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HYBRIDIZATION NETWORKS

Charles Semple

Abstract

Reticulate evolution is a fundamental process in the evolution of certain groups
of taxa. Consequently, conflicting signals in a data set may not be the result of
sampling or modelling errors, but due to the fact that reticulation has played a
role in the evolutionary history of the species under consideration. Assuming that
our initial data set is correct, a fundamental problem is to compute the minimum
number of reticulation events that explains this set. This smallest number sets
a lower bound on the number of such events and provides an indication of the
extent that reticulation has had on the evolutionary history of a collection of
present-day species. In this chapter, we focus our attention on this problem for
when the initial set consists of two rooted binary phylogenetic trees. This may
seem rather special, but there are several reasons for this. Firstly, the problem
is NP-hard even when the initial set consists of two such trees. Secondly, we
are interested in finding a general solution rather than one that is restricted in
some way. Lastly, the problem for when the initial data set consists of binary
sequences can be interpreted as a sequence of two-tree problems.

Referring to the problem of when the initial set consists of two trees, this
chapter includes the problem’s relationship with the rooted subtree prune and
regraft distance, mathematical characterizations of the problem based on agree-
ment forests, reduction-based algorithms for solving the problem exactly, and the
problem’s connection with a variant of it in which the initial data set consists of
binary sequences.

11.1 Introduction

Evolutionary (phylogenetic) trees are used to represent the tree-like evolution
of a collection of taxa. For many groups of taxa (for example, most mammals)
this representation is appropriate. However, non-tree-like evolutionary processes
such as hybridization, horizontal gene transfer, and recombination mean that
some groups of taxa are not suited to this type of representation. Collectively
referred to as reticulation events, these types of processes result in species being
a composite of DNA regions derived from different ancestors. Frequently with
bacteria, horizontal gene transfer is the transfer of a piece of DNA from one
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organism to another which is not its offspring. On the other hand, hybridiza-
tions combine two lineages to create a new offspring. Examples of eukaryotes
whose ancestral history include hybridization are certain plant and bird species.
Recombination is a type of hybridization that has been well-studied within the
framework of population genetics. For informative articles on the frequency of
hybridization amongst animals and the problem of distinguishing hybridization
from other causes of phylogenetic incongruence, see [36] and [37], respectively.

The effect of reticulation in evolution has been recognized for quite some
time. Since the 1930’s, botanists suggested that the morphological variation in
the New Zealand flora is due to hybridization [2]. More recently, in the context
of horizontal gene transfer, Doolittle [15] wrote that “molecular phylogeneticists
will have failed to find the ‘true tree’, not because their methods are inadequate
or because they have chosen the wrong genes, but because the history of life
cannot be properly represented as a tree.” Despite this recognition, mathematical
investigations into the understanding and analysis of reticulation in evolution are
relatively recent.

In a separate chapter, Huson provides an overview of various ways of repre-
senting the evolutionary history of a collection of taxa that has undergone retic-
ulate evolution. In this chapter, we focus our attention on a particular problem
that is both biologically important and mathematically challenging. A funda-
mental problem for biologists studying the evolution of species whose past has
included reticulation is the following: given a collection of rooted phylogenetic
trees on sets of species that correctly represents the tree-like evolution of differ-
ent parts of their genomes, what is the smallest number of reticulation events
needed to explain the evolution of the species under consideration. As well as
providing a lower bound on the number of such events, this smallest number also
indicates the extent that reticulation has had on the evolutionary history of the
collection of present-day species.

The chapter is organized as follows. In Section 11.2, we formalize the above
problem and the notion of a hybridization network, the latter is central to this
problem. In general, the problem is NP-hard even when the initial collection
consists of two trees. However, there is an attractive and particularly useful char-
acterization of it in this case. This characterization is described in Section 11.3,
while Section 11.4 contains algorithmic applications of it. In Section 11.5, we con-
sider the variant of the problem for when the initial collection is a set of binary
sequences. The material in this section is used in the subsequent two sections.
An important biological consideration of the evolutionary history of taxa is that
reticulation events occur between taxa that coexist in time. We investigate this
consideration in Section 11.6. Lastly, in Section 11.7, we consider some of the
computational issues in computing the above smallest number.

For completeness, we end this section with some preliminaries. Unless oth-
erwise stated, the notation and terminology in this chapter follows Semple and
Steel [45].
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Fig. 11.1. A rooted caterpillar tree.

11.1.1 Preliminaries

A rooted phylogenetic X-tree T is a rooted tree in which no vertex has degree-2
except possibly for the root which has degree at least two, and whose leaf set
is X . In addition, T is binary if, apart from the root which has degree two, all
interior vertices have degree three. The set X is called the label set of T and we
sometimes denote it as L(T ). Examples of rooted binary phylogenetic trees are
shown in Fig. 11.1 and at the top of Fig. 11.2.

For convenience, many of the examples that arise in this chapter are based on
rooted caterpillar trees. A rooted caterpillar tree is a rooted binary phylogenetic
tree that has a leaf vertex, x say, such that every other leaf vertex is attached to
the path from x to the root via a pendant edge. The rooted binary phylogenetic
tree shown in Fig. 11.1 is an example of a rooted caterpillar tree. Without am-
biguity, we denote this rooted caterpillar tree by the n-tuple (x1, x2, . . . , xn) as
this is the ordering of the label set induced by the path from x1 to the root. Note
that the first two coordinates of this tuple could be interchanged to describe the
same rooted caterpillar tree.

Let T be a rooted phylogenetic X-tree and let v be a vertex of T . The subset
of elements X that are descendants of v is a called a cluster of T . We denote
this cluster by CT (v) or simply C(v) if there is no ambiguity. We sometimes say
that C(v) is the cluster of T corresponding to v in T . The set of clusters of T is
denoted by C(T ). Note here that the root of T gives rise to a cluster.

For a rooted phylogenetic X-tree T , several different types of rooted subtrees
will play a prominent role in this chapter. Let X ′ be a subset of X . The minimal
rooted subtree of T that connects the leaves in X ′ is denoted by T (X ′). Further-
more, the restriction of T to X ′, denoted by T |X ′, is the rooted phylogenetic tree
obtained from T (X ′) by suppressing any non-root vertices of degree 2. Lastly, a
rooted subtree of T is pendant if it can be obtained from T by deleting a single
edge. For example, in Fig. 11.1, the minimal rooted subtree that connects the
leaves in {x1, x2, x3} is a pendant rooted subtree, but the minimal rooted subtree
connecting x2 and x3 is not a pendant rooted subtree.

11.2 Hybridization networks

In this section, we formalize the optimization problem described in the introduc-
tion. We begin with the concept of a hybridization network which is central to
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Fig. 11.2. Two rooted binary phylogenetic trees T1 and T2, and three hybridiza-
tion networks H1, H2, and H3. Each of the hybridization networks H1 and
H2 display both T1 and T2.

this problem and this chapter. These networks are particular types of digraphs.
A directed graph (also known as a digraph) consists of a collection of vertices

and a collection of directed edges called arcs. If an arc is directed from the
vertex u to the vertex v, then it is denoted as the ordered pair (u, v). The degree
of a vertex v is the number of arcs incident with v. To distinguish between
arcs coming into v and arcs coming out of v, we refer to the number of arcs
coming into v as the indegree of v, while the number of arcs coming out of v is
referred to as the outdegree of v. This is denoted as d−(v) and d+(v), respectively.
In evolutionary biology, directed graphs are used to represent the evolutionary
history of a collection of present-day species. Vertices may represent species,
individuals, or DNA sequences, while arcs represent ancestral relationships. By
viewing the edges as arcs directed away from the root, rooted phylogenetic trees
are examples of such digraphs.

A directed path in a digraph D is an alternating sequence

v0, a1, v1, a2, v2, . . . , vk−1, ak, vk

of vertices and arcs in which ai is directed from vi−1 to vi for all i, and no vertex
or arc appears more than once. A directed cycle in D is a directed path in which
v0 = vk. We say that D is acyclic if it contains no directed cycles. An acyclic
digraph D is rooted if the underlying graph has no parallel edges, and there is a
distinguished vertex ρ with d−(ρ) = 0 and the property that there is a directed
path from ρ to every vertex of D.

A hybridization network (on X) is a rooted acyclic digraph with root ρ in
which

(i) X is the set of vertices of outdegree zero,

(ii) d+(ρ) ≥ 2, and
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(iii) for all vertices v with d+(v) = 1, we have d−(v) ≥ 2.

The set X represents a collection of taxa and is the label set of H. For convenience,
it is sometimes denoted as L(H). Vertices of indegree at least two represent an
exchange of genetic information between their parents. Generically, we call these
vertices hybridization vertices. In the literature, hybridization networks have been
referred to as “hybrid phylogenies” (e.g., [7]) and “phylogenetic networks” (e.g.,
[32,41]). The latter with the additional property that hybridization vertices have
indegree exactly two. Note here that vertices with indegree more than two do not
represent a simultaneous exchange of genetic information between several parents
but rather an uncertainty of the exact order of “hybridization”. To illustrate the
above concepts, in Fig. 11.2, H1, H2, and H3 are all examples of hybridization
networks in which X = {1, 2, 3, 4}. Here and in all other figures, it is implicit that
arcs are directed downwards. Rooted phylogenetic trees are special examples of
hybridization networks in which all vertices, apart from the root, have indegree 1.

