
SIZE OF A PHYLOGENETIC NETWORK

CHARLES SEMPLE

Abstract. We consider the problem of when the total number n of ver-
tices in a phylogenetic network N is bounded by the number ` of leaves
in N . The main result of the paper says that, provided N avoids three
certain substructures, then n is at most quadratic in `. Furthermore, if
any of these substructures is present in N , then ` does not necessarily
bound n.

1. Introduction

A particularly active area of current research in phylogenetics is the math-
ematical study of phylogenetic networks. These networks generalise phylo-
genetic (evolutionary) trees as they additionally allow for the representation
of non-treelike evolutionary events. These events include hybridisation and
recombination, and are collectively called reticulation events. Not surpris-
ingly, phylogenetic networks bring many new complications. For example,
it is well known that the total number of vertices in a phylogenetic tree is
bounded by the size of its leaf set, but the analogous result for phylogenetic
networks does not necessarily hold. For phylogenetic algorithms, the typical
parameter of interest is the size of the leaf set, and so this implies that it
is not always possible to write the running time of phylogenetic network
algorithms in terms of this parameter. However, for algorithms restricted
to certain subclasses of phylogenetic networks, it is possible to write the
running times in this way as the total number of vertices of a phylogenetic
network that is in one of these classes is (polynomially) bounded by the size
of its leaf set. See, for example, [1, 2, 3, 4, 7].

Without a predetermined class of phylogenetic networks in mind, in this
paper, we investigate the problem of when the total number n of vertices
of a phylogenetic network N is bounded by the number ` of leaves in N .
The main result of the paper says that, provided N avoids three certain
substructures, then n is at most quadratic in `. Moreover, as well as showing
that this bound is sharp, we show that if any one of these substructures is
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Figure 1. A phylogenetic network N on X = {x1, x2, x3, x4, x5}.

present in N , then there is no guarantee that ` bounds n. The rest of the
introduction formalises these results.

Throughout the paper, X denotes a nonempty finite set X, and notation
and terminology follows Semple and Steel [6]. A phylogenetic network N on
X is a rooted acyclic directed graph with no parallel edges and satisfying
the following properties:

(i) the root has in-degree zero and out-degree two;
(ii) a vertex with out-degree zero has in-degree one, and the set of vertices

with out-degree zero is X; and
(iii) all other vertices either have in-degree one and out-degree two, or in-

degree two and out-degree one.

If |X| = 1, then, for technical reasons, we additionally allow for N to consist
of the single vertex inX. The vertices inX are called leaves andX is referred
to as the leaf set of N . Furthermore, the vertices with in-degree one and
out-degree two are called tree vertices, while the vertices with in-degree
two and out-degree one are called reticulations. Thus the vertex set of N
is partitioned into four types of vertices. Namely, the root, tree vertices,
reticulations, and leaves. The edges directed into a reticulation are called
reticulation edges. A rooted binary phylogenetic X-tree is a phylogenetic
network on X with no reticulations. In the literature, phylogenetic networks,
as defined here, are sometimes referred to as binary phylogenetic networks.
To illustrate some of these concepts, a phylogenetic network N on X =
{x1, x2, x3, x4, x5} is shown in Figure 1. Here, N has exactly six tree vertices
and three reticulations.

Let N be a phylogenetic network, and let u and v be distinct vertices of
N . If (u, v) is an edge of N , then u is a parent of v or, equivalently, v is a
child of u. More generally, if there is a directed path from u to v in N , then
u is an ancestor of v or, equivalently, v is a descendant of u.
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We next describe the certain substructures of a phylogenetic network
alluded to earlier in the section. Let N be a phylogenetic network. If (u, v)
is an edge of N and both u and v are reticulations, we say (u, v) is a parent-
child reticulation. This is the first of the three substructures. To describe
the other two substructures, let

C = u1 v1 u2 v2 u3 · · ·uk vk uk+1

be the vertices of an underlying path or cycle in N . If uk+1 is a tree vertex
and, for all i ∈ {1, 2, . . . , k}, the vertex ui is a tree vertex and vi is a
reticulation, we say C is a reticulation chain. For example, the parents of
x3 and x4 in Figure 1 are the reticulations of a (maximal) reticulation chain
in N . Furthermore, C is closed if u1 = uk+1 and C is overlapping if, for
some i 6= j, there are reticulations vi and vj such that vi is an ancestor of
vj .

