
gree two except for the distinguished vertex. We call T |A the subtree of T induced
by A. For example, Figure 1(i) shows a rooted phylogenetic tree T with leaf set
{a, b, c, d, e, f}, and Figure 1(ii) shows the subtree of T induced by {b, c, e}. For a
set T of rooted phylogenetic trees, a rooted phylogenetic tree T is compatible with
T if every element of T is an induced subtree of T , in which case T is consistent.
If no such tree exists, then we say that T is inconsistent.

A rooted tree is binary if every non-pendant vertex has degree three except for
the root which has degree two. A rooted triple is a rooted binary phylogenetic tree
on three leaves. The rooted triple with leaves x, y, and z is denoted by xy|z if the

Date: June 24, 1999.
1991 Mathematics Subject Classification. 05C05, 92D15.
Key words and phrases. Rooted phylogenetic tree, tree compatibility.
This work was supported by the grant UOC-MIS-003 to Mike Steel from the New Zealand

Marsden Fund.

1

2 CHARLES SEMPLE

a b c d e f

(i) T

b c e

(ii) T |{b, c, e}

Figure 1. (i) A rooted phylogenetic tree T . (ii) An induced sub-
tree of T .

path from x to y does not intersect the path from z to the root. (Note that we make
no distinction between the rooted triples xy|z and yx|z.) Thus the rooted triple
in Figure 1(ii) is denoted by bc|e. As a consequence of a result by Aho et al. [1],
determining the consistency of a set of rooted triples can be done in polynomial time
(see [5] for a faster method). Indeed, if such a set is consistent, then they construct
in polynomial time a particular rooted phylogenetic tree that is compatible with this
set. This result is not as restrictive as it may first appear. Given a rooted binary
phylogenetic tree T , a set R of rooted triples can be constructed in polynomial time
such that T is the only rooted binary phylogenetic tree compatible with R [4, 6, 7].
Thus the result in [1] extends to determining the consistency of a set of rooted
binary phylogenetic trees in polynomial time and, moreover, constructing a rooted
phylogenetic tree compatible with this set if it is consistent.

For a consistent set R of rooted triples, now consider the problem of determining
all rooted phylogenetic trees that are compatible R. It is easily seen that the
number of rooted phylogenetic trees with this property maybe exponential in |R|
(see Example 4.7). However, two independently published methods provide us with
a way of outputting each of these trees in polynomial time. The first method is
due to Constantinescu and Sankoff [4], and the second method is due to Ng and
Wormald [6]. The latter method is more general in that the input set may contain
fans, rooted non-binary phylogenetic trees on three leaves, as well as rooted triples,
which in turn means that this method finds all rooted phylogenetic trees compatible
with a consistent set of rooted phylogenetic trees. (Determining the consistency of
a set of rooted triples and fans can be done in polynomial time [6].)

In this paper, we continue this study of rooted phylogenetic trees that are com-
patible with a consistent set of rooted triples. A vertex of a rooted tree is said to be
internal if it has degree not equal to one, and an edge of a rooted tree is said to be
internal if both its end-vertices are internal. A rooted phylogenetic tree T that is
compatible with a set T of rooted phylogenetic trees is minimal (with respect to T)
if no internal edge of T can be contracted so that the resulting tree is also compat-
ible with T . As an example, consider the consistent set R = {ab|e, cd|e, cd|a, cf |d}
of rooted triples. The two rooted phylogenetic trees in Figure 2 are both compatible
with R and, moreover, minimal with respect to R.

RECONSTRUCTING MINIMAL ROOTED TREES 3

efdb ca f d eb c a

(i) AR (ii) T

Figure 2. Two minimal rooted phylogenetic trees compatible
with R = {ab|e, cd|e, cd|a, cf |d}.

This paper has two purposes. The first is to describe an algorithm that finds,
for a consistent set R of rooted triples, the set T min

R of all minimal rooted phy-
logenetic trees compatible with R. Up to the cardinality of T min

R , this algorithm
runs in polynomial time, that is, each tree in T min

R is constructed in polynomial
time. Since a rooted binary phylogenetic tree can be defined by a set of rooted
triples in polynomial time, this result extends to a consistent set of rooted binary
phylogenetic trees. The motivation for determining the set T min

R is that all of the
information provided by the set TR of all rooted phylogenetic trees compatible with
R is contained in T min

R since TR can be (easily) deduced from T min
R by “partially

resolving” each of the internal vertices of every tree of T min
R in all possible ways.

The second purpose of this paper is the following. Let R be a consistent set of
rooted triples, and let TR denote the set of all rooted phylogenetic trees compatible
with R. Let AR denote the unique tree outputted by the algorithm described by
Aho et al. [1] whose input is R. Note that AR is the “particular tree” mentioned
above and is compatible with R. The algorithm that constructs AR is fundamen-
tal in determining TR (see [4, 6]). In this paper, we give a characterization of
AR with respect to the other members of TR based on the clusters of AR. This
characterization is stated as Theorem 3.1.

