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Abstract. Let X be a finite set and let d be a function from X × X into an
arbitrary group G. An example of such a function arises by taking a tree T
whose vertices include X, assigning two elements of G to each edge of T (one
for each orientation of the edge), and setting d(i, j) equal to the product of the
elements along the directed path from i to j. We characterize conditions when
an arbitrary function d can be represented in this way, and show how such
a representation may be explicitly constructed. We also describe the extent
to which the underlying tree and the edge weightings are unique in such a
representation. These results generalize a recent theorem involving undirected
edge assignments by an Abelian group. The non-Abelian bi-directed case is of
particular relevance to phylogeny reconstruction in molecular biology.

1. Introduction

A classical problem in classification is the following: when can an arbitrary
metric on a finite set be realized by embedding the points of the metric space in
a positively edge-weighted tree with its associated minimum path-length metric?
More precisely, given a metric d : X × X → R

≥0, when does there exist a tree
T = (V, E) with X ⊆ V and a weighting w : E → R

≥0 such that d(i, j) is the sum
of the weights of the edges on the path connecting vertices i and j? Furthermore,
if d has such a representation, what can one say concerning the possible choices of
T and w?

Both questions have well-known solutions which date back 30 years (see [7, 14,
16]). Specifically, a tree representation exists for all of X precisely if it exists for
every subset of X of size at most 4, and this, in turn, is equivalent to an appropriate
“four point condition” involving (in)equalities on sums of pairs of d(i, j) values.
Furthermore, when they exist, the pair (T, w) that accommodates a representation
of d is uniquely determined, provided T has no vertices in V −X of degree less than
3 and w is strictly positive. Note that the last two provisos can always be imposed.

These classical results, which have become a central tool in classification (par-
ticularly in evolutionary biology) have been subsequently generalized in several
directions. Hakimi and Patrinos [11] considered two extensions: firstly, to allow for
edge weightings over R (rather than just R

≥0); and, secondly, to consider trees in
which each edge is assigned two real numbers (one for each orientation of the edge),
with d(i, j) now being defined as the sum of the weights on the directed path from
i to j. This second extension allows, but does not necessarily imply, non-symmetry
in the function d.

A second line of generalization was adopted by Bandelt and Steel [4] to allow edge
weightings to take values in a suitably structured Abelian semigroup. One spin-off
of this approach was to provide a tree representation for distance hereditary graphs.

A third line of generalization was provided by Böcker and Dress [5] who devel-
oped a purely combinatorial statement (i.e. involving no algebraic structure) which
implied the result of [4]; though, as pointed out in [5], the two results are actually
equivalent. The main theorem from [5] will be a central tool here.
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This paper represents a continuation of this story. We generalize the approach
of [4] by allowing the edge weightings, and hence d, to take values in an arbitrary
group, and we follow the approach of Hakimi and Patrinos of allowing each edge to
have two weightings, according to its two orientations. This two-step generalization
leads to only a slight complication in the statement of the main existence theorem.

A key motivation for considering these generalizations comes from the field of
molecular biology, and, in particular, the problem of reconstructing evolutionary
trees from aligned genetic sequences. If one assumes that these sequences evolve
according to standard Markov models, then to each edge of the underlying tree
is associated two transition matrices (depending on the direction along the edge
that the process is run). The ordered product of these transition matrices along
the path from species i to species j is then the net transition matrix for the pair
(i, j) which can be estimated from genetic data (see [2, 8, 15]). Thus, if we have
r–state sequences (for instance r = 4 for DNA sequences), we are precisely in the
setting of assigning elements of the non-Abelian group G of r × r non-singular
real matrices to each orientation of the edges and taking (directed) products. The
results below describe conditions under which the associated tree (and the edge-
weightings) can be reconstructed (thereby generalizing the results of [2]). Moreover,
these results describe conditions under which such a representation exists over G
(of course, for this particular problem we require more - namely representation over
the semigroup of transition matrices, however, representation over G is certainly a
necessary condition). We return to this particular setting in the last section.

The structure of the paper is as follows. We begin Section 2 by setting up
some terminology and establishing a basic property of tree representations. Several
mappings are defined and some important relationships between these mappings
are determined. In Section 3, we state the two main (existence and uniqueness)
results, Theorems 3.1 and 3.2, and provide proofs. We also derive, as a corollary,
the main theorem from [4]. Section 4 makes some concluding remarks.

2. Preliminaries

Throughout this paper, X will denote a finite set, and G will denote an arbitrary
group with identity element 1G . We multiply elements of G from left to right.

Definitions.

• Let T be a tree with vertex set V and edge set E ⊆ {{x, y} : x, y ∈ V ; x 6=
y}. A vertex v ∈ V is interior if degT (v) > 1, otherwise v is a leaf. An edge
e = {u, v} ∈ E is interior if both u and v are interior vertices, otherwise
we say e is exterior.

• Suppose we have a map φ : X → V with the property that, for all v ∈ V,

degT (v) ≤ 2 ⇒ v ∈ φ(X).

The pair (T ; φ) is called an X–tree, and we will sometimes write this as
the ordered triple (V, E; φ). If φ is a bijection from X into the set V1 of
degree-one vertices of T , then (V, E; φ) is a phylogenetic X–tree. In this
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case, we can view X as a subset of V1 and so we will frequently just denote
a phylogenetic X–tree by just T or (V, E), since φ is implicitly determined.
An example of a phylogenetic X–tree for X = {i, j, k, x} is shown in Figure
1. Two X–trees (V, E; φ) and (V ′, E′; φ′) are isomorphic if there exists a
bijection α : V → V ′ which induces a bijection between E and E′ and which
satisfies φ′ = α ◦ φ, in which case α is unique. We denote isomorphism by
the symbol ≡.