Remark In the chapter written by Huson, a “reticulate network” is simply a
particular type of hybridization network. Having less restrictions on the indegree
and outdegree of vertices allows for uncertainty in the exact order of speciation
and hybridization. Furthermore, unlike some authors, we do not impose the
condition that the outdegree of a hybridization vertex is one—this is simply for
mathematical convenience and has no bearing on the results in this chapter.
Lastly, we refer the reader to the figures in Huson’s chapter for the biological
interpretation of hybridization networks.

To quantify the number of reticulation events, the hybridization number of a
hybridization network H with root ρ is

h(H) =
∑

v 6=ρ

(d−(v) − 1).

Since d−(v) is the number of parents of v and since every vertex, apart from the
root, has at least one parent, (d−(v) − 1) is the number of additional parents of
v. The hybridization number of a network is at least zero. Indeed, h(H) = 0 if
and only if H is a rooted phylogenetic tree. In Fig. 11.2, h(H1) = 4, h(H2) = 2,
and h(H3) = 1.

Let T be a rooted phylogenetic tree and let H be a hybridization network.
We say that H displays T if L(T ) ⊆ L(H) and there is a rooted subtree of H
that is a refinement of T . In other words, T can be obtained from H by first
deleting a subset of the edges of H and any resulting isolated vertices, and then
contracting edges. For example, in Fig. 11.2, H1 and H2 both display T1 and
T2, while H3 displays neither T1 nor T2. We say that H displays a collection P
of rooted phylogenetic trees if each tree in P is displayed by H. Furthermore,
extending the definition of the hybridization number to a collection P of rooted
phylogenetic trees, we set

h(P) = min{h(H) : H is a hybridization network that displays P}.
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If P = {T , T ′}, then we denote h(P) by h(T , T ′).
We interpret the fundamental problem for hybridization networks for when

the initial collection consists of two rooted binary phylogenetic trees as the fol-
lowing optimization problem:

Minimum Hybridization
Instance: A finite set X , and two rooted binary phylogenetic X-trees T and
T ′.
Goal: Find a hybridization network H that displays T and T ′ with minimum
hybridization number.
Measure: The value of h(H).

In Fig. 11.2, while H1 displays T1 and T2, it does not minimize the hybridization
number. However, it is easily checked that H2 has this property. Thus, in this
case, h(T1, T2) = 2.

In its broadest sense, an instance of Minimum Hybridization would con-
sist of a collection of rooted phylogenetic trees. However, even in this simplest
case when it consists of just two rooted binary phylogenetic trees, Bordewich
and Semple [13] showed that Minimum Hybridization is NP-hard (see Sec-
tion 11.7). Nevertheless, there is an attractive characterization of this problem
in the simplest case. This characterization provides valuable insight into the
problem and is crucial to many of the results in this chapter. We describe this
characterization and some of these results in the next section.

We end this section with several remarks. First, the input in the above prob-
lem could equally have been a set of sequences instead of a set of trees, in which
case, instead of seeking a ‘minimal’ hybridization network, we look for a “recom-
bination network” that has this property. A number of authors have considered
this variant of the problem and we will described it in Section 11.5. Second, in
keeping with the terminology in the chapter written by Huson and elsewhere, we
use the term “hybridization networks” as the input is unordered. In contrast, if
the input is ordered in some way, as in the case of sequences, then the analogous
digraphs are called “recombination networks”. Lastly, as explicitly pointed out
by Moret et al. [39], one needs to be careful in inferring information about hy-
bridization events and the ancestral species involved in such events. In particular,
the absence of unsampled taxa can have important ramifications in interpreting
the true evolutionary history of the sampled taxa.

11.3 A characterization of Minimum Hybridization

Historically, one of the main tools that has been used to understand and model
reticulate evolution is a graph-theoretic operation called “rooted subtree prune
and regraft”. Informally, this operation prunes a subtree of a rooted tree and
then reattaches this subtree to another part of the tree. The use of this tool
in evolutionary biology dates back to at least 1990 [24], and has been regularly
used since as a way to model reticulate evolution (for example, see [7, 35, 41,
51]). The reason for this is that if two rooted binary phylogenetic X-trees are
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Fig. 11.3. Two rooted binary phylogenetic trees T and T ′ without (above) and
with (below) their root labelled ρ.

inconsistent, but this inconsistency can be explained with a single hybridization
event, then one tree can be obtained from the other by a single rooted subtree
prune and regraft operation. Indeed, given this, it is tempting to conjecture that
the minimum number of hybridization events to explain the inconsistency of two
rooted binary phylogenetic X-trees is equal to the minimum number of rooted
subtree prune and regraft operations to transform one tree into the other. We will
make this precise shortly, however, this is not the case. Nevertheless, these two
minimum numbers are very closely related as they can both be characterized in
terms of “agreement forests”. It is one of these characterizations that is referred
to at the end of Section 11.2.

11.3.1 Rooted subtree prune and regraft operation and agreement forests

To make the characterizations work, we regard the root of each of the two rooted
binary phylogenetic X-trees T and T ′ in the upcoming definitions as a vertex ρ

at the end of a pendant edge (called the root edge) adjoined to the original root.
Furthermore, we regard ρ as part of the label sets of T and T ′, and so L(T ) =
L(T ′) = X∪{ρ}. To illustrate, consider the two rooted binary phylogenetic trees
T and T ′ shown at the top of Fig. 11.3. In the following, we regard T and T ′ as
shown at the bottom of Fig. 11.3.

Let e = {u, v} be an edge of T that is not the root edge, where u is the
vertex that is on the path from the root of T to v. Let T ′ be the rooted binary
phylogenetic tree obtained from T by deleting e and reattaching the resulting
rooted subtree via a new edge, f say, as follows. Create a new vertex u′ that
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Fig. 11.4. Each of T1 and T2 are obtained from T by a single rooted subtree
prune and regraft operation.

41 2 3

Fig. 11.5. The hybridization network resulting from the single rooted subtree
prune and regraft operation that transforms T into T1 in Fig. 11.4.

subdivides an edge of the component that contains ρ and adjoin f between u′ and
v, then suppress the degree-2 vertex u. We say that T ′ has been obtained from
T by a rooted subtree prune and regraft (rSPR) operation. To illustrate, consider
Fig. 11.4. Each of T1 and T2 are obtained from T by a single rSPR operation.
Denoted by drSPR(T , T ′), we define the rSPR distance between T and T ′ to
be the minimum number of rooted subtree prune and regraft operations that is
required to transform T into T ′. It is well known that, for any such pair of trees,
one can always obtain one tree from the other by a sequence of rSPR operations,
and so this distance is well-defined. Moreover, this distance is a metric on the
collection of rooted binary phylogenetic X-trees.

To explicitly highlight the connection between rooted subtree prune and re-
graft operations and hybridization events, consider T and T1 in Fig. 11.4. The
evolutionary difference in the two trees can be explained by a single hybridization
event; the corresponding hybridization vertex is the root of the pendant subtree
that is pruned and regrafted in the rooted subtree prune and regraft operation
shown in the figure. The resulting hybridization network is shown in Fig. 11.5.

Analogous to Minimum Hybridization, we formally state the optimization
problem of computing the rSPR distance between two rooted binary phylogenetic
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Fig. 11.6. Two possible agreement forests for T and T ′ in Fig. 11.3. F1

is a maximum-agreement forest for T and T ′, while F2 is a maxi-
mum-acyclic-agreement forest for T and T ′.

trees as follows.

Minimum rSPR
Instance: A finite set X , and two rooted binary phylogenetic X-trees T and
T ′.
Goal: Find a minimum length sequence of single rSPR operations that trans-
forms T into T ′.
Measure: The length of this sequence.

An agreement forest for T and T ′ is a collection {Tρ, T1, T2, . . . , Tk} of rooted
leaf-labelled trees, where Tρ is a rooted tree whose label set Lρ contains ρ and
T1, T2, . . . , Tk are rooted binary phylogenetics trees with label sets L1,L2, . . . ,Lk,
respectively, such that the following properties are satisfied:

(i) The label sets Lρ,L1,L2, . . . ,Lk partition X ∪ {ρ}.
(ii) For each i ∈ {ρ, 1, 2, . . . , k}, we have that Ti

∼= T |Li and Ti
∼= T ′|Li.

(iii) The trees in {T (Li) : i ∈ {ρ, 1, 2, . . . , k}} and {T ′(Li) : i ∈ {ρ, 1, 2, . . . , k}}
are vertex disjoint rooted subtrees of T and T ′, respectively.

It is easily seen that if F is an agreement forest for T and T ′, then, up to
suppressing non-root vertices of degree two, F can be obtained from each of
T and T ′ by deleting |F| − 1 edges. An agreement forest for T and T ′ is a
maximum-agreement forest if, amongst all agreement forests for T and T ′, it
has the smallest number of components, in which case we denote this value of k

by m(T , T ′). For example, two agreement forests for the two trees T and T ′ in
Fig. 11.3 are shown in Fig. 11.6. It is easily checked that the smallest number of
components in any such forest is 3, so F1 is also a maximum-agreement forest
for T and T ′, and m(T , T ′) = 2.

11.3.2 Characterizations of Minimum Hybridization and Minimum rSPR

Intuitively, the edges that are deleted to obtain an agreement forest for T and
T ′ are those which disagree in T and T ′, and correspond to different paths of
genetic inheritance; that is hybridization events. Thus, the fewer edges deleted,
the smaller the number of hybridization events. Part (i) of the following theorem
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Fig. 11.7. (a) The second tree in the sequence of rSPR operations that trans-
forms T into T ′, where T and T ′ are as shown in Fig. 11.3. (b) The network
induced by the two rSPR operations that transforms T into T ′.

due to Bordewich and Semple [12] characterizes the rSPR distance between two
rooted binary phylogenetic trees in terms of agreement forests.