The paper is organized as follows. In the next section, we present some additional
preliminaries. Section 3 contains the statement of Theorem 3.1 and its proof. In
Section 4, we present our method, called AllMinTrees, for finding all minimal
rooted phylogenetic trees compatible with a consistent set of rooted triples, and
show that each tree is outputted from AllMinTrees in polynomial time.

2. Preliminaries

In this section, we state some further terminology and notation that will be
needed throughout the paper. If G = (V, E) is a graph, then we denote the subgraph
of G induced by a subset V ′ of V by G[V ′].

Clusters

Let T be a rooted phylogenetic tree having leaf set X . An element of X is
a descendant of a vertex v of T if the path from this element to the root of T

4 CHARLES SEMPLE

passes through v. A cluster of T is a subset of X in which all the elements are the
descendants of some particular vertex of T . If this vertex is v, then we denote this
cluster by Cv. The set X is always a cluster of T ; all other clusters of T are said
to be proper. We denote the collection of all clusters of T by C(T). If a and b are
elements of X , and u is a vertex of T such that Cu is the (unique) minimal cluster
of T containing a and b, then u is the least common ancestor of a and b.

Rooted triples, a set R of rooted triples, and the tree AR

Let T be a rooted phylogenetic tree. We let L(T) denote the leaf set of T .
Furthermore, we let r(T) denote the set of rooted triples of T , that is, the set
whose members are precisely the binary subtrees of T induced by a 3–element
subset of L(T).

Let R = {R1, R2, . . . , Rk} be a set of rooted triples. The set
⋃k

i=1 L(Ri) is said
to be the leaf set of R. We shall denote by TR the set of all rooted phylogenetic trees
compatible with R and denote by T min

R the set of all minimal rooted phylogenetic
trees compatible with R. Note that TR, and therefore T min

R , is non-empty precisely
when R is consistent.

Let R be a set of rooted triples, and let S be a subset of the leaf set of R.
We denote by R(S) the subset of rooted triples of R whose leaves are completely
labelled by elements of S. We denote by SR the graph that has vertex set S and
an edge joining two vertices a and b precisely if there is a rooted triple in R(S) of
the form ab|c. This graph will be fundamental throughout this paper.

Let R be a set of rooted triples having leaf set S. The importance of SR is that,
provided R is consistent, the tree AR described by Aho et al. [1] can be recursively
constructed from subgraphs of SR [2]. For completeness, we briefly outline how
this can be done. Firstly, construct the graph SR. If |S| > 2 and this graph has
exactly one component, then R is not consistent and a statement to this effect is
returned. Otherwise, the vertex sets S1, S2, . . . , Sk of the components of SR are
the maximal clusters of AR (provided it turns out that R is consistent). Now, for
each i ∈ {1, 2, . . . , k}, we construct the graph (Si)R. If, for some i, |Si| > 2 and
(Si)R consists of a single component, then R is inconsistent and a statement to
this effect is returned. Otherwise, the vertex sets of the components of (Si)R are
the maximal clusters of AR|Si (provided it turns out that R is consistent). This
process continues in the obvious way eventually returning either the statement that
R is inconsistent, or AR. As an example, suppose that R = {ab|e, cd|e, cd|a, cf |d}.
Letting S = {a, b, c, d, e, f}, the graph SR is shown in Figure 3(i) and, noting that
R is consistent, the tree AR is shown in Figure 2(i).

3. A Characterization of AR

Let R be a consistent set of rooted triples. In this section, we present Theo-
rem 3.1, a characterization of AR with respect to the other trees in TR based on
the clusters of AR. Another characterization of AR is given by [3, Theorem 6.2]
which says that AR is the “Adams Consensus” tree for TR.

RECONSTRUCTING MINIMAL ROOTED TREES 5

Theorem 3.1. Let R be a consistent set of rooted triples, and let T be a member
of TR. Then T is isomorphic to AR if and only if, for every member T ′ of TR,
the mapping φ : C(T) → C(T ′), defined by φ(C) = C′, where C′ is the (unique)
minimal cluster of T ′ containing C, satisfies the following property:

if C1, C2 ∈ C(T) and C1 ⊂ C2, then φ(C1) ⊂ φ(C2).(1)

Proof. Since the labelling of the internal vertices, other than the root, of a rooted
phylogenetic tree are unimportant, we shall treat a tree that is isomorphic to AR
as being equal to AR in the proof of Theorem 3.1. Suppose that T is isomorphic
to AR. Treating T as being equal to AR, suppose that C1 and C2 are members of
C(AR) with the property that C1 ⊂ C2. To prove the “only if” part of the theorem,
it is easily seen that we may also suppose C1 and C2 have the additional property
that there is no cluster C3 in C(AR) such that C1 ⊂ C3 ⊂ C2.