• For a tree (V, E), let ~E := {(u, v) : {u, v} ∈ E}. We can regard ~E as
the set of pairs in which each member consists of an element of E and an
orientation of it. Each element of ~E is called an arc. Let w be a function
from ~E into the group G. We refer to w((u, v)) as the weight of arc (u, v)
and, for simplicity, we shall write w((u, v)) as w(u, v). Following [2], the
return-trip weights of an edge {u, v} are the elements w(u, v)w(v, u) and
w(v, u)w(u, v) of G. We say that an edge e is properly weighted if 1G is not
a return trip weight for e (or, equivalently, if the return trip weights for e
are not both equal to 1G).

• Given an X–tree (T ; φ) and vertices v1, v2 ∈ V , define D(T ;φ;w) : V ×V → G
by setting D(T ;φ;w)(v1, v2) equal to the (ordered) product of the weights of
the arcs on the directed path from v1 to v2 if v1 6= v2 and D(T ;φ;w)(v1, v2)
equal to 1G if v1 = v2. Define d(T ;φ;w) : X × X → G by setting

d(T ;φ;w)(i, j) := D(T ;φ;w)(φ(i), φ(j)),

for all i, j ∈ X . We will sometimes drop or abbreviate the subscripts on
D(T ;φ;w) and d(T ;φ;w) and write, for example, dT (i, j) or even just d(i, j) if
there is no chance of ambiguity.

• A proximity mapping is any function δ : X ×X → G that satisfies δ(i, i) =
1G for all i ∈ X . Furthermore, such a mapping is a tree proximity if there
is an X–tree (V, E; φ) with a weight function w : ~E → G such that, for all
i, j ∈ X , d(T ;φ;w)(i, j) = δ(i, j); in which case (T ; φ; w) is said to be a tree
representation of δ. If, in addition, (T ; φ) is a phylogenetic X–tree and each
interior edge is properly weighted, then (T ; φ; w), or more briefly (T ; w), is
said to be a standard tree representation of δ.

Before proving Proposition 2.1, we describe how a tree representation (T ; φ; w)
of a proximity map δ gives rise to an associated tree representation (T ′; φ′; w′) of δ
in which (T ′; φ′) is a phylogenetic X–tree. For all v ∈ V (the set of vertices of T ),
let S(v) := {i ∈ X : φ(i) = v} and let s(v) := |S(v)|. For each interior vertex v ∈ V
with s(v) > 0 and for each leaf v ∈ V with s(v) > 1, let us make v the endpoint
of s(v) new edges, and modify φ so that, instead of mapping S(v) to v, we map
S(v) bijectively to the endpoints of the new edges, thereby creating a phylogenetic
X–tree (T ′; φ′). Let w′ denote the extension of w to the arcs of T ′ by assigning the
value 1G to both arcs of each newly-created edge. We will refer to (T ′; φ′; w′) as
the phylogenetic expansion of (T ; φ; w).

Proposition 2.1. Let δ : X × X → G be a tree proximity map. Then there exists
a standard tree representation of δ.

Proof. By obtaining the phylogenetic expansion of some tree representation of δ
if necessary, we may assume that we have a tree representation (T ; φ; w) of δ for
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Figure 1. A phylogenetic X–tree for X = {i, j, k, x}.

which (T ; φ) is a phylogenetic X–tree with T = (V, E). We complete the proof by
showing how (T ; φ; w) can be transformed to a standard tree representation of δ.

Suppose that u and v are adjacent interior vertices of (T ; φ; w) with the prop-
erty that w(u, v)w(v, u) = 1G . Let (T ; φ; w′) be obtained from (T ; φ; w) by replac-
ing w with the weight function w′ defined, for all distinct v1 and v2 of V − {u},
by w′(u, v1) = w(v, u)w(u, v1), w′(v1, u) = w(v1, u)w(v, u)−1, and w′(v1, v2) =
w(v1, v2), provided the respective pairs are in ~E. Thus w′(u, v) = 1G and w′(v, u) =
1G . Using the fact that (T ; φ) is a phylogenetic X–tree, a routine check shows
that (T ; φ; w′) is a tree representation of δ. Let T1 denote the tree obtained from
T by contracting {u, v} and let E1 denote the edge set of T1. Then the tree
(T1; φ; w′′), where the mapping w′′ : ~E1 → G is defined, for all (v1, v2) ∈ ~E1,
by w′′(v1, v2) = w′(v1, v2), is also a tree representation of δ. Moreover, it is easily
checked that the return-trip weight of every edge in (T ; φ; w′) is equal to 1G if and
only if it is equal to 1G in (T ; φ; w). Hence, in (T1; φ; w′′), the number of prop-
erly weighted interior edges is one less than that for (T ; φ; w). By continuing this
process if necessary, we eventually obtain a standard tree representation of δ. �

Remark. In contrast to the classical real-valued symmetric setting, a tree proxim-
ity map may not have a tree representation in which the weighting function is proper
on all edges. In the proof of Theorem 3.1, we outline an explicit polynomial-time
construction of a standard tree representation of a tree proximity map.

Before proceeding further, we require the definitions of several maps, each of
which are essential to the proofs of the main theorems of this paper.

Definitions.

• Given a tree T = (V, E), a discriminating G–dating map is a function
t : V → G with the property that if {u, v} is an interior edge of T , then
t(u) 6= t(v).

• Given a proximity map δ : X × X → G and an element x in X , there is an
important associated map δx : X × X → G defined, for all i, j ∈ X , by

δx(i, j) := δ(x, i)δ(j, i)−1δ(j, x).

Note that δx is not usually a proximity map since we will generally have
δx(i, i) 6= 1G . We may regard δx as the non-Abelian analogue of a classical
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transformation for real-valued, symmetric promixity maps (described, for
example, by Farris et al. [10]).

• Given a phylogenetic X–tree T = (V, E), a discriminating G–dating map
t : V → G, an element x in X , and a proximity map δ : X × X → G, we
describe two associated mappings:
(i) A map d

(T ;t)
x : X × X → G which is defined as follows. For elements

u and v in V , write u ≤x v if u lies on the path from x to v. For all
i, j ∈ X , set

d(T ;t)
x (i, j) := t(glb≤x(i, j)),

where glb≤x denotes the greatest lower bound under the partial order
≤x.

