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Abstract. Consider 3–connected matroids that are neither binary nor ternary
and have neither U2,5– nor U3,5–minors: for example, AG(3, 2)′, the matroid
obtained by relaxing a circuit-hyperplane of AG(3, 2). The main result of the
paper shows that no matroid of this sort is representable over any field. This
result makes it possible to extend known characterisations of the binary and
ternary matroids representable over a field F to ones of the matroids repre-
sentable over F that have neither U2,5– nor U3,5–minors.

1. Introduction

For a field F, Tutte [8, 9] characterised the matroids that are representable
over GF (2) and F. If F has characteristic 2, the class is just the class of binary
matroids; otherwise it is the class of regular matroids. Characterisations of the
matroids that are representable over GF (3) and F are given in [10, 11]. These
results are analogues of Tutte’s results. Since a matroid is binary if and only if it
has no U2,4–minor, one can regard Tutte’s results as characterising the matroids
representable over F that have no U2,4–minor. It is natural to ask if this perspective
can be generalised. Given that the next uniform matroids of interest are U2,5 and
its dual U3,5, it is natural to ask for a characterisation of the matroids representable
over F that have neither U2,5– nor U3,5–minors. Such a characterisation is given in
Theorem 5.2.

A key result toward proving this characterisation is Theorem 4.2, which is the
main result of this paper: a 3–connected matroid that is representable over some
field and has neither U2,5– nor U3,5–minors is either binary or ternary. Note that the
hypothesis of 3–connectedness is crucial. For example, the 2–sum of U2,4 and the
Fano plane, which has neither U2,5– nor U3,5–minors, is representable over GF (4),
but over neither GF (2) nor GF (3).

The paper is structured as follows. In Section 2 it is shown that, apart from U2,5

and U3,5, no 3–connected excluded minor for the class of matroids that are either
binary or ternary is representable over any field. This fact follows easily from results
in [3]. Because [3] is not yet widely available, we provide an independent proof.
Unfortunately, not all excluded minors for the matroids that are either binary or
ternary are 3–connected. This creates a problem that is dealt with by Theorem 4.1,
where it is shown that a 3–connected matroid that is neither binary nor ternary
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always contains a minor that is a 3–connected excluded minor for this class. The
3–connectivity result of Section 3 is needed as a lemma for Theorem 4.1. The
main result of the paper, Theorem 4.2, is an immediate corollary of earlier results.
Finally, Section 5 gives characterisations of the matroids representable over a given
field that have neither U2,5– nor U3,5–minors. Classes that were not considered in
[10, 11] arise only for fields of characteristic 2. These classes consist of matroids
obtained by taking 2–sums and direct sums of binary matroids and certain classes
of ternary matroids.

Familiarity is assumed with the elements of matroid theory as set forth in [4].
In particular it is assumed that the reader is familiar with the theory of matroid
connectivity. For an excellent presentation of this theory [4, Chapters 8 and 11] is
recommended to the reader. Notation and terminology follows [4] with the following
exceptions. We denote the simple matroid canonically associated with a matroid
M by si(M), and the class of matroids representable over GF (q) by L(q). By a
coline of M we mean a flat of M whose rank is two less than the rank of M .

2. Excluded Minors

In this section we prove that the only 3–connected excluded minors for L(2) ∪
L(3) that are representable over some field are U2,5 and U3,5. The matroids U2,4 ⊕
F7, U2,4⊕2F7, and their duals show that the hypothesis of 3–connectivity is needed.

Lemma 2.1. Let M be a 3–connected excluded minor for L(2)∪L(3) that is not
U2,5 or U3,5. Then there exist distinct elements x and y of E(M) such that either
M\x, M\y, and M\x, y are all binary and connected, or M/x, M/y, and M/x, y
are all binary and connected.