Let T ′ be a member of TR, and let φ be the map φ : C(AR) → C(T ′) as defined in
the statement of Theorem 3.1. Suppose, to the contrary, that φ(C1) = φ(C2). Then
there is at least two distinct maximal clusters of T ′|φ(C2) such that, for each of
these clusters, their intersection with C1 is non-empty. Consider the graph (C2)R.
Since C1 is a maximal cluster of AR|C2, the set C1 is the vertex set of exactly one
component of (C2)R. Thus there must be elements, a and b say, of C1 such that a
and b are in distinct maximal clusters of T ′|φ(C2) and ab|c is a rooted triple of R,
where c is an element of C2. But then, as φ(C1) = φ(C2), it follows that ab|c cannot
be a rooted triple of T ′; a contradiction. Hence φ(C1) ⊂ φ(C2), thus completing
the proof of the necessary part of the theorem.

Now suppose that T satisfies the “if” condition in the statement of Theorem 3.1.
Then there is map φ2 : C(T) → C(AR) defined by φ2(C) = D, where D is the
minimal cluster of AR containing C, that satisfies property (1) with “φ” replaced
by “φ2”. Let φ1 denote the map φ1 : C(AR) → C(T) that is defined in the canonical
way to which φ is defined in the statement of the theorem. From above, φ1 satisfies
property (1) with “T ” and “φ” replaced by “AR” and “φ1”, respectively. We prove
the converse of the theorem, by showing that C(T) = C(AR).

We first show that C(AR) is a subset of C(T). Let C′ = {C1, C2, . . . , Cj} be a
maximal subset of C(AR) with the property that, for all i ∈ {2, 3, . . . , j}, Ci−1 is a
proper subset of Ci. Then Cj is equal to the leaf set of R, and therefore φ1(Cj) = Cj

and φ2(φ1(Cj)) = Cj . We now show that if φ1(Ci) = Ci and φ2(φ1(Ci)) = Ci

for some i, then φ1(Ci−1) = Ci−1 and φ2(φ1(Ci−1)) = Ci−1. Thus showing by
induction that every member of C′ is a member of C(T), which in turn implies that
C(AR) ⊆ C(T). Now φ1(Ci−1) ⊂ φ1(Ci), and so

φ2(φ1(Ci−1)) ⊂ φ2(φ1(Ci)).(2)

By combining (2) with the induction assumption, we deduce that

Ci−1 ⊆ φ1(Ci−1) ⊆ φ2(φ1(Ci−1)) ⊂ φ2(φ1(Ci)) = Ci.(3)

Since C′ is maximal, it follows from (3) that φ2(φ1(Ci−1)) = Ci−1, which in turn
implies from (3) that φ1(Ci−1) = Ci−1 as required.

6 CHARLES SEMPLE

By interchanging the roles of AR and T , and applying the argument of the
previous paragraph, we deduce that C(T) ⊆ C(AR). Hence C(T) = C(AR) as
required. �

An attractive property of AR for a consistent set R of rooted triples is stated
as Corollary 3.2. For a consistent set R of rooted triples, let cl(R) denote the set⋂

T∈TR r(T). The set cl(R) is called the closure of R. The notion of a closed set
of rooted triples is introduced in [2], where a number of properties of such sets are
established.

Corollary 3.2. Let R be a consistent set of rooted triples. Then AR ∼= Acl(R).

Proof. Clearly, Tcl(R) ⊆ TR. Moreover, if T is a member of TR, then, by the
definition of cl(R), T is a member of Tcl(R), and so TR ⊆ Tcl(R). Hence TR =
Tcl(R). It is now straightforward to deduce using Theorem 3.1 that AR ∼= Acl(R)

as required. �

The next corollary will be useful in describing the strategy of AllMinTrees.

Corollary 3.3. Let R be a consistent set of rooted triples. Let T be a tree com-
patible with R. If C is a maximal cluster of AR, then C is contained in a maximal
cluster of T .

Proof. Suppose, to the contrary, that C is not contained in a maximal cluster of T .
This implies that there must be two maximal clusters of T that have a non-empty
intersection with C. Let S be the leaf set of R. Then the minimal cluster of T
containing C is S. It now follows that we have a contradiction to Theorem 3.1. �

4. The AllMinTrees Algorithm

In this section, we present the algorithm AllMinTrees which outputs the set
of all minimal rooted phylogenetic trees compatible with a consistent set R of
rooted triples when applied to R, and show that each tree that is outputted from
AllMinTrees is constructed in polynomial time. Since determining the consis-
tency of a set of rooted triples can be done in polynomial time and since every
subset of a consistent set of rooted triples is consistent, no generality is loss in re-
stricting the input to AllMinTrees to a set of rooted triples that are consistent.
Throughout this section, the reader may find it useful to refer to Figure 2 and
Example 4.3 which illustrate many of the concepts introduced.