The main result of the paper is the following theorem.

Theorem 1.1. Let N be a phylogenetic network on n vertices with ` leaves.
Suppose that N has no parent-child reticulations, and no closed or overlap-
ping reticulation chains. Then

n ≤ `2 + 3`− 3.

Moreover, this bound is sharp.

The proof of Theorem 1.1 is given in the next section. Each of the re-
strictions on N in the statement of Theorem 1.1 are necessary for, as we
show in the last section, Section 3, if N contains parent-child reticulations,
closed reticulation chains, or overlapping reticulation chains, then ` does not
necessarily bound n.

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We begin with two lemmas. The
first lemma is established in [5].

Lemma 2.1. Let N be a phylogenetic network on n vertices with ` leaves,
r reticulations, and t tree vertices. Then

n+ 1

2
= `+ r = t+ 2.

Lemma 2.2. Let N be a phylogenetic network with ` leaves, and let C be
a reticulation chain in N that is not overlapping. If N has no parent-child
reticulations, then k ≤ `, where k is the number of reticulations in C.
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Proof. Let

C = u1 v1 u2 v2 u3 · · ·uk vk uk+1,

and suppose that N has no parent-child reticulations. Since ` ≥ 1, we may
assume that k ≥ 2. Let ρ denote the root of N and let X denote the leaf set
of N . Observing that, as C is not overlapping and so there is no directed
path in N from a vertex in {u2, u3, . . . , uk} to a vertex in {u1, u2, . . . , uk+1},
let N ′ be the phylogenetic network on X ′ obtained from N as follows:

(i) Delete every vertex that does not lie either on a path from ρ to a vertex
in {u2, u3, . . . , uk} or on a path from a vertex in {v1, v2, . . . , vk} to a
leaf.

(ii) Delete the reticulation edge (u1, v1) if it still remains. Similarly, delete
(uk+1, vk). Denote the child vertices of v1 and vk as w1 and wk, re-
spectively.

(iii) For each reticulation on a path from ρ to a vertex in {u2, u3, . . . , uk}
delete exactly one incident reticulation edge.

(iv) Contract any resulting non-root degree-two vertices.
(v) Lastly, if ρ has out-degree one, then contract the incident edge and

relabel the identified vertex as ρ.

Since N has no parent-child reticulations, each of w1 and wk is either a tree
vertex or a leaf and, by construction, N ′ has no parent-child reticulations.
Furthermore, X ′ ⊆ X. Let `′ denote the number of leaves in N ′. Since
`′ ≤ `, to complete the proof it suffices to show that k ≤ `′.

Suppose, to the contrary, that k ≥ `′ + 1. Let n′, r′, and t′ denote the
total number of vertices, the number of reticulations, and the number of
tree vertices in N ′, respectively. Using Lemma 2.2, we next count n′ in two
different ways. Since there are no reticulations in N ′ lying on a path from
ρ to a vertex in {u2, u3, . . . , uk}, the number of tree vertices in the union of
these paths is the same as the sum of the number of tree vertices and the
number of leaves in a rooted binary phylogenetic tree with k−1 leaves. This
sum is 2k − 4 as the root is not counted. Let s′ denote the number of tree
vertices on a path in N ′ from a vertex in {v2, v3, . . . , vk−1} ∪ {w1, wk} to a
leaf. Then

t′ = 2k − 4 + s′,

and so, by Lemma 2.2,

n′ + 1

2
= t′ + 2 = s′ + 2k − 2.

That is,

n′ = 2s′ + 4k − 5.(1)
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We next count n′ in terms of `′ and r′. Since N ′ has no parent-child
reticulations, the child of each reticulation in N ′ is either a tree vertex or a
leaf. Furthermore, as each of w1 and wk is a tree vertex or a leaf, and its
parent is not a reticulation, it follows that

r′ ≤ s′ + `′ − 2.