Theorem 11.1 Let T and T ′ be two rooted binary phylogenetic X-trees. Then

(i) drSPR(T , T ′) = m(T , T ′).

(ii) If F is an agreement forest for T and T ′ of size k +1 (i.e. k ≥ m(T , T ′)),
then there is a polynomial-time algorithm for constructing a sequence

T = T0, T1, T2, . . . , Tk = T ′

of rooted binary phylogenetic trees such that, for all i, Ti is obtained from
Ti−1 by at most one rooted subtree prune and regraft operation (i.e. drSPR(T , T ′) ≤
k).

Remarks

1. Part (ii) of Theorem 11.1 is not explicitly stated in [12]. However, it is
an immediate consequence of the inductive proof of [12, Theorem 2.1].
Although we omit the proof of this result, we will describe the algorithm
in (ii) later in this section.

2. For those readers familiar with the tree rearrangement operation “tree bi-
section and reconnection” (TBR), Allen and Steel [3] describe an analogous
characterization for TBR in terms of agreement forests.

3. As we will soon see, agreement forests characterizations have been success-
fully used in gaining invaluable insights of various measures in phylogenet-
ics. To provide intuition why such a characterization is useful, think how
much easier it is to consider deleting edges of T and T ′ to obtain an agree-
ment forest as oppose to keeping track of a sequence of rSPR operations
that transforms T into T ′.

Although it seems plausible that one could repeatedly use a single rooted
subtree prune and regraft operation to represent a single hybridization event
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Fig. 11.6.

and thus the number of such events is equal to the number of such operations,
the associated hybridization network that one builds in this process may contain
a directed cycle. Such a cycle would mean that a vertex in this network inherits
genetic information from its own descendants. As an example, consider the two
rooted binary phylogenetic trees T and T ′ shown in Fig. 11.3. The tree T ′ can be
obtained from T by two rSPR operations by first pruning the pendant subtree
with label set {1, 2, 3} of T and regrafting to obtain the tree T1 in Fig. 11.7(a),
and then pruning the pendant subtree of T1 with label set {4, 5, 6} and regrafting
to obtain T ′. If one keeps each of the edges that are cut and added in this process,
one obtains the “hybridization” network shown in Fig. 11.7(b). Here e1 is the
edge that is added in the first rSPR operation and e2 is the edge that is added in
the second rSPR operation. However, by viewing the (solid) edges as arcs directed
away from ρ, this network contains a directed cycle. To avoid the construction
of such a cycle and, in particular, rooted subtree prune and regraft operations
that cause these cycles, we extend the definition of an agreement forest to an
acyclic-agreement forest.

Let F = {Tρ, T1, T2, . . . , Tk} be an agreement forest for T and T ′. Let GF be
the directed graph whose vertex set is F and for which (Ti, Tj) is an arc precisely
if i 6= j and either

(I) the root of T (Li) in T is an ancestor of the root of T (Lj) in T or

(II) the root of T ′(Li) in T ′ is an ancestor of the root of T ′(Lj) in T ′.

Note that, as F is an agreement forest, the roots of T (Li) and T (Lj), and the
roots of T ′(Li) and T ′(Lj) are not the same. We say that F is acyclic if GF

has no directed cycles. If F is acyclic and it has the smallest number of com-
ponents over all acyclic-agreement forests for T and T ′, then F is a maximum-
acyclic-agreement forest for T and T ′, in which case we denote the number k

by ma(T , T ′). Observe that ma(T , T ′) = 0 if and only if, up to isomorphism, T
and T ′ are identical. To illustrate these concepts, Fig. 11.8 shows the directed
graph GF1

of the agreement forest F1 shown in Fig. 11.6, where large open cir-
cles represent the vertices. Since this graph contains a directed cycle, F1 is not
acyclic. However, it is easily checked that GF2

, where F2 is the agreement forest
in Fig. 11.6, is acyclic. In fact, one can also check that this is a maximum-acyclic-
agreement forest for T and T ′.
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Analogous to Theorem 11.1, Baroni et al. [9] characterized the hybridization
number of two rooted binary phylogenetic trees in terms of agreement forests.

Theorem 11.2 Let T and T ′ be two rooted binary phylogenetic X-trees. Then

(i) h(T , T ′) = ma(T , T ′).

(ii) If F is an acyclic-agreement forest for T and T ′ of size k + 1 (i.e. k ≥
ma(T , T ′)), then there is a polynomial-time algorithm for constructing
a hybridization network H that displays T and T ′ with h(H) ≤ k (i.e.
h(T , T ′) ≤ k).

Remarks

1. Part (ii) of Theorem 11.2 is not stated in [9], but it is an immediate conse-
quence of its inductive proof [9, Theorem 2]. Like part (ii) of Theorem 11.1,
we will describe the algorithm in (ii) at the end of this section.

2. In contrast to the rSPR distance, the hybridization number is not a metric
on the collection of rooted binary phylogenetic X-trees. To see this, con-
sider T and T ′ in Fig. 11.3 and T1 in Fig. 11.7. We have already noted that
h(T , T ′) = 3. Furthermore, it is easily checked that h(T , T1) = h(T1, T ′) =
1, and so the hybridization number does not satisfy the triangle inequality.

3. If one is only interested in the number of hybridization vertices (and not
what each such vertex contributes to the hybridization number), then The-
orem 11.2 is easily generalized to an arbitrary size collection of rooted bi-
nary phylogenetic X-trees. Here the notion of an acyclic-agreement forest
for two trees is extended in the obvious way. For details, see [34].

Since every acyclic-agreement forest for two rooted binary phylogenetic X-
trees T and T ′ is an (ordinary) agreement forest for T and T ′, it follows from
Theorems 11.1 and 11.2 that

drSPR(T , T ′) ≤ h(T , T ′). (11.1)

The fact that this inequality can be strict has been pointed out several times in
the literature including [9,25,53]. An interesting question is just how strict? We
consider this question in Section 11.3.3.

11.3.3 Comparing drSPR(T , T ′) and h(T , T ′)

Two natural questions arise from the inequality in (11.1).

(i) Whenever drSPR(T , T ′) = 1, we have that h(T , T ′) = 1, and so drSPR(T , T ′)
provides a sharp lower bound for h(T , T ′). Can we find a sharp upper
bound for h(T , T ′)?

(ii) We have already seen that inequality (11.1) can be strict, so how large can
the difference between drSPR(T , T ′) and h(T , T ′) be?
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Consider (i). Regardless of the topology of T and T ′, if X = {x1, x2, . . . , xn},
then, as the forest consisting of T |{ρ, x1, x2} and isolated vertices x3, x4, . . . , xn

is an acyclic-agreement forest for T and T ′,

h(T , T ′) ≤ n − 2.

Using Theorem 11.2, Baroni et al. [9] showed that this upper bound is sharp.
In particular, if T and T ′ are the two rooted caterpillars (x1, x2, . . . , xn) and
(xn, xn−1, . . . , x1), then h(T , T ′) = n− 2. In the same paper [9] and using The-
orems 11.1 and 11.2, the authors also establish the following theorem.

Theorem 11.3 For all n ≥ 4, there are rooted binary phylogenetic trees T1, T2,
and T3 on n leaves such that

h(T1, T2)

drSPR(T1, T2)
=

1

2

⌊n

2

⌋

and
h(T1, T3) − drSPR(T1, T3) = n − 2⌊√n⌋ − c,

where c = 0 if n is a square, c = 1 if 1 ≤ n− ⌊√n⌋2 <
√

n, and c = 2 otherwise.

Explicit examples of rooted binary phylogenetic trees that attain the equali-
ties in Theorem 11.3 are given in [9]. For example, let T1 be the rooted cater-
pillar tree (x1, x2, . . . , x100). Let T2 and T3 be the rooted caterpillar trees on
{x1, x2, . . . , x100} whose orderings on their leaf sets are

(x51, x52, . . . , x100, x1, x2, . . . , x50)

and

(x91, x92, . . . , x100, x81, x82, . . . , x90, x71, . . . , x19, x20, x1, x2, . . . , x10),

respectively. Then

h(T1, T2)

drSPR(T1, T2)
=

1

2

⌊

100

2

⌋

= 25

and

h(T1, T3) − drSPR(T1, T3) = 100 − 2⌊
√

100⌋ − 0 = 80

An interesting question is determine whether the ratio or difference given in
Theorem 11.3 is the best possible.

The answers to (i) and (ii) in [9] both rely on Theorems 11.1 and 11.2. It seems
unlikely that, without such characterizations, these results could have been at-
tained as easily. Further applications of these theorems are given in Section 11.4.
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11.3.4 Algorithms for constructing rSPR sequences and hybridization networks
from agreement forests

Let F be an arbitrary agreement forest for two rooted binary phylogenetic X-
trees T and T ′. The first algorithm rSPRSequence constructs a sequence of
rooted binary phylogenetic trees beginning with T and ending with T ′ with
the property that each tree in the sequence is obtained from its predecessor
by a single (possibly trivial) rSPR operation. Provided F is acyclic, the second
algorithm HybridNetwork constructs a hybridization network H that displays
T and T ′ with h(H) ≤ |F| − 1. Each algorithm is an immediate consequence of
the inductive proofs of Theorems 11.1 and 11.2 in [12] and [9], respectively.