We begin with some preliminaries.

Definition. Let R be a consistent set of rooted triples, and let S be a cluster of a
rooted phylogenetic tree compatible with R. We call the non-empty union of the
vertex sets of some (possibly one), but not all, of the components of SR a merging
of SR. A partition PSR of S is said to be a partition of SR if each part of PSR is a
merging of SR and PSR contains at least two parts. The reason for these definitions
will become apparent by the end of the next two paragraphs.

RECONSTRUCTING MINIMAL ROOTED TREES 7

We now outline a method for outputting all rooted phylogenetic trees compatible
with a consistent set R of rooted triples having leaf set S. The reason for doing
this is that AllMinTrees is based on this method. Recall the construction of AR
described in Section 2. The set TR of all rooted phylogenetic trees compatible with
R can be obtained in the following recursive way. Firstly, construct the graph SR.
Since R is consistent, the number of components of SR is at least two provided
|S| ≥ 2. Let PSR be a partition of SR. Then, from the way in which SR has been
constructed, it is easily seen that PSR is the set of maximal clusters of at least one
tree in TR. Furthermore, it follows by Corollary 3.3 that the set of all maximal
clusters of a tree in TR can be obtained in this way. Note that in constructing AR
the partition of SR considered at this stage is the one in which each part consists
of the vertex set of exactly one component of SR.

For each part of each partition of SR, we repeat this process. For example, let S′

be a part of PSR . Construct S′
R. Since R is consistent, the number of components

of S′
R is at least two provided |S′| ≥ 2. By considering S′

R, it is straightforward
to deduce that, for each member T of TR whose maximal clusters are the parts of
PSR , the maximal clusters of the subtree of T induced by S′ are exactly the parts of
some partition of S′

R. Moreover, by considering the subset R(S′) of rooted triples
of R that are labelled by elements of S′ and applying Corollary 3.3 to R(S′), the
converse also holds. This process continues until all associated graphs consist of
a single vertex. The fact that this method determines all members of TR is also
observed in [6].

Remark. The method just described determines all trees that are compatible with
a set of rooted triples. This method is the basis for the algorithm “AllTrees”
in [6], which outputs all trees compatible with a set containing not only rooted
triples but also fans, and is polynomial time in the size of the output. The objec-
tive in their case is to recognize exactly which further mergings are necessary at
each iteration so that the output trees are compatible with each of the fans, while
maintaining the property that each such desired merging is recognized in polyno-
mial time. We have an analogous, but quite different, objective in constructing
AllMinTrees, which we describe next.

Definition. Let R be a consistent set of rooted triples, and let S be a cluster of
a minimal rooted phylogenetic tree compatible with R. A partition of SR is good
if it is the set of maximal clusters of a minimal rooted phylogenetic tree in T min

R
restricted to S.

From this last definition, it now follows that the above recursive description for
outputting all rooted phylogenetic trees compatible with R can be used to find all
minimal rooted phylogenetic trees compatible with R with one modification: at
each iteration, instead of determining all partitions of SR, one needs to determine
all good partitions of SR as not all partitions of SR realize at least one member of
T min
R . This is the approach used by AllMinTrees. Furthermore, as we desire an

algorithm that outputs each tree in T min
R in polynomial time, we need to be able to

determine in advance the good partitions of SR. Proposition 4.1 is needed for the
proof of Theorem 4.2, the latter providing us with a useful graph-theoretic way of
recognizing all good partitions of SR.

8 CHARLES SEMPLE

Proposition 4.1. Let R be a consistent set of rooted triples. Then AR is a minimal
rooted phylogenetic tree compatible with R.

Proof. Suppose, to the contrary, that AR is not a minimal rooted phylogenetic tree
compatible with R. Then there exists an internal edge e of AR such that AR/e is a
member of TR. Let u and v be the end-vertices of e such that v is in the path from
u to the root of AR. Since Cu ⊂ Cv, it follows by Theorem 3.1 that φ(Cu) ⊂ φ(Cv),
where φ(Cu) and φ(Cv) are the minimal clusters of AR/e containing Cu and Cv,
respectively. But φ(Cu) = φ(Cv); a contradiction. Hence AR is a minimal rooted
phylogenetic tree compatible with R. �

Proposition 4.1 shows that, given a consistent set R of rooted triples, AR is an
element of T min

R . However, in general, AR is not the only tree in T min
R as Figure 2

illustrates.

Theorem 4.2. Let R be a consistent set of rooted triples, and let S be a cluster
of a minimal rooted phylogenetic tree compatible with R. A partition PSR of SR is
good if and only if each part M of PSR satisfies one of the following conditions:

(i) M is the vertex set of exactly one component of SR; or
(ii) M is the union of the vertex sets of at least two components of SR and

the number of components of MR is strictly greater than the number of
components of SR[M].