Therefore, by Lemma 2.2,

n′ + 1

2
= `′ + r′ ≤ s′ + 2`′ − 2,

that is,

n′ ≤ 2s′ + 4`′ − 5.

But, `′ ≤ k − 1, so

n′ ≤ 2s′ + 4k − 9,

contradicting (1). Hence k ≤ `′ and so k ≤ `, thereby completing the proof
of the lemma. �

We now prove Theorem 1.1. A cherry in a phylogenetic network on X is
a 2-element subset {a, b} of X such that a and b have the same parent.

Proof of Theorem 1.1. Let n and ` denote the total number of vertices and
the number of leaves in N , respectively, and suppose that N has no parent-
child reticulations, and no closed or overlapping reticulation chains. We first
prove, by induction on `, the inequality in the statement of the theorem. If
` = 1, then N either consists of a single vertex, in which case the inequality
holds, or the parent of the unique leaf is a reticulation, v say. Consider the
latter. If both parents of v are tree vertices, then it is easily seen that N
contains a directed cycle; a contradiction. Thus at least one parent of v
is a reticulation, contradicting the assumption that N has no parent-child
reticulations. It follows that the inequality holds when ` = 1. Now suppose
that ` ≥ 2, and that the inequality holds for all phylogenetic networks with
at most `− 1 leaves, and having no parent-child reticulations, and no closed
or overlapping reticulation chains.

First assume that N has a cherry {a, b}. Let N ′ be the phylogenetic
network obtained from N by deleting b and contracting the resulting degree-
two vertex. Note that if the parent of a and b is the root of N , then N
consists of three vertices, and we delete b and contract the edge incident
with the root. By construction, it is clear that N ′ has no parent-child
reticulation, and no closed or overlapping reticulation chains. Therefore, by
induction,

n′ ≤
(
`′
)2

+ 3`′ − 3,
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where n′ and `′ denote the total number of vertices and the number of leaves
in N ′, respectively. But then, as n′ = n− 2 and `′ = `− 1, we have

n− 2 ≤ (`− 1)2 + 3(`− 1)− 3.

In other words,

n ≤ `2 + `− 3 ≤ `2 + 3`− 3,

and so the inequality holds.

Now assume that N has no cherries. In terms of the number of edges on
a directed path, let w be a reticulation in N at maximum distance from the
root. Let C be a maximal reticulation chain in N that contains w. Without
loss of generality, we may assume that

C = u1 v1 u2 v2 u3 · · ·uk vk uk+1,

where, for some i ∈ {1, 2, . . . , k}, we have w = vi. By maximality and the
assumption that N has no cherries, the only descendant of vi in N is a leaf.

Let N ′ be the phylogenetic network obtained from N as follows:

(i) Delete vi and its child leaf.
(ii) For each j ∈ {1, 2, . . . , i−1}, delete (uj , vj) and, for each j ∈ {i+1, i+

2, . . . , k}, delete (uj+1, vj).
(iii) Contract each of the resulting degree-two vertices in

{u1, u2, . . . , uk+1} ∪ {v1, v2, . . . , vi−1, vi+1, . . . , vk}.

Since N has no closed or overlapping reticulation chains, N ′ is indeed a
phylogenetic network. Moreover, as N has no parent-child reticulations, it
follows by the maximality of C that N ′ has no parent-child reticulations.
Note that, because of maximality, one child of u1 is a tree vertex or a leaf
and one child of uk+1 is a tree vertex or a leaf. Furthermore, it is easily
checked that N ′ has no closed or overlapping reticulation chains. Let n′

and `′ denote the total number of vertices and the number of leaves in N ′,
respectively. By induction,

n′ ≤
(
`′
)2

+ 3`′ − 3.

Also, `′ = `− 1 and, as C consists of 2k + 1 vertices,

n′ = n− (2k + 1)− 1.