Algorithm: rSPRSequence(F)
Input: An agreement forest F of size k + 1 of two rooted binary phylogenetic
X-trees T and T ′.
Output: A sequence T0, T1, T2, . . . , Tk of rooted binary phylogenetic X-trees
with the property that T0 = T , Tk = T ′, and, for all i, either Ti is obtained from
Ti−1 by a single rSPR operation or Ti

∼= Ti−1.

1. Set T = T0, F = F0, and i = 1.

2. Find a tree Si in Fi−1 such that Si is a pendant subtree of Ti−1.

3. In T ′, find the first subtree T ′(L(Sj)) corresponding to a tree Sj in Fi−1 that
is met on the path from the root of T ′(L(Si)) to ρ.

4. Set Ti to be a tree that is obtained from Ti−1 by pruning Si and regrafting
it so that Ti restricted to L(Si) ∪ L(Sj) is isomorphic to T ′ restricted to
L(Si) ∪ L(Sj).

5. Set Fi to be the forest obtained from Fi−1 by replacing Si and Sj with T ′

restricted to L(Si) ∪ L(Sj).

6. If i = k halt; otherwise, increment i by 1 and return to Step 2.

Remarks The following comments may help the reader.

1. Step 2 is well-defined as there is always at least one tree that has this
property.

2. In Step 3, the choice for Sj is unique because of (iii) in the definition of an
agreement forest.

3. In Step 4, Fi is an agreement forest for Ti and T ′.

Before stating HybridNetwork, we need an additional concept. A simple,
fast, and well-known way of deciding whether a directed graph G is acyclic is
as follows. Find a vertex, v1 say, of G that has indegree 0. If there is no such
vertex, then G contains a directed cycle and so G is acyclic. Otherwise, delete v1

(and its incident arcs) from G and find a vertex, v2 say, of G that has indegree 0.
Again, if there is no such vertex, then G is not acyclic, otherwise delete v2 from
this last digraph and continue in this way. Eventually, we either decide that G is
not acyclic or obtain an ordering v1, v2, . . . , vn of the vertex set of G such that,
for all i, the vertex vi has indegree 0 in the graph obtained from G by deleting
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the vertices v1, v2, . . . , vi−1. Such an ordering is called an acyclic ordering of G

and it implies that G is acyclic.

Algorithm: HybridNetwork(F)
Input: An acyclic-agreement forest F of size k + 1 of two rooted binary phylo-
genetic X-trees T and T ′.
Output: A hybridization network H that displays T and T ′ with h(H) ≤ k.

1. Find an acyclic ordering, Sρ,S1,S2, . . . ,Sk say, of GF .

2. Set H0 = Sρ and set i = 1.

3. Attach Si to Hi−1 via two new arcs. Each arc joins the root of Si to some
(possibly distinct) arc of Hi−1 and is directed towards the root of Si. These
arcs are added so that the resulting network displays both T restricted to
L(Hi−1) ∪ L(Si) and T ′ restricted to L(Hi−1) ∪ L(Si).

Set Hi to be the resulting network and return Hi if i = k.

4. Increment i by 1 and return to Step 3.

Remark In Step 3 of the algorithm, it may be possible that only one new
edge is required. This implies that F is not maximum and that a new acyclic-
agreement forest for T and T ′ can be obtained by attaching one component S
of F to another via an edge directed towards the root of S.

11.4 Algorithmic applications of agreement forests

For two rooted binary phylogenetic trees T and T ′, agreement forests are a
particularly useful tool for analyzing the individual values drSPR(T , T ′) and
h(T , T ′). In this section, we consider ways that agreement forests can be used for
this analysis and the resulting algorithmic implications, while in Section 11.7 we
see that this tool provides invaluable leverage in understanding the computation
complexity of finding these values.

As we formally state in Section 11.7, both Minimum rSPR and Minimum
Hybridization are NP-hard problems. Nevertheless, they are both susceptible
to approaches that effectively reduce the size of the problem instance. Interest-
ingly, these approaches are different and it appears that they are unique to the
particular problem. For Minimum rSPR, we reduce the size of the problem in-
stance while preserving the rooted subtree prune and regraft distance, while, for
Minimum Hybridization, we use a divide-and-conquer type approach, that is
we break the problem into a number of smaller problems. To avoid some repeti-
tion, the proofs of the first four results in this section rely on either Theorem 11.1
or Theorem 11.2.

11.4.1 Reduction rules

For Minimum rSPR, consider the following two reduction rules:

Rule 1. Replace a pendant subtree that occurs identically in both trees by a
single leaf with a new label.
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Fig. 11.9. Applying Rule 2 to two rooted binary phylogenetic trees T1 and T2,
we obtain T ′

1 and T ′
2 , respectively.

Rule 2. Replace a chain of at least three pendant subtrees that occur identically
and with the same orientation relative to the root in both trees by three
new leaves with new labels correctly orientated to preserve the direction
of the chain.

Rule 2 is illustrated in Fig. 11.9, where A1, A2 . . . , An is the chain of pendant
subtrees common to both T1 and T2, and a, b, and c are the three new leaf labels
orientated appropriately.

The following theorem is due to Bordewich and Semple [12].

Theorem 11.4 Let T1 and T2 be two rooted binary phylogenetic X-trees, and
let T ′

1 and T ′
2 be the two rooted binary phylogenetic X ′-trees obtained from T1

and T2, respectively, by applying either Rule 1 or Rule 2. Then

drSPR(T1, T2) = drSPR(T ′
1 , T ′

2 ).

The proof of Theorem 11.4 relies on Theorem 11.1 and is the basis of showing
that Minimum rSPR is fixed-parameter tractable in drSPR(T1, T2). Intuitively,
this simply means that if the rSPR distance is small, it may be possible to
efficiently compute this distance even if X is large. The reason for this is that, for
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small rSPR distance, one would expect the problem instance to be significantly
reduced by repeatedly applying Rules 1 and 2. Note that, by Theorem 11.4,
such repeated applications preserve the rSPR distance. For further details, see
Section 11.7.

For Minimum Hybridization, we have the following theorem due to Baroni
[6] (also see Baroni et al. [8]), which provides a divide-and-conquer type approach
to the problem.

Theorem 11.5 Let T and T ′ be two rooted binary phylogenetic X-trees, and
suppose that A ⊂ X is a cluster of both T and T ′. Then

h(T , T ′) = h(T |A, T ′|A) + h(Ta, T ′
a),

where Ta and T ′
a are obtained from T and T ′, respectively, by replacing the

pendant subtrees T (A) and T ′(A) with a single new leaf labelled a. Furthermore,
if Ha is a hybridization network that displays Ta and T ′

a with h(Ha) = h(Ta, T ′
a)

and HA is a hybridization network that displays T |A and T ′|A with h(HA) =
h(T |A, T ′|A), then the hybridization network obtained from Ha by identifying the
root of HA with a displays T and T ′, and has hybridization number h(T , T ′).

We will discuss the obvious divide-and-conquer algorithm resulting from Theo-
rem 11.5 and highlight its usefulness by applying the algorithm to a biological
data set in Section 11.4.2.

Recalling that if, up to isomorphism, two rooted binary phylogenetic trees
are identical, then their hybridization number is 0, we get the following corollary
as an immediate consequence of Theorem 11.5.

Corollary 11.6 Let T1 and T2 be two rooted binary phylogenetic X-trees, and
let T ′

1 and T ′
2 be the two rooted binary phylogenetic X ′-trees obtained from T1

and T2, respectively, by applying Rule 1. Then

h(T1, T2) = h(T ′
1 , T ′

2 ).

Curiously, despite Corollary 11.6, Rule 2 does not preserve the hybridization
number of two rooted binary phylogenetic trees. We illustrate with a simple
example. The argument used in the example is indicative of the arguments based
on agreement forests. Let T1 and T2 be the rooted caterpillar trees

(b1, b2, b3, b4, b5, b6, a1, a2, a3, a4)

and
(b1, a1, a2, a3, a4, b2, b3, b4, b5, b6),

respectively. Let T ′
1 and T ′

2 be the rooted caterpillar trees obtained from T1 and
T2, respectively, by applying Rule 2 to the chain of pendant subtrees correspond-
ing to the labels a1, a2, a3, a4. Let a, b, and c denote the resulting new leaves.
Thus T ′

1 and T ′
2 are the rooted caterpillar trees
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(b1, b2, b3, b4, b5, b6, a, b, c)

and
(b1, a, b, c, b2, b3, b4, b5, b6),

respectively. First observe that the agreement forest F of T1 and T2 for which
the partition of X ∪ {ρ} induced by the label sets of its trees is

{

{b1, b2, b3, b4, b5, b6, ρ}, {a1}, {a2}, {a3}, {a4}
}

is acyclic. Thus the number of components of a maximum-acyclic-agreement
forest of T1 and T2 is at most 5. We next show that this number is exactly
5 and that F is the unique maximum-acyclic agreement forest for T1 and T2.
Let F ′ be a maximum-acyclic-agreement forest for T1 and T2. If bj ∈ Lρ for
some j, then, by the maximality of F ′, {a1}, {a2}, {a3}, {a4} are label sets of F ′

and so, as F ′ is maximum, F ′ = F . Furthermore, if ai ∈ Lρ for some i, then
{b2}, {b3}, {b4}, {b5}, {b6} are label sets of F ′ and so |F ′| ≥ 6; a contradiction to
maximality. Thus {ρ} is a label set of F ′, in particular Lρ ∩ X is empty. But,
because of the necessity of being acyclic, Lρ ∩X is non-empty in any maximum-
acyclic-agreement forest for T1 and T2 [9]. This last contradiction shows that
F is the unique maximum-acyclic-agreement forest for T1 and T2. Using similar
arguments, the unique maximum-acyclic-agreement forest for T ′

1 and T ′
2 is the

forest for which the partition of X ∪ {ρ} induced by the label sets of its trees is

{

{b1, b2, b3, b4, b5, b6, ρ}, {a}, {b}, {c}
}

.