(ii) An arc weighting function w = wt,x : ~E → G which is defined as
follows. To each pair of arcs (u, v) and (v, u), assign the weights w(u, v)
and w(v, u), respectively, so that:

∗ if v = i ∈ X − {x}, set

w(u, i) := t(u)−1t(i)δ(i, x)−1 and w(i, u) := δ(i, x);

∗ otherwise, if u ≤x v or u = x, set

w(u, v) := t(u)−1t(v) and w(v, u) := 1G .

• Lastly, two other mappings are needed. Suppose that (T ; w) is a standard
tree representation for a tree proximity δ with T = (V, E). Let x ∈ X .
(i)′ Define t = t(T ;w;x) : V → G as follows. If (u1, v1), (u2, v2), . . . , (uk, vk)

denotes the arcs on the path from x to v (so u1 = x and vk = v), then
set
t(v) := w(u1, v1)w(u2, v2) . . . w(uk, vk)w(vk, uk) . . . w(v2, u2)w(v1, u1).
In other words, for all v ∈ V , t(v) is the ordered product of the weights
of the arcs on the directed path from x to v multiplied by the ordered
product of the weights on the directed path from v back to x. Since
(T ; w) is a standard tree representation (and so each interior edge is
properly weighted), it follows that t(T ;w;x) is a discriminating G–dating
map.

(ii)′ The second map tδ,x : V → G is defined as follows: for each v ∈ V ,
select elements i and j of X so that v is the greatest lower bound
(under the partial order ≤x) of i and j, and set

tδ,x(v) := δx(i, j) = δ(x, i)δ(j, i)−1δ(j, x).

That tδ,x is well-defined (i.e. independent of the choice of i and j) so
that, in particular, δx(i, j) = δx(j, i) (for all i, j ∈ X) whenever δ is a
tree proximity, and, moreover, tδ,x is a discriminating G–dating map,
follows from the first part of Lemma 2.2.

The following Lemma establishes some important relationships between the
above mappings.

Lemma 2.2. Let δ : X × X → G be a proximity map and let x be an element of
X.
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1. If (T ; w) is a standard tree representation of δ, then

tδ,x = t(T ;w;x)

and
δx = d(T ;t′)

x ,

where t′ := t(T ;w;x) (= tδ,x).
2. Conversely, if δx = d

(T ;t)
x for some phylogenetic X–tree T and discrimi-

nating G–dating map t, then (T ; wt,x) is a standard tree representation of
δ.

Proof. Part 1. To prove the first half of Part 1, let v be an element of V , the set
of vertices of T , and choose elements i and j of X so that v = glb≤x(i, j) in T . Let
pv (resp. qv) be the ordered product of arc weights on the path from x to v (resp.
v to x) in T . Furthermore, let pi (resp. qj) be the ordered product of arc weights
on the path from v to i (resp. j to v) in T . Since (T ; w) is a tree representation of
δ, it follows that

tδ,x(v) = δ(x, i)δ(j, i)−1δ(j, x) = pvpi(qjpi)−1qjqv = pvqv = t(T ;w;x)(v),

as required.

For the second half of Part 1, set t′ := tδ,x. Since tδ,x = t(T ;w;x) and since t(T ;w;x)

is a discriminating G–dating map, tδ,x is a discriminating G–dating map. Now, for
all i, j ∈ X , we have

d(T ;t′)
x (i, j) = tδ,x(glb≤x(i, j)) = δ(x, i)δ(j, i)−1δ(j, x) = δx(i, j),

as required.

Part 2. Suppose that δx = d
(T ;t)
x , for some phylogenetic X–tree T and discrim-

inating G–dating map t. Firstly, note that, by the definition of wt,x and the fact
that t(u) 6= t(v) for each interior edge {u, v} of T , we see that each interior edge
of T is properly weighted. We complete the proof of Part 2 by verifying that
d(T ;wt,x)(i, j) = δ(i, j), for all i, j ∈ X . Let I denote the cardinality of {x, i, j}.
Depending on the value of I, there are three cases to consider:

• I = 1. In this case, d(T ;wt,x)(x, x) = 1G = δ(x, x), as required.
• I = 2. In this case, we may assume that i = x. Since δx = d

(T ;t)
x , we deduce

that t(x) = 1G and so, by the definition of wt,x, we have d(T ;wt,x)(x, j) =
t(j)δ(j, x)−1. Therefore, as t(j) = t(glb≤x(j, j)) = d

(T ;t)
x (j, j) = δx(j, j) =

δ(x, j)δ(j, x), it follows that d(T ;wt,x)(x, j) = δ(x, j). Furthermore, from the
definition of wt,x, we directly get d(T ;wt,x)(j, x) = δ(j, x), as required.

• I = 3. By the definition of wt,x, we have

d(T ;wt,x)(i, j) = δ(i, x)t(glb≤x(i, j))−1t(j)δ(j, x)−1.

Now

t(glb≤x(i, j)) = d(T ;t)
x (i, j) = d(T ;t)

x (j, i) = δx(j, i) = δ(x, j)δ(i, j)−1δ(i, x),
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which also implies that t(j) = t(glb≤x(j, j)) = δ(x, j)δ(j, x). Therefore
d(T ;wt,x)(i, j) = δ(i, j), as required.

�

Combining Proposition 2.1 with the last lemma, we get Corollary 2.3.

Corollary 2.3. 1. A proximity map δ : X × X → G is a tree proximity if
and only if δx = d

(T ;t)
x for some phylogenetic X–tree T and discriminating

G–dating map t.
2. Suppose that δ is a tree proximity. If T is the phylogenetic tree involved

in a standard tree representation of δ, then (T ; wt,x) is a standard tree
representation of δ, where t = tδ,x.

The next proposition is an immediate consequence of [5, Theorem 2], the main
theorem of [5].