Proof. Suppose that PSR is a good partition of SR, and that M is not the vertex set
of exactly one component of SR. Then M is the union of the vertex sets of at least
two components of SR. Let T ′ be a minimal rooted phylogenetic tree compatible
with R such that S is a cluster of T ′ and M is a maximal cluster of T ′|S. Assume,
to the contrary, that the number of components of MR is equal to the number of
components of SR[M]. Then there is no pair of elements, a and b say, of M such
that a and b are in separate components of MR, and ab|c is an element of R, where
c ∈ S −M . It follows that the rooted phylogenetic tree T ′/e is compatible with R,
where e is the edge of T ′ incident with the vertices associated with the clusters S
and M of T ′, contradicting the minimality of T ′.

To prove the converse, suppose that each part of PSR satisfies either (i) or (ii).
Let T be an element of T min

R such that S is a cluster of T . By the hypothesis
of Theorem 4.2, there exists such a tree. Let M1, M2, . . . , Mk denote the parts of
PSR . Now let T ′ be the rooted phylogenetic tree obtained from T by replacing T |S
with the rooted phylogenetic tree whose maximal rooted phylogenetic subtrees are
AR(Mi), where i ∈ {1, 2, . . . , k}. By Proposition 4.1, AR(Mi) is a minimal rooted
phylogenetic tree compatible with R(Mi) for all i. Let v denote the vertex of T ′

for which Cv = S, and let u1, u2, . . . , uk denote the vertices of T ′ that are adjacent
to v such that, for all i, v lies on the path from ui to the root of T ′. The converse
of Theorem 4.2 now follows by showing that, for all i, the tree T ′/{ui, v} is not
compatible with R.

RECONSTRUCTING MINIMAL ROOTED TREES 9

Suppose, to the contrary, that T/{ui, v} is compatible with R for some i. Assume
first that Mi satisfies (ii). Then there are two components of (Mi)R whose vertex
sets, S1 and S2 say, are subsets of a vertex set of a component of SR[Mi]. Thus
there must be a rooted triple ab|c in R such that a ∈ S1, b ∈ S2, and c is an element
of S − Mi. But then, as T ′|Mi is isomorphic to AR(Mi), ab|c is not a rooted triple
of T ′/{ui, v}. Hence, in this case, T ′/{ui, v} is not compatible with R.

Now assume that Mi satisfies (i). If |Mi| = 1, then T ′/{ui, v} is not a rooted
phylogenetic tree. Therefore we may assume that |Mi| ≥ 2. Then, as R is consis-
tent, the number of components of (Mi)R is at least two. Thus Mi satisfies (ii),
and so, once again, T ′/{ui, v} is not compatible with R. This completes the proof
of Theorem 4.2. �

In view of Theorem 4.2, we make the following definition.

Definition. Let R be a consistent set of rooted triples, and let S be a cluster of
rooted phylogenetic tree compatible with R. We call a merging of SR good if it
satisfies either (i) or (ii) of Theorem 4.2.

At last we present AllMinTrees. This algorithm has a subroutine called
GoodMergings that is repeatedly used at each iteration to construct an appropri-
ate set of good mergings. The details of this subroutine, including its description,
follows AllMinTrees. Let R be a consistent set of rooted triples, and let S be a
subset of the leaf set of R. Consider the graph SR. Let S1, S2, . . . , Sk denote the
vertex sets of the components of SR. Since R is consistent, k ≥ 2 provided |S| ≥ 2.
Let S∗

R denote the graph obtained from SR by removing, for all i ∈ {1, 2, . . . , k},
those edges in Si whose end-vertices, ai and bi say, have the property that if aibi|c
is a rooted triple in R with c ∈ S, then c is an element of S−Si. For all i, we denote
the vertex sets of S∗

R[Si], the subgraph of S∗
R induced by Si, by Si1, Si2, . . . , Sini

(see Example 4.3). The graph S∗
R is needed for GoodMergings.

Algorithm: AllMinTrees(R, T min
R).

Input: A consistent set R of rooted triples.

Output: The set T min
R of all minimal rooted phylogenetic trees compatible with R.

(1) Set S to be the leaf set of R.
(2) If |S| ≤ 2, then return the rooted tree with the elements of S as leaves.
(3) Otherwise, if |S| > 2, then construct SR and S∗

R. Let S1, S2, . . . , Sk (k ≥ 2)
denote the vertex sets of the components of SR.

(4) Initially set MSR to be the empty set.
(5) Set r1 = r2 = · · · = rk = 1.
(6) Set i to be the least number for which ri = 1, and set ri = 0.
(7) Set Pi = {Si, Si+1, . . . , Sk}.
(8) GoodMergings(Pi,Mi).
(9) Replace MSR with MSR ∪Mi.