But then h(T1, T2) = 4, while h(T ′
1 , T ′

2 ) = 3. Thus Rule 2 does not preserve
the hybridization number of two trees. The main point of the argument above is
that, unlike the situation for (ordinary) agreement forests, there is no maximum-
acyclic-agreement forest that contains a tree whose label set contains the set
{a1, a2, a3, a4}, the union of the label sets of the chain of pendant subtrees that
are replaced by the three new leaves.

In comparison to the last paragraph, the rSPR distance only satisfies a weaker
version of Theorem 11.5. In particular, we have the following result [12].

Proposition 11.7 Let T and T ′ be two rooted binary phylogenetic X-trees, and
suppose that A ⊂ X is a cluster of both T and T ′. Then

drSPR(T , T ′) ≤ drSPR(T |A, T ′|A) + drSPR(Ta, T ′
a) ≤ drSPR(T , T ′) + 1,

where Ta and T ′
a are obtained from T and T ′, respectively, by replacing the

pendant subtrees T (A) and T ′(A) with a single new leaf labelled a. Moreover,
these bounds are sharp.

To see that the first bound in Proposition 11.7 is sharp, simply choose T
and T ′ so that drSPR(T , T ′) = 1, and choose A to be the cluster of the pendant
subtree that is pruned. For the sharpness of the second bound, choose T and T ′
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Fig. 11.10. Illustrating strict inequality in Proposition 11.7.

to be the rooted caterpillar trees (1, 2, 3, 4, 5, 6, 7, 8) and (4, 5, 6, 1, 2, 3, 8, 7), and
choose A to be the common cluster {1, 2, 3, 4, 5, 6}. Then drSPR(Ta, T ′

a) = 1 and,
as we have seen previously, drSPR(T |A, T ′|A) = 2, so

drSPR(T |A, T ′|A) + drSPR(Ta, T ′
a) = 3.

But the forest shown in Fig. 11.10 is an agreement forest for T and T ′, and
therefore drSPR(T , T ′) ≤ 2.

In Sections 11.4.2 and 11.4.3, we describe two applications of Theorem 11.5.

11.4.2 A simple divide-and-conquer algorithm for Minimum Hybridization

Proposition 11.5 and Corollary 11.6 provides us with the following simple divide-
and-conquer approach to Minimum Hybridization that is somewhat better
than the naive approach of exhaustively searching for edges in T (or T ′) whose
deletion results in an acyclic-agreement forest. This exact algorithm initially
applies Rule 1 to T and T ′ as much as possible, and then locates the small-
est pendant subtrees, W and W ′ say, in the resulting trees whose leaf sets are
equal. Intuitively, these pendant subtrees localize conflicting signals in the evo-
lutionary history of these parts of T and T ′. The algorithm finds a maximum-
acyclic-agreement forest for these pendant subtrees W and W ′, and then repeats
this process for the rooted binary phylogenetic trees obtained from T and T ′

by replacing the pendant subtrees with a single new vertex. Summing the hy-
bridization number h(W ,W ′) at each iteration gives h(T , T ′).

Algorithm: HybridNumber({T , T ′})
Input: Two rooted binary phylogenetic X-trees T and T ′.
Output: The value of h(T , T ′).

1. Set T0 = T and T ′
0 = T ′, and set i = 1

2. Repeatedly apply Rule 1 to Ti−1 and T ′
i−1 until the rule can no longer be

applied, and set Si−1 and S′
i−1 to be the resulting rooted binary phylogenetic

trees, respectively. If each of Si−1 and S′
i−1 consist of a single vertex, then go

to Step 7.

3. Find a minimal cluster Wi−1 in C(Si−1) ∩ C(S′
i−1) of size at least two.

4. Find a maximum-acyclic-agreement forest Fi−1 for Si−1|Wi−1 and S′
i−1|Wi−1.

5. Set Ti and T ′
i to be the rooted binary phylogenetic trees obtained from Si−1

and S′
i−1, respectively, by replacing Si−1|Wi−1 and S′

i−1|Wi−1 with a single
new vertex wi−1.
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6. Increment i by 1 and return to Step 2.

7. Output the sum |F0| − 1 + |F1| − 1 + · · · + |Fi−1| − 1.

Remarks

1. A naive approach to Step 4 is to exhaustively delete edges from one of the
trees, T say, and then see if the resulting forest is an acyclic-agreement
forest for T and T ′.

2. Observe that, if one ignores the task of finding a maximum-acyclic-agreement
forest in Step 4, then HybridNumber provides a fast lower bound for
h(T , T ′). In particular, the number of iterations of the algorithm.

Clearly, Step 4 is the computationally most expensive part of the algorithm.
However, although there is no theoretical foundations for the complexity of this
algorithm, it will work well in practice provided it breaks the problem into a
number of isolated parts for which the associated hybridization number is rela-
tively small. To see whether this proviso is realistic or not, Bordewich et al. [11]
have carried out an experimental analysis of HybridNumber on a particular
grass (Poaceae) data set that has previously been considered by Schmidt [44].
Because of earlier findings of Ellstrand et al. [17], this data set is appropriate
for such an analysis as it is more likely that the conflicting signals in the data is
due to hybridization rather than other factors. Without going into the details,
the analysis involves the running of the algorithm on pairs of trees with up to
40 taxa. The results highlight the usefulness of the reduction rules that underlie
HybridNumber. We describe one particularly successful example next.

The grass data set consists of sequence data for six loci. The two phylogenetic
trees shown in Fig. 11.11 are the result of applying the fastDNAml program [42]
to two of the sequences—a nuclear sequence (internal transcribed spacer) and a
chloroplast sequence (phytochrome B). For convenience, as this example is sim-
ply illustrating how the algorithm works and nothing more, we have replaced the
species names with numbers. Taking these two trees as the input to Hybrid-
Number, the algorithm initially finds all common subtrees and replaces each
such subtree by a single leaf with a new label. The resulting trees are shown
in Fig. 11.12 where, for clarity, each common subtree has been replaced by a
single leaf whose label is a concatenation of the subtree labels. The next step is
to search for a minimal cluster of size at least two that is common to both trees
in Fig. 11.12.

One such cluster, as shown by the inside square brackets in Fig. 11.12, is
{1, 20, 15, 19, 4, 3, 5, 29, 12, 16, 9} and the corresponding subtrees are shown at the
top of Fig. 11.13. This essentially completes the first iteration of the algorithm.
At the completion of two further iterations, we obtain the two further pairs
of subtrees (as indicated by the middle and outside square brackets shown in
Fig. 11.12) and these are shown in Fig. 11.13. Again, the trees on the left come
from the nuclear sequence, while the trees on the right come from the chloroplast
sequence. At this stage the original inputted trees have been reduced to two trees
that are identical. We now exhaustively find the hybridization number of each of
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Fig. 11.11. The input to HybridNumber. The tree resulting from the nuclear
sequence is on the left, while the tree resulting from the chloroplast sequence
is on the right.

the three pairs of non-identical trees. The first pair has a hybridization number
of 3, while the second and third pairs have hybridization numbers of 1 and
4, respectively. Adding the three numbers together results in the hybridization
number of 8 for the phylogenetic trees shown in Fig. 11.11. The running time of
an implementation of the algorithm HybridNumber applied to the two trees
in Fig. 11.11 is 19 seconds. Given that the trees contain 30 taxa and have a
hybridization number of 8, this is remarkably quick.

We end this subsection with two further comments. Firstly, Nakhleh et al. [40]
describe a polynomial-time heuristic for finding h(T , T ′) that is based on an
agreement forest type approach. In this heuristic, they obtain a certain agree-
ment forest by repeatedly finding a maximum-agreement subtree of two trees
to decompose T and T ′. For further details and the associated reconstruction
algorithm, see [40]. Secondly, although we have not included the details here, it
is straightforward to construct a hybridization network associated with Hybrid-
Number by combining our earlier algorithm HybridNetwork (Section 11.3.4)
with the second part of Theorem 11.5. However, it is important to note that
such a network is not necessarily unique. Typically, there will be a number of
possibilities.
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Fig. 11.12. The two phylogenetic trees resulting from repeated applications of
Rule 1 to the two phylogenetic trees in Fig. 11.11.

11.4.3 Galled-trees

Whenever one is confronted with an NP-hard problem, a natural consideration
is to see if there exists a polynomial-time algorithm for special instances of the
problem that are still meaningful. In this subsection, we describe one particular
instance that has been very successful in this regard.

Ignoring the directions of the arcs, a galled-tree is a hybridization network
in which every vertex is in at most one cycle. This means that, for every pair
of cycles, their vertex sets (and thus arc sets) are disjoint. In keeping with the
terminology in the literature, a cycle in a galled-tree is called a gall. First studied
in [54], galled-trees have been subsequently studied both in the hybridization and
recombination settings (see Section 11.5 for details on the latter setting). These
include algorithmic studies [20,21,32,33,41,49] and enumeration studies [46]. The
original motivation for their study, whether correct or not, is that hybridization
events are rare and so one may expect such events to be isolated in which case
conflicts in the initial collection of phylogenetic trees could be explained by a
galled-tree.