Thus

n− (2k + 1)− 1 ≤ (`− 1)2 + 3(`− 1)− 3,

that is,

n ≤ `2 + `+ 2k − 3.

But, by Lemma 2.2, k ≤ ` as C is not overlapping. Hence

n ≤ `2 + `+ 2`− 3 = `2 + 3`− 3,



SIZE OF A PHYLOGENETIC NETWORK 7

z2 z3 z4z1

N4

x2x1

N2

y1 y2 y3

N3

Figure 2. For ` = 2, ` = 3, and ` = 4, the phylogenetic
networks N2, N3, and N4 reach the upper bound of `2+3`−3
vertices in total.

and so the inequality holds.

To see that the inequality in Theorem 1.1 is sharp, consider Figure 2.
Each of the phylogenetic networks N2, N3, and N4 has no parent-child
reticulations, and no closed or overlapping reticulation chains. Moreover,
for ` = 2, ` = 3, and ` = 4, the phylogenetic networks N2, N3, and N4,
respectively, reach the upper bound of `2 + 3` − 3 vertices in total. Note
that, for ` = 1, the phylogenetic network consisting of a single vertex reaches
this upper bound. In general, we can recursively construct an appropriate
phylogenetic network with ` leaves and whose total number of vertices is
`2 + 3`− 3 by taking the one with `− 1 leaves and adding 2`+ 2 vertices in
a way analogous to that in which N4 can be constructed from N3. �

3. Examples

In this section, we give explicit examples to show that if N is a phylo-
genetic network that contains parent-child reticulations, closed reticulation
chains, or overlapping reticulation chains, then there is no guarantee that
the total number of vertices in N is bounded by the size of its leaf set.
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Figure 3. A phylogenetic network with parent-child reticu-
lations but no closed or overlapping reticulation chains.

x1 x2 x1 x2 x3
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Figure 4. Two phylogenetic networks with no parent-child
reticulations. The phylogenetic network N2 contains closed
reticulation chains, while N3 contains a single maximal over-
lapping reticulation chain.

First consider the phylogenetic network N1 shown in Figure 3. The total
number of vertices in N1 is not bounded by the size of its leaf set. It contains
parent-child reticulations but no closed or overlapping reticulation chains.

Now consider the phylogenetic networks N2 and N3 shown in Figure 4.
Neither N2 nor N3 contains a parent-child reticulation. Yet, for each of N2

and N3, the number of leaves does not bound the total number of vertices.
The phylogenetic network N2 contains closed reticulations but no overlap-
ping reticulation chain, whileN3 contains a single maximal reticulation chain
which is overlapping but not closed.



SIZE OF A PHYLOGENETIC NETWORK 9

References

[1] M. Bordewich, C. Semple, Reticulation-visible networks, Adv. Appl. Math. 78 (2016)
114–141.

[2] P. Gambette, A.D.M. Gunawan, A. Labarre, S. Vialette, L. Zhang, Locating a tree in
a phylogenetic network in quadratic time, in: Proc. 19th Ann. Inf. Conf. Res. Comp.
Mol. Biol. (RECOMB’15), Lecture Notes in Computer Science, vol. 9029, 2015, pp.
96–107.

[3] A.D.M. Gunawan, B. DasGupta, L. Zhang, Locating a tree in a reticulation-visible
network in cubic time, in: Proc. 20th Ann. Inf. Conf. Res. Comp. Mol. Biol. (RE-
COMB’16), in press.

[4] L. van Iersel, C. Semple, M. Steel, Locating a tree in a phylogenetic network, Inform.
Process. Lett. 110 (2010) 1037–1043.

[5] C. McDiarmid, C. Semple, D. Welsh, Counting phylogenetic networks, Ann. Combin.
19 (2015) 205–224.

[6] C. Semple, M. Steel, Phylogenetics, Oxford University Press, Oxford, 2003.
[7] S.J. Willson, Properties of normal networks, Bull. Math. Biol. 72 (2010) 340–358.

School of Mathematics and Statistics, University of Canterbury,
Christchurch, New Zealand

E-mail address: charles.semple@canterbury.ac.nz