(10) If i 6= k, then go to Step 6.
(11) For each element M of MSR , AllMinTrees(R(M), T min

R(M)).

10 CHARLES SEMPLE

(12) For every distinct partition {M1, M2, . . . , Mp} of SR in which each part is an
element of MSR do the following: for each q ∈ {1, 2, . . . , p}, choose a tree in
T min
R(Mq) and make a new tree by attaching the roots of each of these chosen

trees to a new vertex, add the resulting tree to T min
R ; repeat this process for

all possible combinations of trees chosen in this way.
(13) Output T min

R .

Remark. We show in Lemma 4.5 that the set “MSR” in Step 11 of AllMinTrees

is the set of all good mergings of SR. Furthermore, we note here that the set “Mi”
in Step 9 of AllMinTrees is the set of all good mergings of SR that contain Si,
but none of the sets S1, S2, . . . , Si−1.

Before presenting the subroutine GoodMergings, we need to define a matrix
that is used in GoodMergings which enables us to output each tree in T min

R
in polynomial time. Example 4.3 illustrates this definition. Suppose that R is a
consistent set of rooted triples. Let S be a subset of the leaf set of R, and consider
the graphs SR and S∗

R. Let S1, S2, . . . , Sk denote the vertex sets of the components
of SR. Let S′ be a subset of S such that S′ is the union of the vertex sets of some
components of SR. Let P be a partition of S′ such that each part of P is a merging
of SR. Note that, in general, P is not a partition of SR. We now define a 0 − 1
matrix AP associated with P , and the components of SR and S∗

R. Let P∗ denote
the partition of S′ in which each part is an element of

{S11, . . . , S1n1 , S21, . . . , Sknk
}.

The rows of AP are labelled with the parts of P and, respecting the ordering of
the rows, the columns of AP are labelled with the parts of P∗. This labelling
canonically partitions the matrix AP into blocks each consisting of a single row and
whose columns are labelled by the parts of P∗ whose union is a part of P . An
entry of AP with row label M and column label Sinj , for some i, j ∈ {1, 2, . . . , k},
is given a value of 1 precisely if one of the following holds:

(a) there exists a rooted triple ab|c in R(S′) such that a is an element of Sinj ,
b is not an element of Sinj , and c is an element of M ; or

(b) Sinj labels a row of AP and M 6= Sinj .

Otherwise, the entry is given the value of 0. Observe that if there is such a rooted
triple that satisfies (a), then b labels a vertex of SR that is in the same component as
the vertex labelled by a, and c labels a vertex of SR that is in a different component
from the vertex labelled by a. Furthermore, if (b) applies, then |Sinj | = 1 as R is
a consistent set of rooted triples.

Example 4.3. Consider the consistent set R = {ab|e, cd|e, cd|a, cf |d} of rooted
triples (see Figure 2). Let S = {a, b, c, d, e, f} and P = {{a, b}, {c, d, f}, {e}}. The
graphs SR and S∗

R are shown in Figure 3, and the matrix AP is shown in Figure 4.
Furthermore, the good mergings of SR are {a, b}, {c, d, f}, {e}, and {a, b, c, d, f},
and so, by Theorem 4.2, the good partitions of SR are {{a, b}, {c, d, f}, {e}} and
{{a, b, c, d, f}, {e}}.

RECONSTRUCTING MINIMAL ROOTED TREES 11

e d

f

(i) SR

a

b

c

e d

f

a

b

c

(ii) S∗
R

Figure 3. (i) SR. (ii) S∗
R.



{a} {b} {c, f} {d} {e}

{a, b} 0 0 1 1 1
{c, d, f} 0 0 0 0 1
{e} 1 1 1 1 0




Figure 4. The matrix AP .

[{a} {b} {c, f} {d}
{a, b} 0 0 1 1
{c, d, f} 0 0 0 0

] [{a} {b} {e}
{a, b} 0 0 1
{e} 1 1 0

]

Figure 5. Two submatrices of AP .

GoodMergings repeatedly constructs matrices of the type defined above for
the following reason. Let R be a consistent set of rooted triples, and let S be a
cluster of a minimal rooted phylogenetic tree compatible with R. Let P denote the
partition of SR in which each part is the vertex set of exactly one component of
SR. By Theorem 4.2, the good partitions of SR are precisely the partitions of SR
in which each part is a good merging of SR. In turn, the good mergings of SR can
be recognized by the following observation. Let M be a merging of SR and, viewing
the matrix AP as being partitioned into the blocks described above, let A′

P be the
submatrix of AP that (i) consists of blocks, (ii) the number of blocks in each row is
equal to the number of blocks in each column, and (iii) the union of the row labels
of A′

P is M . Then M is a good merging of SR if and only if A′
P contains a column

of zeros. For example, in Example 4.3, {a, b, c, d, f} is a good merging of SR as the
submatrix of AP shown on the left in Figure 5 contains a column of zeros. On the
other hand, {a, b, e} is not a good merging of SR as the submatrix of AP shown on
the right in Figure 5 does not contain a column of zeros.