Let T and T ′ be two rooted binary phylogenetic X-trees, and let |X | = n.
Nakhleh et al. [41] describe an O(mn) algorithm for deciding if there exists a
galled-tree that displays T and T ′, and then constructs such a minimal network,
where m is the hybridization number of this network. Note that there is a proviso
on the network that they construct, in particular, it is minimal with respect to all
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Fig. 11.13. The top pair of trees are the subtrees in Fig. 11.12 corresponding to
the common cluster {1, 20, 15, 19, 4, 3, 5, 29, 12, 16, 9}. The bottom two pairs
of trees are the resulting pairs of subtrees after two further iterations of
HybridNumber.

other galled-trees that display T and T ′. However, this proviso is not necessary
because of the following proposition.

Proposition 11.8 Let T and T ′ be two rooted binary phylogenetic X-trees, and
suppose that there is a galled-tree that displays T and T ′. Suppose that the small-
est number of hybridization vertices in such a network is m. Then h(T , T ′) = m.

Before proving Proposition 11.8, we remark that an alternative, but equiva-
lent, way to say Proposition 11.8 is that if there is a galled-tree that displays T
and T ′, then there is such a galled-tree that minimizes the number of hybridiza-
tion vertices over all networks that displays T and T ′. The algorithm in [41]
is essentially equivalent to combining HybridNumber and HybridNetwork,
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and so one could establish the proposition as a consequence of these algorithms.
However, we prove it directly using Theorem 11.5.

Proof of Proposition 11.8 The proof is by induction on m. If m = 0, then
T and T ′ are isomorphic, so h(T , T ′) = 0 and the theorem holds. Now suppose
that m = k+1 for some k ≥ 0 and that the theorem holds whenever the smallest
number of hybridization vertices in a galled-tree that displays the two input trees
is at most k.

Let H be a galled-tree that displays T and T ′, and has the smallest number
of hybridization vertices amongst all such networks. Because of the minimality
condition, each hybridization vertex has indegree 2. For the purposes of the
proof, we will refer to the unique vertex of a gall that is closer to the root than
any other vertex of the gall as the coalescent vertex of the gall. Let w be the
coalescent vertex of a gall Q in H such that there is no directed path in H from w

to another vertex that is the coalescent vertex of a gall in H. Before continuing,
we make two observations:

(i) The subset W of X whose elements can be reached from w via a directed
path is a cluster of both T and T ′.

(ii) The subtree of T induced by W can be obtained from the subnetwork of
H that consists of all vertices and arcs that lie on a directed path from
w by deleting one of the incoming arcs of the hybridization vertex in Q.
Similarly, the subtree of T ′ induced by W can be obtained by deleting the
other incoming arc of the hybridization vertex in Q.

Let Tw and T ′
w be the rooted binary phylogenetic trees obtained from T and

T ′, respectively, by replacing the subtrees T |W and T ′|W with a single vertex
labelled w, where w 6∈ X . By Theorem 11.5,

h(T , T ′) = h(T |W, T ′|W ) + h(Tw, T ′
w).

Since T |W is not isomorphic to T ′|W , we have that h(T |W, T ′|W ) ≥ 1. But, by
(ii), h(T |W, T ′|W ) ≤ 1 and therefore h(T |W, T ′|W ) = 1. Consider h(Tw, T ′

w).
Let Hw denote the galled-tree obtained from H by deleting each of the vertices
that lie on a directed path from w except w itself. Since H displays T and T ′, it
follows that Hw displays Tw and T ′

w. Now Hw has k galls. Suppose that there is a
galled-tree that displays Tw and T ′

w, but has less galls than Hw. Then one could
use this network to obtain a galled-tree that displays T and T ′ by adjoining the
subnetwork below w in H to w resulting in a galled-tree with less galls than H; a
contradiction to the minimality of H. It now follows that amongst all galled-trees
that display Tw and T ′

w, the galled-tree Hw has the smallest number of galls. By
the induction assumption, this implies that h(Tw, T ′

w) = k and so

h(T , T ′) = h(T |W, T ′|W ) + h(Tw, T ′
w)

= k + 1.

This completes the proof of the proposition. 2
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Nakhleh et al. [41] propose a method for inferring hybridization networks
that allows for errors in the estimation of the initial two gene trees. In brief,
when methods such as maximum likelihood or maximum parsimony infer trees
there are a number of equally or close-to-equally good trees that could have
been inferred. Thus the strict consensus of each such set of trees is perhaps a
better representative of the original data set than one particular tree. However,
this representative is typically unresolved, and so an interesting problem is the
following. Given two rooted phylogenetic X-trees T1 and T2, determine if there is
two rooted binary phylogenetic X-trees T ′

1 and T ′
2 such that T ′

i is a refinement
of Ti with the property that there is a galled-tree that displays T ′

1 and T ′
2 .

Moreover, if there is such a network, find T ′
1 and T ′

2 that minimizes the number
of galls over all galled-trees that display T ′

1 and T ′
2 . In [41], the authors provide a

linear-time algorithm for when the galled-tree contains exactly one gall. Huynh et
al. [32] significantly extend this result by providing a quadratic-time algorithm
for this problem with no restrictions on the number of galls in the resulting
galled-tree. Moreover, they also show that this algorithm easily extends to an
efficient algorithm for an arbitrary number of input trees. For further details, we
refer the reader to [32].

Controlling the way in which hybridization events occur in a network is a
possible avenue for further polynomial-time algorithms. Indeed, recent positive
results by Huson et al. [31] suggest that this control could be done in a number
of successful ways.

11.5 Recombination networks

The perfect phylogeny with recombination is a problem that has a very simi-
lar flavour to that of Minimum Hybridization. Indeed, the two problems are
closely related. Instead of inputting a collection of trees, the input for this prob-
lem is a collection, B say, of binary sequences. However, the goal is essentially
the same. Loosely speaking, this goal is to compute the minimum number of “re-
combination” events to “explain” B. Introduced by Hein [24,25], there is now a
number of papers on this problem, including [5,18–21,49,51–54]. In this section,
we describe this problem and its relationship with Minimum Hybridization.
This relationship will be used in Section 11.7.

An (n, m)-recombination network N is a rooted acyclic digraph with exactly n

vertices of outdegree zero in which each vertex other than the root has either one
or two incoming arcs, and each vertex of N is labelled with a binary sequence of
length m. The sequence labelling the root is called the root or ancestral sequence.
A vertex with two incoming arcs is called a recombination vertex. Each integer
in {1, 2, . . . , m} is assigned to exactly one arc of N that is not directed towards
a recombination vertex. Beginning with the root and its associated sequence,
each of the binary sequences labelling the other vertices is based on the binary
sequence of its parent and the incoming arc (in the case it is a non-recombination
vertex) or its parents (in the case it is a recombination vertex). In particular,
the sequences satisfy the following properties:
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Fig. 11.14. A (4, 4)-recombination network in which the root sequence is the
all-0 sequence.

(i) If v is a non-recombination vertex with incoming arc e, then the sequence
labelling v is obtained from the sequence labelling its parent by changing
the i-th element (site) from 0 to 1 or 1 to 0 appropriately for each integer
i assigned to e. If no integer is assigned to e, then the sequence labelling v

is the same as its parent.

(ii) If v is a recombination vertex, then, for some positive integer p strictly
between 1 and m (that is, 1 < p < m), the sequence labelling v is the
concatenation of the first p elements of the sequence labelling one of its
parents and the last m − p elements of its other parent. To describe the
corresponding recombination event one labels the incoming arcs either P

or S depending upon which parent contributes the prefix part or the suffix
part of the sequence, respectively, and also labels the recombination vertex
with an ordered pair indicating the “break-point”.

Biologically speaking, the mutations in (i) are called point mutations and, as
each site in the sequence mutates exactly once, we are under the so-called in-
finite sites model of mutations. The recombination process in (ii) is called a
single-crossover recombination as there is exactly one break-point in the result-
ing sequence. Even though this model of recombination is very simple, it is the
basis of most applications of coalescent theory to recombining sequences [27].

As an example, a recombination network is shown in Fig. 11.14, where the
root sequence is the all-0 sequence. For each recombination vertex in this exam-
ple, the first two elements in the associated sequence come from its ‘left’ parent
and the second two elements come from its ‘right’ parent. (We have omitted the
labelling of the recombination vertices and their incoming arcs as described in
(ii) above.) In the literature, a recombination network is commonly referred to
as a “phylogenetic network”.

Let B be a collection of n binary sequences of length m. An (n, m)-recombination
network N explains B if the n vertices of outdegree zero are bijectively labelled
with the elements of B. For example, the recombination network in Fig. 11.14
explains the collection {1001, 1000, 1010, 0110} of binary sequences. Over all re-
combination networks that explain B, we are interested in finding one that has
the minimum number of recombination vertices. The perfect phylogeny with
recombination problem is formally stated as follows.
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Perfect Phylogeny with Recombination
Instance: A set B of n binary sequences of length m.
Goal: Find an (n, m)-recombination network N that explains B with minimum
number of recombination vertices.
Measure: The number of recombination vertices in N .

Depending upon whether the root sequence of the recombination network is
specified or not specified in advance, the problem can be interpreted in one of
two ways. If the root sequence is specified in advance, then, from a mathematical
perspective, no generality is loss in always choosing the root sequence to be
the all-0 sequence. We denote the minimum values for the two problems by
r(B) and r∗(B), respectively, and note that r∗(B) ≤ r(B). The reason for the
wording “perfect phylogeny” is that the classical perfect phylogeny problem can
be interpreted as the problem of deciding if there is a recombination network
with no recombination vertices that explains B.