Proof. Since M has no minor isomorphic to U2,5 or U3,5, it follows by the
excluded-minor characterisation of ternary matroids [2] that M has a minor iso-
morphic to the Fano matroid F7 or its dual F ∗

7 . By duality, we can assume without
loss of generality that M has an F7-minor. Moreover, as F7 is binary, F7 is a
proper minor of M . Then, by Seymour’s Splitter Theorem [5] (see also [4, Theo-
rem 11.1.2, Corollary 11.2.1]), there is a sequence M0, M1, . . . , Mn of 3–connected
matroids such that M0

∼= F7, Mn = M , and, for all i in {0, 1, . . . , n − 1}, Mi is
a single-element deletion or a single-element contraction of Mi+1. The rest of the
proof is a case analysis based on the number of matroids in this sequence.

Suppose that n = 1. Then there is an element x of E(M) such that either
M\x or M/x is isomorphic to F7. If M\x ∼= F7, then M is a 3–connected non-
binary single-element extension of F7. But it is easily seen that every 3–connected
single-element extension of F7 has a U2,5–minor, contradicting the fact that M
has no U2,5–minor. Therefore M/x ∼= F7 and so M is a 3–connected non-binary
single-element coextension of F7. A straightforward check (see also [3]) shows
that the only non-binary 3–connected coextension of F7 that has no U2,5– and no
U3,5–minor is the matroid AG(3, 2)′ obtained by relaxing a circuit-hyperplane of
AG(3, 2). Certainly AG(3, 2)′ is an excluded minor for L(2)∪L(3), and it is easily
checked (see [4, p. 508]) that there exist elements x and y of the ground set of
AG(3, 2)′ such that M/x, M/y, and M/x, y are all binary and connected. Thus
the lemma holds if n = 1.

Suppose that n ≥ 2. Say i ∈ {0, 1, . . . , n − 1}. Then for some z ∈ E(M),
Mi = Mi+1\z or Mi = Mi+1/z. Assume the former. Then M\z has an F7–minor
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so that this matroid is not ternary. But M\z is either binary or ternary. Hence M\z
is binary. Similarly, if Mi = Mi+1/z, then M/z is binary. In the case analysis that
follows we repeatedly use this fact and the well-known fact that a matroid obtained
by deleting or contracting an element from a 3–connected matroid is connected [4,
Proposition 8.1.13].

Assume first that n = 2. Then there exists {x, y} ⊂ E(M) such that M extends
or coextends M1 by x and M1 extends or coextends F7 by y. If M1\y ∼= F7, then
M1 is a single-element extension of F7 which is 3–connected and binary. But there
are no 3–connected binary single-element extensions of F7. Therefore M1 must be
a coextension of F7. If M/x = M1 and M1/y ∼= F7, then it is easily seen that M/x,
M/y, and M/x, y are all binary and connected. Say M\x = M1 and M1/y ∼= F7.
Then M1 is a 3–connected binary single-element coextension of F7. It is known [7]
that the only 3–connected binary single-element coextensions of F7 are AG(3, 2)
and a certain matroid called S8 (see [4, p. 357]). Another straightforward check
(again see [3]) shows that any 3–connected non-binary single-element extension of
either AG(3, 2) or S8 has a U2,5–minor. Therefore this case does not arise and we
have established the lemma in the case that n = 2.

Now assume that n > 2. Consider Mn−1, Mn−2, and Mn−3. If M/a = Mn−1

and either Mn−1/b = Mn−2 or Mn−2/c = Mn−3, then the argument used in the
case that n = 2 applies. That same argument, applied to deletions in place of
contractions, works if M\a = Mn−1 and either Mn−1\b = Mn−2 or Mn−2\c =
Mn−3.

There are two other cases. Suppose that M/a = Mn−1, Mn−1\b = Mn−2, and
Mn−2\c = Mn−3. Since M is 3–connected, M\b and M\c are both connected.
If M\b, c is connected, then the lemma follows by choosing x = b and y = c.
Assume that M\b, c is not connected. Then, as M/a\b, c is 3–connected, a is a
coloop of M\b, c. Furthermore, as M\b and M\c are both connected, {a, c} and
{a, b} are 2–element cocircuits of M\b and M\c, respectively. Therefore, as M is
3–connected, {a, b, c} is a triad of M and so E(M)− {a, b, c} is a hyperplane H of
M . Since M |H = M/a\b, c, M |H is a binary matroid with an F7–minor. Consider
M/b. Since M is 3–connected, M/b is certainly connected. Moreover, M |H is a
minor of M/b, so M/b has an F7–minor. Therefore, as M is an excluded minor
for L(2) ∪ L(3), M/b is also binary. Hence M/a, M/b, and M/a, b are all binary
and connected. Hence, in this case, the lemma follows upon choosing x = a and
y = b. The case of M\a = Mn−1, Mn−1/b = Mn−2, and Mn−2/c = Mn−3 is treated
similarly, completing the proof. �

Lemma 2.2. Let M be a matroid that is representable over a field F of charac-
teristic two. If M has a pair of elements x and y such that M\x, M\y and M\x, y
are all binary and connected, then M is binary and connected.

Proof. Evidently M is connected. It is known [1] that a binary matroid is
uniquely representable over any field over which it is representable. It is easily seen
that a representation of a matroid over GF (2) can be interpreted as a representation
over F. Thus any matrix representation of a binary matroid over F is equivalent
to one in which all the entries are either 0 or 1. Moreover, any matroid that can
be represented over F by such a matrix is binary.

We now recall some facts on representations. Let N be a matroid represented
over F by a matrix [I|D]. Associated with D is a simple bipartite graph G(D)
whose parts are the index sets of the rows and columns of D. Two vertices vi and
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vj are adjacent if and only if the entry of D in row vi and column vj is non-zero. It
is known ([1] see also [4, Theorem 6.4.7]) that the rows and columns of D can be
scaled so that the entries corresponding to the edges of any fixed spanning forest of
G(D) are all one. Moreover, if N is uniquely representable over F, then, up to such
a scaling, all entries of D are unique. It is also the case that G(D) is connected if
and only if N is connected.

Consider M\x, y. This matroid is binary so it can be represented over F by
a matrix [I|D′] all of whose entries are in {0, 1}. Also M\x, y is connected, so
G(D′) is connected. Since M\x, y is binary, this representation is unique, so it
extends to a representation [I|D′|x] of M\y. Since M\y is connected, G([D′|x])
is connected. The graph G([D′|x]) has one more vertex than G(D′) so a spanning
tree of G([D′|x]) has one more edge than a spanning tree of G(D). It follows that if
x is scaled to have leading non-zero entry one, the choice of x is unique. Moreover,
since M\y is binary, all entries of [I|D′|x] are in {0, 1}. Similarly we deduce that
[I|D′] extends uniquely to a matrix [I|D′|y] where y has leading non-zero entry
one. The entries of x and y are all in {0, 1}, so that [I|D′|x,y] represents a binary
matroid. But [I|D′] extends to an F–representation [I|D′|x′,y′] of M , where we
scale so that the leading non-zero entries in x′ and y′ are 1. Since [I|D′|y′] and
[I|D′|x′] are F–representations of M\x and M\y respectively, we have that x = x′

and y = y′. It follows that [I|D′|x,y] represents M and we conclude that M is
binary. �

Theorem 2.3. Let M be a 3–connected excluded minor for L(2) ∪ L(3). If M
is representable over some field, then M is either U2,5 or U3,5.

Proof. Say that M is not U2,5 or U3,5. It was noted in the proof of Lemma 2.1
that M has either an F7– or an F ∗

7 –minor. Thus M is not representable over a
field whose characteristic is not 2. Assume that M is representable over a field F
of characteristic 2. By Lemma 2.1, dualising if necessary, we may assume that M
has a pair of elements {x, y} with the property that M\x, M\y, and M\x, y are
all connected and binary. But then, by Lemma 2.2, M is binary, contradicting the
fact that M is an excluded minor for L(2) ∪ L(3). �

Consider a 3–connected matroid N that has neither U2,5– nor U3,5–minors. If
N is neither binary nor ternary, then it has an excluded minor for L(2)∪L(3) as a
minor. If this excluded minor is 3–connected, it follows from Theorem 2.3 that N
is not representable over any field. But it is plausible that N has no minor that is
a 3–connected excluded minor for L(2) ∪ L(3). We turn attention to this question
now. We begin by establishing a result on 3–connectivity.