Proposition 2.4. Let δ : X ×X → G be a proximity map and let x be an element
of X. Then there exists a phylogenetic X–tree T and a discriminating G–dating
map t such that δx = d

(T ;t)
x if and only if δx satisfies the following conditions:

(U1) δx(i, j) = δx(j, i), for all i, j ∈ X;
(U2) |{δx(i, j), δx(i, k), δx(j, k)}| ≤ 2, for all i, j, k ∈ X; and
(U3) there exist no pairwise distinct elements i, j, k, and l of X with

δx(i, j) = δx(j, k) = δx(k, l) 6= δx(j, l) = δx(l, i) = δx(i, k).

Furthermore, up to canonical isomorphism, T is unique.

Combining Corollary 2.3 with Proposition 2.4, we get Corollary 2.5.

Corollary 2.5. A proximity map δ : X × X → G is a tree proximity map if and
only if δx satisfies (U1), (U2), and (U3) for some x ∈ X.

The existence part of Theorem 3.1 is proved via Corollary 2.5.

3. Main Results

We are now ready to state and prove our two main (existence and uniqueness)
results, Theorems 3.1 and 3.2. Note that an explanation for the slight complication
concerning “Hδ” in Part 2 of the statement of Theorem 3.1 is given in the remark
immediately following the proof of Theorem 3.1.

Theorem 3.1. Let δ : X×X → G be a proximity map. Let Hδ denote the following
(finite) subset of G:

{δ(i, k)δ(j, k)−1δ(j, l)δ(i, l)−1 : i, j, k, l ∈ X}.

1. If δ is a tree proximity map, then δ satisfies the following conditions:
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(P1) For all distinct elements i, j and k of X,

δ(i, j)δ(k, j)−1δ(k, i) = δ(i, k)δ(j, k)−1δ(j, i).

(P2) For all four distinct elements of X, we can order these elements as i,
j, k, and l so that

δ(i, k)δ(j, k)−1 = δ(i, l)δ(j, l)−1.

2. If δ satisfies both (P1) and (P2), and Hδ has no elements of order 2, then
δ is a tree proximity map.

Furthermore, a standard tree representation of δ, if one exists, can be constructed
in polynomial time from δ.

Proof. If δ is a tree proximity map, then it is straightforward to check that (P1)
and (P2) must hold by cancelling the products of the appropriate arc weights in G.
Thus Part 1 of Theorem 3.1 holds.

Before proving Part 2 of Theorem 3.1, we note the following. If δ(i, k)δ(j, k)−1 =
δ(i, l)δ(j, l)−1, for some elements i, j, k, and l of X , then it is easily checked using
(P1) that

δ(k, i)δ(l, i)−1 = δ(k, j)δ(l, j)−1

also holds. We freely use this observation in the proof that follows.

Let x be an element of X . To prove Part 2, it suffices to show, by Corollary 2.5,
that δx satisfies conditions (U1), (U2), and (U3) as listed in the statement of Propo-
sition 2.4. We now show that this is indeed the case.

For all i, j ∈ X , (P1) shows that δx satisfies (U1). Furthermore, for all i, j, k ∈ X ,
(P2) together with (U1) shows that δx satisfies (U2). The proof that (U3) holds
for δx is as follows.

3.1.1. δx satisfies (U3).

Proof. Suppose that i, j, k, and l are pairwise distinct elements of X with

δx(i, j) = δx(j, k) = δx(k, l)

and
δx(j, l) = δx(l, i) = δx(i, k).

We prove (3.1.1) by showing that δx(i, j), δx(j, k), δx(k, l), δx(j, l), δx(l, i), and
δx(i, k) are all equal.

If |{x, i, j, k, l}| = 4, then it is clear that (3.1.1) holds. Therefore assume that
|{x, i, j, k, l}| = 5. Depending on the relationship between i, j, k, and l given by
(P2) and noting the observation above, there are three cases to consider:

(i) δ(i, k)δ(j, k)−1 = δ(i, l)δ(j, l)−1;
(ii) δ(i, j)δ(k, j)−1 = δ(i, l)δ(k, l)−1; and
(iii) δ(i, j)δ(l, j)−1 = δ(i, k)δ(l, k)−1.
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We shall denote the above equations as (i), (ii), and (iii), respectively. Moreover,
in the analysis of Cases (i)–(iii), we freely use the fact that (U1) holds for δx.

Case (i). Since δx(l, i) = δx(k, i), we have δ(x, l)δ(i, l)−1 = δ(x, k)δ(i, k)−1, which
implies that

(1) δ(x, l)δ(i, l)−1δ(i, k) = δ(x, k).

Now, by (i), δ(j, l)−1 = δ(i, l)−1δ(i, k)δ(j, k)−1 and so

δx(j, l) = δx(l, j) = δ(x, l)δ(j, l)−1δ(j, x)

= δ(x, l)δ(i, l)−1δ(i, k)δ(j, k)−1δ(j, x)

= δ(x, k)δ(j, k)−1δ(j, x), by (1),

= δx(k, j) = δx(j, k),

completing the proof of (U3) for Case (i).

Case (ii). The proof of (U3) for Case (ii) is analogous to that of Case (i). We omit
the details and just remark that we first deduce δ(x, k)δ(j, k)−1δ(j, i) = δ(x, i) via
the fact that δx(i, j) = δx(k, j), and then show δx(k, l) = δx(l, i).

Case (iii). Since δx(j, i) = δx(k, l) and since δx(j, l) = δx(k, i), we have

(2) δ(x, j)δ(i, j)−1δ(i, x) = δ(x, k)δ(l, k)−1δ(l, x)

and

(3) δ(x, j)δ(l, j)−1δ(l, x) = δ(x, k)δ(i, k)−1δ(i, x),

respectively. By combining (2) and (3), we deduce that

δ(l, k)−1δ(l, x)δ(i, x)−1δ(i, j) = δ(i, k)−1δ(i, x)δ(l, x)−1δ(l, j),

which in turn implies that

(4) δ(i, k)δ(l, k)−1δ(l, x)δ(i, x)−1 = δ(i, x)δ(l, x)−1δ(l, j)δ(i, j)−1.