In combination with the last observation, GoodMergings recursively finds all
of the good mergings of SR in which a particular component’s vertex set is a
subset. Intuitively, GoodMergings does this by starting with a vertex set of one
component of SR, and then increases the size of this set by adding the elements
of another component’s vertex set (one at a time) while maintaining the property
of being a good merging of SR, until a maximal good merging of SR is obtained.
The fact that this works is shown after the description of GoodMergings, in
particular, see Lemma 4.4.

12 CHARLES SEMPLE

We now present GoodMergings. Note that the order in which the parts appear
in the input partition P will be the order in which we label the rows and columns
of AP .

Algorithm: GoodMergings(P ,MP).

Input: A partition P of a set S.

Output: A collection MP of subsets of S.

(1) Initially set MP to be the empty set.
(2) Let P1, P2, . . . , Pk′ denote (in order) the parts of P .
(3) Add P1 to MP .
(4) If P1 is the only part in P , then go to Step 14.
(5) Construct AP .
(6) Let j be an element of {2, 3, . . . , k′}. Referring to AP , consider the following

possible events:
(a) There is a 1 in each column of the block bj1 for which there is a 0 in the

corresponding column of the block b11.
(b) Each of the entries in the block b1j is a 1.
(c) For every entry of the j–th row which is 0, the corresponding entry in the

first row is 1.
For each j, do the following: delete the j–th row and j–th column of blocks of
AP if all of (a), (b), and (c) hold; move the j–th row and j–th column to the
last row and last column, respectively, if exactly (a) and (b) hold; otherwise do
nothing. Relabel the rows of the resulting matrix P1, P2, . . . , Pn, Pn+1, . . . , Pk′′ ,
where P1 is the first row label of AP , and P2, P3, . . . , Pn label those rows of
AP for which at most one of (a) and (b) hold.

(7) Set w2 = w3 = · · · = wn = 1.
(8) Set i′ to be the least number for which wi′ = 1, and set wi′ = 0.
(9) Set Si′ to be the union of the sets P1, Pi′ , Pi′+1, Pi′+2, . . . , Pk′′ .

(10) Set Pi′ to be the partition {P1 ∪ Pi′ , Pi′+1, Pi′+2, . . . , Pk′′} of Si′ .
(11) GoodMergings(Pi′ ,MPi′).
(12) Replace MP with MP ∪MPi′ .
(13) If i′ 6= n, then go to Step 8.
(14) Output MP .

Remark. In conjunction with AllMinTrees, the objective of Step 6 of Good-

Mergings is to determine, for each j ∈ {2, 3, . . . , k′}, if P1 ∪ Pj is a good merging
of SR and, if not, whether there is a good merging of SR in which P1 ∪ Pj is a
subset. Step 6 of GoodMergings recognizes these possibilities, and manipulates
the matrix constructed in the previous step accordingly. If all of (a), (b), and (c)
are satisfied for j, then there is no good merging of SR in which P1∪Pj is a subset.
If both (a) and (b) are satisfied for j, but not (c), then P1∪Pj is not a good merging
of SR. However, in this case, it is easily checked that there is a good merging of
SR in which P1 ∪Pj is a proper subset. If neither of these two options are satisfied
for j, then P1 ∪ Pj is a good merging of SR.

RECONSTRUCTING MINIMAL ROOTED TREES 13

The next two lemmas are needed for the proof of Theorem 4.6, in which we show
that AllMinTrees applied to a consistent set R of rooted triples returns the set
of all minimal rooted phylogenetic trees compatible with R.

Lemma 4.4. Let R be a consistent set of rooted triples, and let S be a cluster
of a minimal rooted phylogenetic tree compatible with R. Let M1 and M2 be good
mergings of SR such that M1 is a proper subset of M2. Then there is a subset M
of M2 − M1 such that M1 ∪ M is a good merging of SR and M is the vertex set of
a component of SR.

Proof. Let N1, N2, . . . , Nk denote the vertex sets of the components of SR such
that, for all i ∈ {1, 2, . . . , k}, Ni is a subset of M2 − M1. Suppose, to the contrary,
that M1∪Ni is not a good merging of SR for all i. Then the number of components
of SR[M1 ∪ Ni] is equal to the number of components of (M1 ∪Ni)R for all i. But
this implies that the number of components of SR[M2] is equal to the number of
components of (M2)R, contradicting that M2 is a good merging of SR. �

Lemma 4.5. Let R be a consistent set of rooted triples, and let S be the leaf set
of R. Then the set MSR at Step 11 of AllMinTrees, when applied to R, is the
set of all good mergings of SR.