3. A 3–connectivity Theorem

Recall that a matroid M uses a set S if S ⊆ E(M). The following result
is needed as a lemma for Theorem 4.1, but it may be of independent interest so
we call it a theorem. The proof makes frequent use of standard facts on matroid
connectivity, as presented in [4, Chapter 8].

Theorem 3.1. Let {A, B} be a 3–separation of the 3–connected non-binary
matroid M , and let p be in cl(A) ∩ cl(B). Then M has a 3–connected non-binary
minor N using A with the properties that N |A = M |A and that A spans N .
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We first note some preliminary results. The next result is proved in [6] (see
also [4, Proposition 11.3.8]). It is used frequently in arguments on non-binary
3–connected matroids.

3.2. Let x and y be elements of the ground set of the 3–connected non-binary
matroid M . Then M has a U2,4–minor that uses {x, y}.

The next result is proved in Kahn and Seymour [2] (see also [4, Lemma 10.2.4]).

3.3. Let M be a connected simple matroid whose rank r is at least two, and let
X = {x ∈ E(M) : M/x is disconnected}. Then

(a) |X | ≤ r − 2; and
(b) if |X | = r−2, then there are lines L0, L1, . . . , Lr−2 of M , and an ordering

x1, x2, . . . , xr−2 of X such that
(i) |Li| ≥ 3 for all i in {0, 1, . . . , r − 2};
(ii) E(M) = ∪r−2

i=0 Li; and
(iii) Li ∩ cl(L0 ∪ L1 ∪ · · · ∪ Li−1) = {xi} for all i in {1, 2, . . . , r − 2}.

Our need for 3.3 is to prove

Lemma 3.4. Let M be a simple connected matroid whose rank r is at least four,
and let F be a coline of M . Then there is an element x ∈ F with the property that
M/x is connected.

Proof. Let X denote the set of elements whose contraction from M results in
a disconnected matroid. By 3.3, |X | ≤ r−2. But F has rank (r−2), so the lemma
holds unless |X | = r − 2, and F = X . In this case M has the structure given by
3.3(b). But it follows easily from 3.3(b) that if r(M) ≥ 4, then X is not a flat of
M , so that F 6= X . �

We now prove Theorem 3.1.

Proof. If cl(A) = E(M), the result is immediate. If A has rank 2, the result
follows from 3.2. Hence we may assume that r(A) ≥ 3 and that A does not span
M . Clearly r(B) ≥ 3.

Choose a pair of distinct elements p1, p2 in A. Again by 3.2, M has a U2,4–
minor using {p1, p2}. Thus there exists a basis I ∪ {p1, p2} of M such that M/I
is non-binary. Since cl(A) 6= M there is an element i in I that is not in cl(A).
Consider M/i. Again, either clM/i(A) = M/i or there exists i′ ∈ I −{i} that is not
in clM/i(A). Repeating the process clearly results in a matroid N ′ that uses A and
has the property that clN ′(A) = N ′. Evidently N ′ is non-binary and N ′|A = M |A.
The problem is that N ′ may not be 3–connected. The substance of the proof is
devoted to dealing with this. We first note

3.5. Either M |cl(B) is connected or M |cl(B) has a single coloop y, where y 6∈
cl(A).

Proof. Assume that M |cl(B) is not connected. Then this matroid has a
separation {X, Y } where p ∈ X . From the submodular inequality and the facts
that {X, Y } is a separation of M |cl(B), that {A, B} is a 3–separation of M , and
that r(cl(A) ∩ X) ≥ r(p) ≥ 1 we get

r(Y ) + r(cl(A) ∪ X) ≤ r(Y ) + r(X) + r(A) − r(cl(A) ∩ X)
= r(A) + r(B) − r(cl(A) ∩ X)
≤ r(M) + 1.
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It follows from this that if |Y | ≥ 2, then {Y, E − Y } is a 2–separation of the 3–
connected matroid M . Hence |Y | = 1. Say Y = {y}. If y ∈ cl(A), then it is easily
checked that {X, E −X} is a 2–separation of M , again contradicting the fact that
M is 3–connected. Thus y 6∈ cl(A) and 3.5 follows. �

The minor N ′ of M has been constructed in a certain way. We wish to establish
properties of minors of M that have been constructed in similar ways. Let Q be a
minor of M using A of the form M/Z with the properties that Q|A = M |A and
that A spans Q. It is clear that Z spans a coline of M |cl(B). Hence cl(B) − Z is
a line of Q. Let l be the corresponding line of si(Q), the simple matroid associated
with Q.