Substituting (iii) into (4), we get

δ(i, j)δ(l, j)−1δ(l, x)δ(i, x)−1 = δ(i, x)δ(l, x)−1δ(l, j)δ(i, j)−1.

Since Hδ has no elements of order 2, the last equation implies that

(5) δ(i, x)δ(l, x)−1δ(l, j)δ(i, j)−1 = 1G .

Having established (5), we complete the proof of (U3) for Case (iii) as follows.
By (iii), δ(i, k)−1 = δ(l, k)−1δ(l, j)δ(i, j)−1, and so

δx(i, k) = δx(k, i) = δ(x, k)δ(i, k)−1δ(i, x)

= δ(x, k)δ(l, k)−1δ(l, j)δ(i, j)−1δ(i, x)

= δ(x, k)δ(l, k)−1δ(l, x), by (5),

= δx(k, l),

as required. �
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We conclude that δx satisfies (U1), (U2), and (U3) and so, by Corollary 2.5, δ is
a tree proximity map and this completes the proof of Part 2.

Lastly, we describe a polynomial time algorithm for finding a standard tree
representation of δ. Firstly, we provide a construction of a phylogenetic X–tree that
turns out to be isomorphic to the underlying phylogenetic X–tree of a standard tree
representation of δ. For a tree proximity map δ and an element x in X , let R(δ, x)
denote the set of x–rooted phylogenetic trees (that is, trees rooted on leaf x) which
is constructed as follows. For each pairwise disjoint triple i, j, k ∈ X , if

δx(i, j) 6= δx(i, k) = δx(j, k),

then place the x–rooted tree ij|kx, as shown in Figure 1, into R(δ, x). Let A[R(δ, x)]
denote the x–rooted tree constructed from R(δ, x) by applying the algorithm of Aho
et al. [1] (see also [6, 13]). Briefly, in this algorithm, one first constructs a graph
G having vertex set X − {x} and with an edge between any two vertices i and j
precisely if there exists k ∈ X − {x} such that ij|kx ∈ R(δ, x). One then takes the
connected components of this graph, which form the top “clusters” of the tree, and
continues this process recursively on the vertices of each component. For further
details see [6] or [13].

We now show that if (T ; w) is a standard tree representation of δ, then

(6) A[R(δ, x)] ≡ T.

To prove (6), we argue by induction based on the number of interior vertices in
the longest path of T that starts at x, when one considers T as an x–rooted tree.
Let h(T ) denote this number. If h(T ) = 1, then, as T is part of a standard tree
representation of δ, it follows by the first part of Lemma 2.2 that R(δ, x) is empty
and so (6) holds.

Now assume that h(T ) > 1 and that (6) holds for all trees in a standard tree
representation of δ with fewer interior vertices in the longest path starting at x.
For r > 1, let V1, V2, . . . , Vr denote the vertex sets of the subtrees of T , other
than the isolated vertex x, incident with the vertex of T adjacent to x. For all
p ∈ {1, 2, . . . , r}, let Xp := φ−1(Vp). Thus X1, X2, . . . , Xr forms a partition of
X − {x}.

Let G be the graph described above in the brief description of the algorithm. To
prove the induction step of the proof, it suffices to show that X1, X2, . . . , Xr are
precisely the vertex sets of the connected components of G. That is, for some p ∈
{1, 2, . . . , r}, elements i and j are both in Xp if and only if there exists k ∈ X−{x}
such that ij|kx ∈ R(δ, x). We now show that this is indeed the case.

Suppose that i, j ∈ Xp, for some p ∈ {1, 2, . . . , r}. Let v = glb≤x(i, j) in T .
Since i, j ∈ Xp, there exists an interior vertex u in T and a k in X such that,
in T , vertices u and v are adjacent and u = glb≤x(i, k) = glb≤x(j, k). By Part 1
of Lemma 2.2, the map tδ,x : V → G, where V denotes the vertex set of T , is a
discriminating G–dating map and so tδ,x(u) 6= tδ,x(v). Therefore

d(T ;t)
x (i, j) 6= d(T ;t)

x (i, k) = d(T ;t)
x (j, k),

where t = tδ,x. By Part 1 of Lemma 2.2, δx = d
(T ;t)
x and so ij|kx ∈ R(δ, x).
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Now suppose that there is no p in {1, 2, . . . , r} such that i, j ∈ Xp. An argument
similar to that used in the last paragraph, shows that there is no k ∈ X −{x} such
that ij|kx ∈ R(δ, x). This establishes (6).

Having established (6), we see that A[R(δ, x)] is part of a standard tree repre-
sentation of δ. By Part 2 of Corollary 2.3, the pair (A[R(δ, x)]; wt,x), for t = tδ,x,
provides a standard tree representation of δ. Furthermore, the tree A[R(δ, x)] can
be constructed in polynomial time (see [1], [6], or [13]), and once this tree is con-
structed, the arc function wt,x can also be constructed in polynomial time. This
completes the proof of Theorem 3.1. �

Remark. The condition on Hδ in the statement of Theorem 3.1 is necessary as
there exists a group G with elements of order 2 and a proximity map δ : X×X → G
such that (P1) and (P2) are satisfied, but in which there is no tree representation of
δ. An example is provided by the construction in [4] used to illustrate the “necessary
part” of [4, Proposition 1(2)].

Given a standard tree representation (T ; w) of a tree proximity map δ our second
main result shows that, up to isomorphism, T is determined by δ, and the arc
weighting w : ~E → G is partially determined. More precisely, although w is not
completely determined (as pointed out by [2, 8, 11]), the return-trip weights of
every exterior edge as well as, up to conjugacy, the return-trip weights of every
interior edge of (T ; w) can be obtained (this was established for the particular
group analysed in [2]). Moreover, we show that the arc weights can be arbitrarily
specified on a certain subset of arcs, but once this is done, then all the remaining
arc weights are determined.