Recombination events are one of the primary influences on genetic variation
amongst individuals of the same population. Recognizing how many and where
in the sequence these events occur is expected to be a contributing factor in
answering a number of important problems in genetics including those centred
around genetic diseases. Thus the motivation for Perfect Phylogeny with
Recombination is similar to that for Minimum Hybridization except that our
input is now a collection of binary sequences. SNP (single nucleotide polymor-
phism) sequences satisfy this criteria and are now of great interest (for example,
see [28]). Each sequence represents an individual of the same population and,
in such a sequence, each site represents an allele of the species. In the case the
root sequence is specified in advance, a 0 denotes the ancestral allele, while a 1
denotes the derived (mutant) allele. Observe that 0 → 1 is the only allowable
transition in this case.

There is a close relationship between Minimum Hybridization and Per-
fect Phylogeny with Recombination with the root sequence specified in
advance. In particular, the former problem can be interpreted as a particular
instance of the latter.

Using the construction in Wang et al. [54], let T and T ′ be two rooted
binary phylogenetic X-trees and let |X | = n. Noting that |E(T )| = |E(T ′)| =
2(n − 1), bijectively label the edges of T and T ′ with the elements of C =
{χ1, χ2, . . . , χ2(n−1)} and C′ = {χ′

1, χ
′
2, . . . , χ

′
2(n−1)}, respectively. Each of the

elements in C and C′ represent a site. Associated to each vertex v (resp. v′) of
T (resp. T ′) is the binary sequence of length 2(n− 1) in which the i-th element
is 1 if and only if χi (resp. χ′

i) labels an edge from the root of T (resp. T ′) to
v (resp. v′). Now, for each x ∈ X , concatenate the sequences labelling x in T
and T ′ with the sequence labelling x in T ′ following the sequence labelling x

in T . Let B be the resulting collection of n (concatenated) sequences of length
4(n− 1). The following theorem due to Bordewich and Semple [13] provides the
above mentioned close relationship.
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Theorem 11.9 Let T and T ′ be two rooted binary phylogenetic X-trees, and
let B be the collection of binary sequences that is constructed from T and T ′ as
above. Then

h(T , T ′) = r(B).

The proof of Theorem 11.9 is constructive. In particular, if H is a minimum
hybridization network that displays T and T ′, then there is a polynomial-time
modification of H that results in a recombination network N that explains B

with the all-0 sequence at the root and has h(H) recombination vertices. On the
other hand, if N is a recombination network explaining B with the all 0-sequence
at the root and k recombination vertices, then N can be modified to produce
a hybridization network that displays T and T ′ with k hybridization vertices.
Again, this modification can be done in polynomial time.

Remark In this section, we have restricted ourselves to single-crossover re-
combinations. However, we note here that more general recombinations called
multiple-crossover recombinations have also been considered (for example, see
[18, 19, 31]). Here, if v denotes the recombination vertex, then the sequence la-
belling v has the weaker property that, for all i, the i-th element in the sequence
is the same as the i-th element in at least one of the parent sequences. By
specifying, for all i, which parent the i-th element came from, the number of
crossovers events is equal to the number of pairs (j, j + 1) in which the j-th ele-
ment comes from one parent while the (j + 1)-th element comes from the other
parent. Extending the definition of an (n, m)-recombination network in the ob-
vious way to allow for multiple-crossover events, the “goal” of the optimization
problem analogous to Perfect Phylogeny with Recombination could be
interpreted in one of two ways. Namely, minimize the number of recombination
vertices in a network that explains an initial set B of binary sequences or min-
imize the number of crossover events in a network that explains B. While the
first interpretation has received a reasonable amount of attention, the second
interpretation appears to have received little attention.

11.6 Hybridization networks in real time

An important biological requirement of hybridization networks is that hybridiza-
tion events occur between contemporaneous taxa (past or present). Maddison [35]
pointed out this requirement and, from a mathematical perspective, it has been
considered in several papers since including [8,39,51,53]. We begin this section by
considering the problem of whether a given hybridization network is consistent
with this requirement.

11.6.1 Temporal representations

Let H be a hybridization network with vertex set V , and let N = {0, 1, 2, . . .}.
We say that H has a temporal representation if there is a map f : V → N that
satisfies the following two properties:
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Fig. 11.15. (a) A temporal labelling of a hybridization network and (b) a “real
time” realization of this labelling.
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Fig. 11.16. (a) A hybridization network with no temporal representation and
(b) its temporal digraph.

(i) If (u, v) is an arc of H with d−(v) = 1, then f(u) < f(v).

(ii) If (u, v) is an arc of H with d−(v) ≥ 2, then f(u) = f(v).

Such a map f is called a temporal labelling of H. The purpose of (ii) is so that
hybridization events occur with contemporaneous taxa. A temporal labelling of
a hybridization network is shown in Fig. 11.15(a). A “real time” realization of
this labelled network is shown in Fig. 11.15(b).

All rooted phylogenetic trees have a temporal representation, but not all hy-
bridization networks have such a representation. For example, the hybridization
network in Fig. 11.16(a) has no temporal representation. The reason for this is
that u and t, the parents of b, must coexist in time, while s and v, the parents of c,
must also coexist in time. By considering the ancestor-descendant relationships
of s and u, and t and v this is not possible.

We next describe a simple polynomial-time algorithm for deciding whether a
hybridization network has a temporal representation and, if so, constructs such
a representation. Due to Baroni et al. [8], we begin by defining a particular
digraph around which the algorithm is based. Let H be a hybridization network
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with vertex set V . Ignoring the direction of the arcs of H, set

[v] = {v} ∪ {u ∈ V : there is a path of hybridization arcs from u to v},

where a hybridization arc is an arc that is directed into a hybridization vertex.
Note that we have partitioned V into equivalence classes, where [v] = {v}

precisely if v is not incident with a hybridization arc. Setting [V ] = {[v] : v ∈ V },
we define the temporal digraph of H as the digraph whose vertex set is [V ] and
where [u] and [v] are joined by an arc ([u], [v]) if there is a vertex a in [u] and a
vertex b in [v] such that (a, b) is an arc of H with d−(b) = 1. For example, the
digraph in Fig. 11.16(b) is the temporal digraph of the hybridization network in
Fig. 11.16(a).

It turns out that H has a temporal representation if and only if its tem-
poral digraph is acyclic and this is the basis of the following algorithm whose
correctness is shown in [8].

Algorithm: TempRep(H)
Input: A hybridization network H with vertex set V .
Output: A temporal labelling of H or the statement H has no temporal labelling.

1. Construct the temporal digraph DH of H.

2. Find an acyclic ordering, V0, V1, . . . , Vk say, of DH. If there is no such ordering,
then return H has no temporal representation.

3. Define f : V → N by setting f(v) = i for all v ∈ V , where [v] ∈ Vi.

4. Return the map f .

If a map f is returned by the algorithm, then f is a temporal labelling of H.
It is important to note that a temporal labelling of a hybridization network is no
more than an ordering of when past or present taxa appeared. Consequently, it
is the ordering on the vertices of V that is important and not the actual values.

If one is interested in obtaining, up to isomorphism, all temporal labellings
of H, then the above algorithm can be easily modified to output a list of all such
labellings, where a new labelling is outputted in polynomial time and where two
labellings are non-isomorphic if the relative orderings of the vertices are not the
same. Essentially, one selects non-empty subsets of vertices that have indegree
zero instead of a single vertex in the process of finding an acyclic ordering. All
such orderings result in a distinct temporal labelling and all such labellings can
be obtained this way. For further details, see [8].

We end this subsection with the following remark. If a hybridization network
H does not have a temporal representation, then Moret et al. [39] observed that,
by allowing for missing taxa, one could resolve this issue without adding to the
hybridization number of H. For example, consider the hybridization network in
Fig. 11.16(a). By creating two new vertices that subdivide the arcs (t, b) and
(s, c), and joining pendant arcs to each of these new vertices with new taxa, the
resulting hybridization network has a temporal representation. The role of such
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taxa is to carry a gene or combination of genes from the past into some time
when it can passed on into the new hybrid species. Of course, whether such taxa
exist or existed is a separate question.

11.6.2 Time ordered rooted subtree prune and regraft operations

Realizing the importance that time places on possible scenarios for evolutionary
histories, Song and Hein [51, 53] (also see [27]) considered a more restrictive
notion of the rooted subtree prune and regraft operation. This restriction allows
one to attack the problem of Perfect Phylogeny with Recombination in
which the root sequence is not specified in advance using rooted subtree prune
and regraft operations.

Let T be a rooted binary phylogenetic tree and let V̊ = {v1, v2, . . . , vn−2} be
the set of interior vertices of T . A total ordering on V̊ is a binary relation <T

given by vi <T vj if the hypothetical ancestor or speciation event represented
by vi predates the hypothetical ancestor or speciation event represented by vj .
In mathematics, total orderings are also called linear orderings. We say that T
is ordered if V̊ is totally ordered. By default, such an ordering must preserve the
ancestor-descendant relationships given by the topology of T .

In performing a rooted subtree prune and regraft operation on an ordered tree
T one must preserve the ordering on V̊ . In particular, referring to the notation
in the definition of a rSPR operation in Section 11.3, for all vi, vj ∈ V̊ −{u}, we
have that vi <T ′ vj precisely if vi <T vj , where u is the ‘parent’ vertex of the
root of the subtree being pruned, T is the initial tree, and T ′ is the tree resulting
from the rSPR operation. Given two ordered rooted binary phylogenetic X-trees,
there is a sequence of (ordered) rSPR operations that transforms one tree into
the other. For further combinatorial results on this operation and the ordinary
rSPR operation, see Song [47, 48].