3.6. If |l| ≥ 3, then si(Q) is 3–connected.

Proof. In what follows, cl denotes closure in si(Q). Assume that si(Q) is not
3–connected. Then this matroid has a 2–separation {S, T }. Since |l| ≥ 3, either
S or T contains at least two points of l, so either cl(S) or cl(T ) contains l. Say
l ⊆ cl(S). If {cl(S), T − cl(S)} is not a 2–separation of si(Q), then |T − cl(S)| = 1
and, since si(Q) is simple, rsi(Q)(T − cl(S)) < rsi(Q)(T ), thus {cl(S), T − cl(S)} is
a separation of si(Q). Hence, {cl(S), T − cl(S)} is either a 2–separation of si(Q)
or a separation of si(Q). Since cl(S) contains l, T − cl(S) is a subset of A, so that
rM (T − cl(S)) = rsi(Q)(T − cl(S)). It follows routinely that {T − cl(S), E − (T −
cl(S))} is a 2–separation of M if {cl(S), T − cl(S)} is a 2–separation of si(Q), and
{T −cl(S), E− (T −cl(S))} is a separation of M if {cl(S), T −cl(S)} is a separation
of si(Q). In either case we contradict the assumption that M is 3–connected. Hence
si(Q) is 3–connected. �

Return attention to the minor N ′ defined above. Consider si(N ′). We may
assume without loss of generality that A∪ {p} ⊆ si(N ′). Now cl(B) ∩E(N ′) spans
a line of N ′. If this line has more than two points, then, by 3.6, si(N ′) is 3–connected
and we are done. Thus we may assume that the line contains two points. One of
them is p. By 3.5, there are two cases that need to be considered.

For the first case assume that M |cl(B) is connected. Let x be the other point on
the line spanned by cl(B)∩E(N ′). It is clear that we may assume that N ′ is obtained
by contracting a coline F of M |cl(B). We now show that there exists a flat F ′ ⊂ F
having rank one less than that of F and having the property that (M |cl(B))/F ′ is
connected. If r(F ) = 1 this is immediate. Assume r(F ) ≥ 2. Then r(M |cl(B)) ≥ 4,
so, by 3.4, there is an element f ∈ F such that (M |cl(B))/f is connected. By
simplifying this matroid and repeating the process if necessary we deduce that
there is indeed a flat F ′ with the claimed properties. Let N ′′ = si(M/F ′). (Since
M/F is a minor of M/F ′, we may assume that p and x are in the ground set of
N ′′.) Now N ′′|(E(N ′′) ∩ cl(B)) is a rank–3 connected matroid. This matroid has
an element f corresponding to the parallel class F − F ′ of M/F ′. Thus N ′′/f has
N ′ as a restriction. The line joining f and p, and the line joining f and x cover the
ground set of N ′′|(E(N ′′) ∩ cl(B)). For N ′′|(E(N ′′) ∩ cl(B)) to be connected there
must exist other points p′ and x′ on these lines respectively. One of x or x′ is not
in clN ′′(A). Assume without loss of generality that x′ is not in clN ′′(A). It is clear
that N ′′/x′ has N ′ as a restriction, so this matroid is non-binary. But {p, x, p′} is a
circuit of this matroid. Hence, by 3.6, si(N ′′/x′) is 3–connected. The result follows
in this case by letting N = si(N ′′/x′).
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Consider the second case that arises from 3.5. In this case M |cl(B) has a single
coloop y. Moreover, y 6∈ cl(A), so y ∈ B. Now r(cl(B) − {y}) = r(B) − 1, and
r(A∪{y}) = r(A)+1. Hence {cl(B)−{y}, E−(cl(B)−{y})} is either a 3–separation
of M or at least one of cl(B)−{y} and E − (cl(B)−{y}) has cardinality less than
3. But it is routinely seen that |E − (cl(B) − {y})| ≥ 3. Also r(cl(B) − {y}) ≥ 2,
and, by 3.5, M |(cl(B)−{y}) is connected. Hence |cl(B)−{y}| ≥ 3. It follows that
{cl(B) − {y}, E − (cl(B) − {y})} is indeed a 3–separation of M .