Before stating Theorem 3.2, we note the following. If T and T ′ are two isomorphic
trees, then one can identify the set of vertices (resp. edges) of T ′ as being equal to the
set of vertices (resp. edges) of T . For the sake of simplicity and without ambiguity,
we shall treat the vertices (resp. edges) of two such trees in the statement and proof
of Theorem 3.2 as equivalent.

Theorem 3.2. Let δ : X × X → G be a tree proximity map. Suppose that (T ; w)
and (T ′; w′) are both standard tree representations of δ. Then:

1. T is isomorphic to T ′.
2. Let e = {u, v} be an edge of T .

(i) If e is an exterior edge, then

w(u, v)w(v, u) = w′(u, v)w′(v, u).

(ii) If e is an interior edge, then

w(u, v)w(v, u) ∼= w′(u, v)w′(v, u),

where α ∼= β denotes conjugacy in G, that is, there exists an element
γ in G such that α = γβγ−1.

3. Select an interior (resp. exterior) edge, {u, v} say, of T . For all ξ, ζ ∈ G
such that ξζ ∼= w(u, v)w(v, u) (resp. ξζ = w(u, v)w(v, u)), there exists a
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standard tree representation (T ; w′′) with

w′′(u, v) = ξ and w′′(v, u) = ζ.

4. Let E̊ ⊂ E denote the set of interior edges of T . Then there exists a subset
A of ~E, with |A| = 1 + |E̊|, such that

w|A = w′
|A ⇒ w = w′.

Furthermore, provided |E̊| ≥ 1, one can extend an arbitrary assignment
of elements of G to the members of A to a weight function from ~E into G
which, together with T , gives a standard tree representation of δ. Moreover,
all standard tree representations of δ can be obtained in this way.

Proof. Part 1. Equation (6) shows that T is determined by δ, and provides,
moreover, a polynomial time constructive algorithm. Alternatively, the result may
be deduced from Proposition 2.4 as follows. From the proof of Theorem 3.1, δx

satisfies (U1), (U2), and (U3). Therefore, by combining the first part of Lemma 2.2
with Proposition 2.4, we deduce that T is isomorphic to T ′.

Part 2. Here we freely use the fact, from the previous part, that T is isomorphic
to T ′.

To prove (i), suppose that e = {i, u} is an exterior edge of T , where i ∈ X . If
i and u are the only vertices of T , then (i) holds. Therefore assume that T has at
least three vertices. Let j and k be elements of X − {i} such that the path from j
to k in T is incident with u. It follows that

δ(i, j)δ(k, j)−1δ(k, i) = w(i, u)w(u, i),

completing the proof of (i).

To prove (ii), suppose that e = {u, v} is an interior edge of T . Now let i and j
be elements of X such that the path from i to j is incident with u, but not with v.
Similarly, let k and l be elements of X such that the path from k to l is incident
with v, but not with u. Then

δ(i, l)δ(k, l)−1δ(k, j)δ(i, j)−1 = D(T ;w)(i, u)w(u, v)w(v, u)D(T ;w)(i, u)−1

and

δ(i, l)δ(k, l)−1δ(k, j)δ(i, j)−1 = D(T ′;w′)(i, u)w′(u, v)w′(v, u)D(T ′;w′)(i, u)−1.

By equating the right-hand-sides of the last two equations, and then multiplying the
resulting equation on the left by D(T ;w)(i, u)−1 and on the right by D(T ;w)(i, u)−1,
we get the desired result. This completes the proof of (ii).

Part 3. Suppose that {u, v} is an interior edge of T . Let α = w(u, v) and
β = w(v, u), and suppose that ξζ ∼= αβ, that is, ξζ = γαβγ−1 for some γ ∈ G.
Let {u1, u2, . . . , ur} be the set of vertices in T adjacent u other than v, and
let {v1, v2, . . . , vs} be the set of vertices in T adjacent to v other than u. Let
w′′ : ~E → G denote the arc weighting function defined as follows:

• w′′(u, v) := ξ and w′′(v, u) := ζ;
• w′′(u, ui) := γw(u, ui) and w′′(ui, u) := w(ui, u)γ−1, for all i ∈ {1, 2, . . . , r};
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• w′′(v, vj) := ξ−1γαw(v, vj) and w′′(vj , v) := w(vj , v)βγ−1ζ−1, for all j ∈
{1, 2, . . . , s}; and

• w′′ agrees with w on all other arcs.

It is easily checked that each edge of T is properly weighted under the arc
weighting w′′. Furthermore, for all i, j ∈ X , a case analysis (depending on which
of the above arcs are crossed in the path from i to j) using elementary cancellation
of products in the group G shows that δ(T ;w′′)(i, j) = δ(T ;w)(i, j), as required.

Now suppose that {x, u} is a exterior edge of T , with x ∈ X , w(x, u) = α, and
w(u, x) = β. Suppose that ξζ = αβ and let {u1, u2, . . . , ur} be the set of vertices
in T adjacent to u other than x. Let w′′ : ~E → G denote the arc weighting function
defined as follows:

• w′′(x, u) := ξ and w′′(u, x) := ζ;
• w′′(u, ui) := ξ−1αw(u, ui) and w′′(ui, u) := w(ui, u)βζ−1, for every i ∈
{1, . . . , s}; and

• w′′ agrees with w on all other arcs.

Again it is easily checked that each edge of T is properly weighted under the new
arc weighting w′′, and that, for all i, j ∈ X , δ(T ;w′′)(i, j) = δ(T ;w)(i, j), as required.

Part 4. We begin the proof of Part 4 by constructing the desired subset of ~E.
Select an element, x say, of X . Let e be the edge of T incident with x. Set A to be
a subset of ~E such that (u, v) ∈ A if and only if (v, u) 6∈ A and {u, v} ∈ E̊ ∪ {e}.
We now show that A has the properties claimed in the statement of Part 4.