Proof. From the sequence of remarks preceding the description of GoodMergings

and the way in which MSR is constructed, it is clear that every member of MSR
is a good merging of SR. Thus it suffices to show that if M is a good merging of
SR, then M is an element of MSR . We now show that this is indeed the case.

Evidently, the vertex sets of each of the components of SR are in MSR . Therefore
we may assume that M is the union of the vertex sets of at least two components
of SR. Suppose, to the contrary, that M is not an element of MSR at Step 11 of
AllMinTrees. Then it follows by Lemma 4.4 that at some iteration of Good-

Mergings there is a matrix, AP say, constructed at Step 5 in which a subset M ′

of M labels the first row and each of the vertex sets of the components of SR whose
union is M −M ′ label one of the other rows. Furthermore, one of these vertex sets
labels a row of AP that is deleted in Step 6 of GoodMergings. But from the
remark following the description of GoodMergings this implies that M is not a
good merging of SR. This contradiction completes the proof of Lemma 4.5. �

By combining Theorem 4.2, Lemma 4.5, and the fact that the set of all rooted
phylogenetic trees compatible with a consistent set of rooted triples can be obtained
in the way described at the start of this section, we get Theorem 4.6.

Theorem 4.6. Let R be a consistent set of rooted triples. Then AllMinTrees

applied to R returns the set of all minimal rooted phylogenetic trees compatible with
R.

We now address the issue of the running time of AllMinTrees applied to a
consistent set R of rooted triples. Since it is more than likely that there is a
faster method for finding each tree in T min

R , a detailed analysis of the running time
of AllMinTrees has been omitted. The point is to show that there does exist

14 CHARLES SEMPLE

a method for finding each tree in T min
R in polynomial time. It is easily checked

that, up to the number of trees in T min
R , each step of AllMinTrees can be done

in polynomial time. Furthermore, no set “added” at Step 3 of GoodMergings

appears twice at this step during the running of AllMinTrees and, moreover,
such a set is obtained in polynomial time. It now follows from Theorem 4.2 that
each tree outputted by AllMinTrees is constructed in polynomial time.

Although each tree in T min
R is outputted in polynomial time, the following exam-

ple shows that the total running time of AllMinTrees may not be polynomial.

Example 4.7. Let R1 = {ab|c, ac|d}. A routine check shows that R1 defines a
binary tree T with three internal vertices, in which one of the internal vertices is
adjacent to both a and b. Let u1 and u2 denote the other two internal vertices
of T . Let R2 = {ab|g1, ab|g2, . . . , ab|gn}, where n is some positive integer and gi

is not in the leaf set of T for all i ∈ {1, 2, . . . , n}, and consider R = R1 ∪ R2.
Evidently, R is a consistent set of rooted triples. Moreover, it is straightforward to
deduce that the cardinality of T min

R is equal to the number of ways of attaching all
of the elements g1, g2, . . . , gn to u1 and u2 via pendant edges. It follows that there
are 2n minimal rooted phylogenetic trees compatible with R. Thus the cardinality
of T min

R is exponential in the size of R, and therefore the total running time of
AllMinTrees applied to R is not polynomial.

Acknowledgements

I thank Mike Steel for originally suggesting the problem of characterizing the
tree outputted by the algorithm in [1] and for providing comments on an earlier
draft of this paper. I thank the referees for their suggestions which has led to a
significant improvement in the exposition.

References

[1] A. V. Aho, S. Yehoshua, T. G. Szymanski, and J. D. Ullman, Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions, SIAM
J. Comput. 10(3) (1981), 405–421.

[2] D. Bryant and M. Steel, Extension operations on sets of leaf-labelled trees, Adv. Appl. Math.
16 (1995), 425–453.

[3] D. Bryant, Building trees, hunting for trees, and comparing trees: theory and methods in
phylogenetic analysis, Ph.D. Thesis, University of Canterbury, 1997.

[4] M. Constantinescu and D. Sankoff, An efficient algorithm for supertrees, J. Classif. 12
(1995), 101–112.

[5] M. R. Henzinger, V. King, and T. Warnow, Constructing a tree from homeomorphic subtrees,
with applications to computational evolutionary biology, Algorithmica 24 (1999), 1–13.

[6] M. P. Ng and N. C. Wormald, Reconstruction of rooted trees from subtrees, Discrete Appl.
Math. 69 (1996), 19–31.

[7] M. Steel, The complexity of reconstructing trees from qualitative characters and subtrees, J.
Classif. 9 (1992), 91–116.

Biomathematics Research Centre, Department of Mathematics and Statistics, Uni-

versity of Canterbury, Private Bag 4800, Christchurch, New Zealand

E-mail address: c.semple@math.canterbury.ac.nz