We now show that the result holds if r(cl(B) − {y}) = 2. In this case cl(B)
consists of the coloop y together with a non-trivial line l′ containing p. There
is a point f in B such that M/f = N ′. Clearly this point is not p. Moreover
f cannot be y, for then the line of si(N ′) corresponding to cl(B) − {f} would
have at least three points contradicting the assumption that it has two. Thus
f is a point on l′ − {p}. By 3.6, si(M/y) is 3–connected. We now show that
si(M/y) is non-binary. Evidently {f, y} is a series pair of M\(l′ − {f, p}). Hence
M\(l′ − {f, p})/f ∼= M\(l′ − {f, p})/y. But M\(l′ − {f, p})/f ∼= si(M/f). Also
M/f = N ′ so this matroid is non-binary. We deduce that M/y has a non-binary
minor. Hence si(M/y) is 3–connected and non-binary as required.

Assume that r(cl(B)−{y}) > 2. Then, since M |(cl(B)−{y}) is connected, we
may apply the method of the first part of this case analysis and obtain a non-binary
3–connected minor N ′′ of M using A∪{y} with the properties that r(N ′′) = r(A)+1,
that N ′′|(A∪{y}) = M |(A∪{y}), and that E(N ′′)∩(cl(B)−{y}) consists, for some
r ≥ 2, of a line {p, q1, q2, . . . , qr}. Moreover p is the only element of {p, q1, q2, . . . , qr}
in clN ′′(A). Arguing as above we see that there is an element qi of {q1, q2, . . . , qr}
that can be contracted from N ′′ to give a non-binary matroid and that N ′′/y
contains si(N ′′/qi) as a restriction. It follows that N ′′/y is non-binary. Moreover,
by 3.6, si(N ′′/y) is 3–connected. �

4. Main Results

The following result is essentially a lemma for Theorem 4.2. However, as with
Theorem 3.1 it may be of independent interest, so we call it a theorem. The class of
matroids that are either binary or ternary does have excluded minors that are not
3–connected. Theorem 4.1 shows that if our interest is in 3–connected matroids, it
often suffices to focus on the 3–connected excluded minors. It would be interesting
to know of other classes of matroids that have similar properties.

Theorem 4.1. Let M be a 3–connected matroid that is neither binary nor
ternary. Then M contains a minor that is a 3–connected excluded minor for the
class of matroids that are either binary or ternary.

Proof. Recall that L(q) denotes the class of matroids representable over
GF (q). The proof is by induction on the cardinality of |E(M)|. Using the proof of
Lemma 2.1 it is easily checked that the result holds if |E(M)| ≤ 8. Assume that
|E(M)| > 8, and that the result holds for all 3–connected matroids that are not in
L(2) ∪ L(3) and whose ground sets have cardinality less than |E(M)|.

If M has a U2,5– or a U3,5–minor, then the result certainly holds. Assume that
M has no U2,5– and no U3,5–minor. If M is an excluded minor for L(2) ∪ L(3),
then again the result is immediate, so assume that M is not an excluded minor for
L(2)∪L(3). It follows that there exists an element p of E(M) having the property
that at least one of M\p or M/p is not in L(2)∪L(3). By taking the dual if necessary
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we may assume without loss of generality that M/p is not in L(2)∪L(3). If M/p is
3–connected, then the result follows from the induction assumption. Assume that
M/p is not 3–connected. In this case M/p has a 2–separation {A, B} corresponding
to a 2–sum decomposition MA ⊕2 MB of M/p. Now M/p is not ternary, and has
no U2,5– and no U3,5–minor. Therefore, by the excluded-minor characterisation of
ternary matroids [2], M/p has a minor isomorphic to either F7 or F ∗