Firstly, to each member of A assign an arbitrary element of G. Let w∗ : ~E → G
denote the arc weight function that extends this arbitrary assignment of elements
of G to the members of ~E and is constructed as follows:

• For each arc (u, v) in A, set w∗(v, u) so that, if u ≤x v (resp. v ≤x u) holds,
the ordered product of the weights of the arcs from x to v (resp. u) and
back to x is equal to tδ,x(v) (resp. tδ,x(u)). It is not difficult to see that this
can be done recursively (and furthermore uniquely) based on the number
of edges separating v (resp. u) from x.

• For the remaining arcs in ~E, if v = i ∈ X , then set w∗(u, v) := p−1δ(x, i)
and w∗(v, u) := δ(i, x)q−1, where p is the ordered product of the arc weights
from x to u under w∗ and q is the ordered product of the arc weights from
u to x under w∗.

Note that w∗ is well-defined. We next show that (T ; w∗) is a tree representation
of δ by showing that, for all i, j ∈ X , d(T ;w∗)(i, j) = d(T ;w)(i, j).

Set d = d(T ;w). Clearly, we have d(T ;w∗)(x, i) = δ(x, i) = d(x, i) and, similarly,
d(T ;w∗)(i, x) = d(i, x), for all i ∈ X . So assume that i, j, and x are pairwise distinct.
Let v = glb≤x(i, j), and let pv and qv be the ordered products of arc weights from
x to v and from v to x, respectively, in (T ; w∗). Furthermore, let qi and pj be the
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ordered products of arc weights from i to v and from v to j, respectively, in (T ; w∗).
By the definition of w∗, we have

pvqv = tδ,x(v) = δ(x, j)δ(i, j)−1δ(i, x) = d(x, j)d(i, j)−1d(i, x).

Therefore

d(i, j) = [d(x, j)−1pvqvd(i, x)−1]−1

= [(pvpj)−1pvqv(qiqv)−1]−1, since d = d(T ;w∗) when x ∈ {i, j},
= qipj = d(T ;w∗)(i, j).

Hence (T ; w∗) is a tree representation of δ. Furthermore, (T ; w∗) must be a standard
tree representation of δ, for otherwise, the phylogenetic X–tree associated with the
standard tree representation of δ obtained from (T ; w∗), by the method described
in Proposition 2.1, has fewer internal vertices than T , contradicting Part 1.

Since w∗
|A and δ determines the weight of each arc under w∗ and since T is iso-

morphic to T ′, it follows that all standard tree representations of δ can be obtained
in this way by making the appropriate assignment of elements of G to the members
of A and that if w|A = w′

|A, then w = w′. This completes the proof of Part 4 and
so Theorem 3.2 is proved. �

We complete this section of the paper by showing that the main theorem of [4]
can be deduced from Theorems 3.1 and 3.2.

Suppose S is an Abelian semigroup with identity (we will denote the binary
operation by addition +, the identity by 0, and write 2x as shorthand for x + x).
In [4], the authors considered two further conditions on S, namely, cancellation
(x + y = x + z ⇒ y = z) and uniqueness of halves (2x = 2y ⇒ x = y). These
two conditions are easily seen to be equivalent to the condition that S embeds in
an Abelian group G that has no elements of order 2. Thus the following corollary
immediately gives the main theorem of [4].

Corollary 3.3. Suppose G is an Abelian group, with no elements of order 2, and
S ⊆ G forms a semigroup. Suppose further that δ : X × X → S is symmetric
(i.e. δ(i, j) = δ(j, i), for all i, j ∈ X). Then δ can be realized by a symmetric edge
weighting w : ~E → S of an X-tree (T ; φ) if and only if the following four point
condition applies:

For all (not necessarily distinct) four points in X, there exists an ordering of
these points, i, j, k, and l say, and an element ξ in S such that

(7) δ(i, j) + δ(k, l) + 2ξ = δ(i, k) + δ(j, l) = δ(i, l) + δ(j, k).

Furthermore, the triple (T ; φ; w) is uniquely determined by δ, provided we insist
that no arc of T has weighting zero.

Proof. Regarding the existence of a tree representation of δ the “only if” direction
is clear. For the “if” part, we note that conditions (P1) and (P2) in the statement
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of Theorem 3.1 clearly apply, and thus, by Theorem 3.1, there exists a tree repre-
sentation (T ; φ; w′) of δ, where (T ; φ) is a phylogenetic X–tree and w′ : ~E → G.
We wish to show that w′ can be replaced by a function w that (i) maps into S and
(ii) is symmetric. To this end, we first establish the following claim: For each edge
e = {u, v} of T , there exists ξ ∈ S such that

(8) w′(u, v) + w′(v, u) = 2ξ.

To establish (8), there are two cases to consider depending upon e being either
an interior edge of T or an exterior edge of T . We will consider just the former,
since the proof of the latter is similar. Select i′, j′, k′, l′ ∈ X in a such a way that
in T the path between leaves i′ and j′ is incident with u, but not with v, while the
path between k′ and l′ is incident with v, but not with u. Then, as G is Abelian
and denoting d(T ;φ;w′) as d′, we get

d′(i′, j′) + d′(l′, k′) + w′(u, v) + w′(v, u) = d′(i′, k′) + d′(l′, j′).

Since d′ ≡ δ, the condition described by Equation (7) (plus the symmetry of δ)
guarantees the existence of ξ ∈ S such that

d′(i′, j′) + d′(l′, k′) + 2ξ = d′(i′, k′) + d′(l′, j′),

which in view of the previous equation implies that w′(u, v) + w′(v, u) = 2ξ, as
required to establish the claim.