Now let B be a collection of binary sequences of equal length m. For each
i, the i-th sites in the sequences induce a character χi. Under the infinite-sites
model of mutation, let Pi be the collection of ordered rooted binary phylogenetic
X-trees that display χi, that is Pi is the collection of all such trees for which
there exists an edge whose deletion induces the bipartition of X induced by the
character states in χi. Consider the problem of minimizing the following sum:

m−1
∑

i=1

drSPR(Ti, Ti+1), (11.2)

where Ti ∈ Pi for all i and drSPR(Ti, Ti+1) denotes the minimum number of
(ordered) rSPR operations to transform Ti into Ti+1. It turns out that the min-
imum value of this sum is equal to r∗(B), the optimal value of Perfect Phy-
logeny with Recombination in which the root sequence is not specified in
advance [50]. Thus r∗(B) can be written in terms of the rSPR distance on or-
dered rooted binary phylogenetic trees. Moreover, a lower bound for r∗(B) can
be obtained by interpreting the terms in the sum in (11.2) as the ordinary rSPR
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distance between two rooted binary phylogenetic trees, where the total ordering
on the interior vertices is ignored.

The number of ordered rooted binary phylogenetic trees grows significantly
faster than the number of (ordinary) rooted binary phylogenetic trees, and so as
it currently stands the above approach to computing r∗(B) exactly is limiting
in practice. Nevertheless, by studying a particular data set for which previous
lower bounds have been calculated, Song and Hein have shown it can work. For
further details, see [51, 53] and note that Song and Hein use the terminology
“ancestral recombination graph” instead of recombination network.

11.7 Computational complexity

In this section, we discuss some of the computational issues associated with the
three main problems that we have discussed in this chapter, namely Minimum
Hybridization, Minimum rSPR, and Perfect Phylogeny with Recombi-
nation. Throughout this section, the interpretation of the last of these problems
will always be the one in which the root sequence is specified in advance.

The following theorem, which we have alluded to several times in this chapter,
is due to Bordewich and Semple [12, 13].

Theorem 11.10 Each of the optimization problems Minimum Hybridization,
Minimum rSPR, and Perfect Phylogeny with Recombination is NP-
hard.

The proofs of the NP-hardness of Minimum Hybridization and Minimum
rSPR make use of their characterizations in terms of agreement forests and
use ideas originating from Hein et al. [26]. The NP-hardness of Perfect Phy-
logeny with Recombination follows from Theorem 11.9 and the polynomial-
time constructions mentioned after it. To avoid repetition, these comments are
also valid for Theorem 11.11.

Despite the negativity of Theorem 11.10, there are some positive results for
these problems. Fixed-parameter algorithms are a practical way to find optimal
solutions of NP-hard problems if the parameter measuring the hardness of the
problem is small. For Minimum rSPR, Bordewich and Semple [12] showed that
there is such an algorithm where the rSPR distance itself is the parameter. In
particular, instead of computing the rSPR distance between two rooted binary
phylogenetic X-trees by an exhaustive search resulting in an algorithm that
takes time O((2n)2k) where n = |X | and k = drSPR(T , T ′), they showed that
there is a parameterized algorithm for computing this distance in O(f(k) · p(n))
where f(k) is some computable function depending on k and p is a polynomial
in n. The important point of this running time is that n and k are now separated
which means that, provided k is small, computing drSPR(T , T ′) may be efficiently
possible even when n is large. The important part of the analysis is Theorem 11.4.

Translating the setting in [23], Hallet and Lagergren give a fixed-parameter
algorithm for a problem that is a restriction of Minimum Hybridization (also
see [1] for a description of the algorithm). Parameterized by the hybridization
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number of the two trees, Bordewich and Semple [14] recently gave a fixed-
parameter algorithm for Minimum Hybridization in general. For further de-
tails of this last algorithm and an analysis of how well it works in practice, we
refer the interested reader to [14] and [11], respectively. For those wanting to find
out more about fixed-parameter algorithms, we refer the reader to [16] and [30].
The latter is an easy-to-read introduction to fixed-parameter algorithms and
describe three techniques for developing such algorithms.

For computationally hard problems, polynomial-time approximation algo-
rithms can efficiently find feasible solutions that are sometimes arbitrarily close to
the optimal solution. In particular, for a minimization problem, an r-approximation
algorithm means that, for all instances, the ratio of the size of the feasible solution
outputted by the algorithm and the size of an optimal solution is at most r. The
existence of polynomial-time approximation algorithms varies greatly amongst
NP-hard problems. For example, regardless of the choice of r, there is no such al-
gorithm for the general travelling salesman problem unless P=NP, while for some
problems π, no matter how close r is to 1, there is always such an algorithm. In
this latter case, we say that π exhibits a polynomial-time approximation scheme
(PTAS). Theorem 11.11 is due to Bordewich and Semple [13].

Theorem 11.11 Each of the optimization problems Minimum Hybridization,
Minimum rSPR, and Perfect Phylogeny with Recombination is APX-
hard. In particular, for each of these problems there is no polynomial-time ap-
proximation scheme unless P=NP.

For each of our optimization problems, the implication of Theorem 11.11 is
that, unless P=NP, there is some fixed constant r strictly bigger than 1 for which
there is no polynomial-time r-approximation algorithm. It is shown in [13] that,
for each of these problems, r is at least 2113

2112 .
Two polynomial-time approximation algorithms for Minimum rSPR have

appeared in the literature [26, 43]. Both are stated as 3-approximation algo-
rithms, however, each of these algorithms have been subsequently shown to be
incorrect in some way. Nevertheless, using these approaches, Bonet et al. [10]
describe a polynomial-time 5-approximation algorithm for Minimum rSPR. In-
tuitively, this algorithm builds an agreement forest locally. Currently, there ap-
pears to be no such algorithm for Minimum Hybridization. One might hope
that the algorithm in [10] extends to Minimum Hybridization, but, due to
the additional global condition on an acyclic-agreement forest, it seems unlikely
that such an approach will work. For an excellent reference on approximation
algorithms, see [4].

11.8 Concluding remarks

The understanding and analysis of reticulation in evolution is playing a promi-
nent role in modern-day phylogenetics. In this chapter, we considered one par-
ticular, but central, aspect; namely the problem of finding the smallest number
of reticulation events that are required to explain the evolution of a collection
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of species under consideration subject to some initial input. For us, the input
was a collection of rooted phylogenetic trees. The approach we have taken here
is analytical so as to provide a theoretical foundation for algorithmic solutions
to the problem. Furthermore, our main interest has been on a general solution
rather than one that is restricted in some way. Unfortunately, despite the fixed-
parameter algorithms for Minimum rSPR and Minimum Hybridization, and
the divide-and-conquer algorithm for Minimum Hybridization described in
this chapter, we are always going to be limited in finding exact solutions because
of the NP-hardness of these problems. This turns our attention to future work.

A number of papers have considered efficient algorithms for computing lower
bounds for Perfect Phylogeny with Recombination (for example, see
[5, 22, 29, 38, 52]). While one could use the constructions outlined after The-
orem 11.9 and these results, it appears that little attention has been given to
finding such algorithms directly for Minimum rSPR and Minimum Hybridiza-
tion. Given the incorrectness of previous approximations for Minimum rSPR, a
mathematically challenging task is to improve the 5-approximation algorithm for
this problem. Whether Minimum Hybridization even has such an algorithm,
regardless of the size of the ratio, is an interesting question.

In this chapter, we have only considered combinatorial questions. While a
combinatorial understanding of reticulation is far from complete, it is statistical
questions that will eventually need to be addressed. For example, how can one
use differing bootstrap support values for conflicting phylogenies to quantify and
distinguish between genuine reticulation and other biological processes that give
rise to conflicts such as lineage sorting? Combinatorial considerations are often
the first steps towards statistical-based approaches in phylogenetics and so it is
highly likely that combinatorial insights into hybridization networks will aid the
development of such approaches to reticulation.

Acknowledgments

Many thanks to Peter Lockhart, Katherine St. John, and Yun Song for a number
of helpful discussions during the writing of this chapter, and Simone Linz for
providing the figures for the grass data set example in Section 11.4.2. This work
was supported by the New Zealand Marsden Fund (UOC310).



REFERENCES

[1] Addario-Berry, L., Hallett, M., and Lagergren, J. (2003). Towards identifying
lateral gene transfer events. In: Proceedings of the Pacific Symposium on
Biocomputing, Vol. 8, pp. 279-290.

[2] Allan, H. H. (1961). Flora of New Zealand, Volume I, Indigenous tracheo-
phyta: Psilopsida, Lycopsida, Filicopsida, Gymnospermae, Dicotyledones. Gov-
ernment Printer, Wellington, New Zealand.

[3] Allen, B. L. and Steel, M. (2001). Subtree transfer operations and their in-
duced metrics on evolutionary trees. Annals of Combinatorics, 5, 1-13.

[4] Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela,
A., and Protasi, M. (1999). Complexity and Approximation. Springer, Berlin.

[5] Bafna, V. and Bansal, V. (2004). The number of recombination events in a
sample history: conflict graph and lower bounds. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 1, 78-90.

[6] Baroni, M. (2004). Hybrid phylogenies: a graph-based approach to represent
reticulate evolution. Unpublished PhD thesis, University of Canterbury.

[7] Baroni, M., Semple, C., and Steel, M. (2004). A framework for representing
reticulate evolution. Annals of Combinatorics, 8, 391-408.

[8] Baroni, M., Semple, C., and Steel, M. (2006). Hybrids in real time. Systematic
Biology, 55, 46-56.
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