7 . Since these
are both 3–connected matroids, we deduce that either MA or MB has an F7– or
F ∗

7 –minor. Assume that MA has such a minor. Consider M again. Evidently,
{A ∪ {p}, B} is a 3–separation of M having the property that p ∈ cl(B). By
Theorem 3.1, M has a 3–connected non-binary minor N using A ∪ {p} with the
properties that N |(A ∪ {p}) = M |(A ∪ {p}) and that A ∪ {p} spans N . Moreover,
it is straightforward to check that si(N/p) ∼= si(MA). Hence N contains either an
F7– or an F ∗

7 –minor. Thus N is not ternary. Therefore N is a 3–connected matroid
that is not in L(2) ∪ L(3). Certainly N is a proper minor of M . By the induction
assumption, N , and hence M , has a 3–connected excluded minor for L(2) ∪ L(3)
as a minor. �

The next theorem, the main result of this paper, follows immediately upon
combining Theorem 2.3 with Theorem 4.1.

Theorem 4.2. Let M be a 3–connected matroid that is representable over some
field and has no minor isomorphic to U2,5 or U3,5. Then M is either binary or
ternary.

5. A Characterisation

Let F be a field. Characterisations of the matroids representable over GF (3)
and F are given in [10, 11]. By combining Theorem 4.2 with the results of [10, 11]
and the classical characterisation of the binary matroids representable over F it is
possible to give a characterisation of the class of matroids that have no U2,5– and
no U3,5–minor and are representable over F. We first recall some definitions from
[10, 11].

A dyadic matrix is a matrix over the rationals all of whose non-zero subdeter-
minants are signed integral powers of 2. A dyadic matroid is a matroid that can be
represented over the rationals by the columns of a dyadic matrix. A 6

√
1–matrix is a

matrix over the complex numbers, all of whose non-zero subdeterminants are com-
plex sixth roots of unity. A 6

√
1–matroid is a matroid that can be represented over

the complex numbers by the columns of a 6
√

1–matrix. Let Q(α) denote the field
obtained by extending the rationals by the transcendental α. A matrix over Q(α) is
near-unimodular if all of its non-zero subdeterminants are in {±αi(α−1)j : i, j ∈ Z}.
A matroid is near-regular if it can be represented over Q(α) by the columns of a
near-unimodular matrix. The following theorem is a straightforward consequence
of a number of results in [11].

Theorem 5.1. Let F be a field, and let T denote the class of ternary matroids
that are representable over F.

(1) If F has odd characteristic and does not have a root of α2 − α + 1, then
T is the class of dyadic matroids.

(2) If F has odd characteristic and has a root of α2−α+1, then T is the class
obtained by taking direct sums and 2–sums of dyadic and 6

√
1–matroids.
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(3) If F is not GF (2), has characteristic 2, and has no root of the polynomial
α2 − α + 1 (in particular, if F = GF (2k) for some odd integer k > 1),
then T is the class of near-regular matroids.

(4) If F has characteristic 2 and has a root of the polynomial α2 − α + 1 (in
particular, if F = GF (2k) for some even positive integer k), then T is the
class of 6

√
1–matroids.

On combining Theorem 5.1 with Theorem 4.2 we obtain the following charac-
terisation of the F–representable matroids that have no U2,5– and no U3,5–minor.

Theorem 5.2. Let F be a field and let U denote the class of matroids repre-
sentable over F that have no U2,5– and no U3,5–minor.

(1) If F does not have even characteristic, then U is the class of matroids
representable over GF (3) and F.

(2) If F is not GF (2), has characteristic 2, and has no root of the polynomial
α2 − α + 1 (in particular, if F = GF (2k) for some odd integer k > 1),
then U is the class of matroids that can be obtained by taking direct sums
and 2–sums of binary and near-regular matroids.

(3) If F has characteristic 2 and has a root of the polynomial α2 − α + 1 (in
particular, if F = GF (2k) for some even positive integer k), then U is the
class of matroids that can be obtained by taking direct sums and 2–sums
of binary matroids and 6

√
1–matroids.
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