Now, referring to Equation (8), set w(u, v) and w(v, u) both equal to ξ, for each
edge {u, v} of T . Let d := d(T ;φ;w). Then, for each i, j ∈ X ,

2d(i, j) = d(i, j) + d(j, i) = d′(i, j) + d′(j, i) = δ(i, j) + δ(j, i) = 2δ(i, j)

and so 2[d(i, j) − δ(i, j)] = 0. Since G has no elements of order 2, it follows that
d ≡ δ, and so (T ; φ; w) provides the desired tree representation of δ.

Regarding the uniqueness of the tree representation, suppose that (T1; φ1; w1)
and (T2; φ2; w2) both provide tree representations of δ, where w1 and w2 are both
symmetric functions taking values in S − {0}.

For all i ∈ {1, 2}, let (T ′
i ; w

′
i) denote the phylogenetic expansion of the tree

representation (Ti; φi; wi). Then (T ′
1; w

′
1) and (T ′

2; w
′
2) are both standard tree rep-

resentations of δ. Consequently, by Theorem 3.2, T ′
1 and T ′

2 are isomorphic. There-
fore, by noting that, for an Abelian group, two elements are conjugates precisely if
they are identical, the second part of Theorem 3.2 shows that w′

1(u, v)+w′
1(v, u) =

w′
2(u, v)+w′

2(v, u) for each (isometrically equivalent) edge {u, v} in T1 and T2. But,
since w′

1 and w′
2 are both symmetric, this implies that 2[w′

1(u, v)−w′
2(u, v)] = 0 and,

since G has no elements of order 2, this in turn implies that w′
1(u, v) = w′

2(u, v). In
particular, w′

1(u, v) = 0 precisely if w′
2(u, v) = 0, which together with the isomor-

phism between T ′
1 and T ′

2 and the way in which these trees were constructed from
(T1; φ1) and (T2; φ2) implies that (T1; φ1) and (T2; φ2) are isomorphic, and w1 ≡ w2

as required. �
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4. Remarks

• We return to the problem that motivated our analysis, namely, the case
where G is the group of r × r non-singular real matrices and we have a
general r-state Markov process on a phylogenetic X–tree T ([2, 8, 12, 15]).
In this setting, each arc (u, v) of T has an associated transition matrix
P (u,v) (i.e. a matrix with non-negative entries, and with each row sum-
ming to 1). Assigning arc weights by setting w(u, v) := P (u,v), the induced
tree proximity value δ(i, j) is the net transition matrix of the states at j
conditional on the states at i. For technical reasons, the following mild
restrictions are usually imposed in this model: (i) each transition matrix is
neither singular nor a permutation matrix (this is equivalent to requiring
that the matrix determinant is not in {0,±1}); and (ii), for some vertex
in the tree, each state occurs with strictly positive probability (this en-
sures that some quantities described below are well-defined). Restriction
(i) clearly implies that P (u,v)P (v,u) is not the identity matrix for any edge
{u, v} of T . Consequently (T ; w) provides a standard tree representation
of δ. Now, by elementary probability theory, δ(i, j) = (J ii)−1J ij where,
for k, l ∈ {i, j}, Jkl is the r × r matrix consisting of the joint probabilities
of the states at leaves k and l. Thus, by Theorem 3.2, we see immediately
that the joint probability distributions of states at pairs of leaves determine
T up to isomorphism (under restrictions (i) and (ii)). This result was es-
tablished using a less direct approach in [8, 12, 15], essentially by reducing
the problem to the classical setting (symmetric edge weightings over R

≥0).
For completeness, we also sketch this line of argument here. Consider

the group homomorphism f from this particular group G into the Abelian
group R of real numbers under addition, defined by

f(M) = − log(|det(M)|)
where “det” refers to matrix determinant. For any transition matrix M ,
det(M) ∈ [−1, 1] and so f maps the semigroup of non-singular transition
matrices into the semigroup R

≥0 of non-negative real numbers under addi-
tion. Thus, if we set

δ′(i, j) :=
1
2
(f(δ(i, j)) + f(δ(j, i)),

then δ′ is a symmetric tree proximity with a representation on T via the
symmetric arc weight function w′ defined by

w′(u, v) = w′(v, u) :=
1
2
(f(w(u, v)) + f(w(v, u))).

From assumption (i), f is strictly positive on w(u, v) and w(v, u), and so
w′(u, v) = w′(v, u) > 0 for all edges {u, v} of T . Thus, by the previous
corollary (or indeed the classical result), δ′ uniquely determines T . Fur-

thermore, by routine manipulation, δ′(i, j) = − log
(

|det(Jij)|√
det(Jii) det(Jjj)

)
.

Thus, under restrictions (i) and (ii), the joint probability distributions
of states at pairs of leaves of T determine T up to isomorphism via the
proximity map δ′ ([8, 12]). In fact, the slightly simpler proximity map
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δ′′(i, j) := − log(|det(J ij)|), for i 6= j, also determines T up to isomorphism
[15].

• Our other main result, Theorem 3.1, also pertains to this particular set-
ting. Conditions (P1) and (P2) translate into a collection of polynomial
function identities between the entries of the Jkl matrices - such functions
are examples of “phylogenetic invariants” [9] and we note that the invari-
ants described by (P1) are independent of the underlying tree T (so called
“model invariants”). To date, most investigation of phylogenetic invariants
has been for submodels of this general model (obtained by restricting the
transition matrices assigned to the arcs), although a phylogenetic invariant
has been described for this general model ([15] - essentially by taking de-
terminants of the equation in (P2)). We point out here that phylogenetic
invariants are, in fact, abundant for this general model since each triple
or quadruple gives rise (via (P1) and (P2), respectively) to r2 polynomial
identities.

Referring to Theorem 3.1, note that, in this setting, Hδ would not be
expected to have elements of order 2, however G clearly does, which is why
we did not impose the simpler restriction in Theorem 3.1 that G have no
elements of order 2.

• Suppose G is a group, and S ⊆ G is a semigroup. An interesting extension of
Theorem 3.1 would be to characterize when a proximity map δ : X×X → S
is a tree proximity map with arc weights lying in S.
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