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Let F, be the finite field with g elements and f (x) eF,[x] a polynomial
of degree n. Let r(f) = #f(F,), considering f as a function f: F, »>F,. A
classical problem, raised by Chowla [3] (see [4] for other references), is to
estimate r(f) an terms of n and g. One has the trivial bounds g/n < r(f) < gq.
The lower bound is essentially best possible and a characterization of the
cases with equality when g is prime was obtained in [2].

On the other hand, if f'is a “general” polynomial (in a sense that can be
made precise, see below) Uchiyama [6] proved that r(f) > q/2+0(q"? and
Birch and Swinnerton-Dyer [1] found the precise result

n _11'—1
rf(f)=q(2( ) >+0(q“2).

ol

They proved this when the Galois group of f(x) =y over F,(y) is the full

symmetric group. Of course these results are interesting only when q is large

compared to n. The purpose of this paper is to give lower bounds for r(f),

valid for f “general”, which improves on the above bounds in several cases.
Uchiyama’s condition is that the polynomial

f*, v) = (f @) ~f @) (u-"v)

is absolutely irreducible. When this is the case he could apply Weil’s estimate
([7] on the number of points of f*(u, v) = 0 over F, to get his result.

To relate the number of solutions of f*(u,v) =0 in F} with r(f),
Uchiyama [6] proved the following:

LeEmMA 1. Let N be the number of solutions of f*(u, v) =0 in F? and n,
the number of solutions of f'(x) =0 in F,. Then

r(f) = ¢*/(N+q—ny).
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=#f"'a), i=1,...,r. Then ) n;=gq and

i=1

N = Z n;(m;—1)+ng.

i=1

Hence, Y n? = N+q—n,. By the Cauchy-Schwarz inequality
i=1

13

r 1 q2
2> )2 ==
,'=Zlnl /r(znl) r

and the result follows.

Using the trivial bound N < (n—1)q (since f* has degree n— 1) one gets
r(f) = gq/n. If f* is absolutely irreducible (ie. irreducible over F,), Weil's
estimate N < g+(n—3)(n—2)(q"/2+1) gives

g (n—=3)(n—-2)(q"?+1)
r(f)?a- 2 .

We shall now give upper bounds for N which follow from the results of
[5] and improve on the above bounds on several instances.

Tueorem. Let X be an absolutely irreducible plane curve of degree d
defined over F, with N rational points, then

() If q is prime and q"'* <d < q then N < 4d*?3q*3.

(i) If h(x,y) =0 is an affine equation for X and d’y/dx* # 0, then
N <idd+q-1).

Proof. (i) Let X be an absolutely irreducible curve of degree D
contained in P”, not contained in a hyperplane. If p is the characteristic of F,

and D < p, it follows from [5], Theorem 2.13 and Corollary 2.7, that the
number of rational points, M say, of a non-singular model of X satisfies

M<(n-1)(g—-1)+D(g+n)/n
where g is the genus of X.
Returning to the situation of the theorem, let x, y be affine coordinates
in the plane. If m <d, we can embed X in P*, n = (m:Z)_l by (x, y) —(x, ¥,

x% xy, ¥4, ..., x™, ..., y™ in affine coordinates. In this case D = md, and this

embedding is not contained in a hyperplane, so we can apply the above
bound if D < n. Naw the numbher af cinoular nainte af Y ic hanndad hy
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du—3+D@+m

N <(n—1)—; ;

with n = (’";’2)—1, D = md.

If we take now m = [(g/d)*"*], the conditions m <d and D < p follow
from the hypotheses ¢'* <d <q and g = p, and the result stated follows
immediately.

(i) is just Theorem 0.1 of [5].

Applying item (i) of the theorem to f*(u, v) = 0 when it is absolutely

1 4/3
irreducible, it follows that r(f) = Z(—-q-T) , if g is prime and ¢'/* <n—1
n_
< g. In this range this bound is better than those mentioned above.
Whenever (i) applies, it gives

24
(n+1)g+(n—1)(n-2)
which improves on Uchiyama’s bound. for n > ¢'/?/2.

We shall now study when the conditions f* (u, v) absolutely irreducible
and d2v/du®* # 0 on f*(u,v) =0, hold. Consider the following condition

on f:

(¥) f' has n—1 distinct roots and f is injective on the roots of /.

r(f) =

This condition already appears in [1]. There they prove that (x) is
sufficient for the Galois group of f(x) = y over F,(y) to be the full symmetric
group ([1], Lemma 3). They also remark that () is equivalent to the non-
vanishing of the discriminant in y of the discriminant in x of f(x)—y. The
aforementioned discriminant is a function on the coefficients of f, which does
not vanish identically if p # 2 and p ¥n, where p is the characteristic of F,.
Hence (+) is a generic condition. '

Concerning condition (x) we shall prove

ProposITION. Suppose that the characteristic of F, is not 2 and let
f(x)eF,[x] be of degree n> 2.

(i) f*(u, v) =0 is non-singular if and only if f satisfies (x).

(i) If f satisfies (x) then, on f*(u, v) =0, d*v/du® # 0.

Proof. (i) Let p be the characteristic of F,. If p kn it is easy to see that
f*(u,v) =0 has n—1 points at infinity, hence they are all non-singular
points. If p|n it is also easy to see that the point at infinity on the line u = v
is a singular point of f*(u, v) = 0. Also condition () implies that p 4 n, for
otherwise f' would have deeree at most n— 2. This takes care of the points at
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For the affine points, we have:

¥ =0 -/~ )

u (u—1)? ’
¥* _ —w=o)f'0)+fWw-f (U)
v (u—v)?

A point (ug, vg) With uy # vg is in f*(u, v) = 0 if and only if f (uy) = f (ve)
and is a singular point if and only if ' (ug) = f'(vy) = 0, in which case f'is not
injective on the set of zeros of f'(x) = 0.

Let now (ug, uo) be a point of f*(u, v) = 0. Changing variables, x to
X+uy, 4 t0 U+uy, v to v+uy, we may assume that uy =0 and f'(0) = 0. If
f(x)= > o;x', then «; =0 and

i=0

¥, v) =0, (u+v)+oz W +uv+vd)+ ...

Hence (0, 0) is a singular point of f* = 0 if and only if «; = 0, which is
equivalent to x = 0 be a double root of f'(x) = 0. This proves part (i) of the

proposition.
(i) On f*(u, v) = 0 we have f(u) = f (v), hence f'(u) = f'(v)dv/du and

J" W) = [ @) (dv/dw)* +f (v) d*v/du?.

If dzv/du =0 we conclude that 1" (w)-f'(v)® = f”(v)f (u)?, whenever
f (w) = f(v). Suppose f satisfies (). Let « be a root of f'(x) = 0. Since (%)
holds there exists f # a with f(8) = f(«). Then

I"@f (B =f"B) f (@) =

Iff"( =0, o 'is a double root of f"(x) = 0, contradicting (). If f'(B) =
then f is not injective on the roots of f'(x) = 0, again contradicting (). This
completes the proof of the proposition.

Remarks. 1. A non-singular plane curve is necessarily absolutely
irreducible, since two irreducible components would necessarily meet at a
singular point. Hence f* =0 is absolutely irreducible when (x) holds.

2. It follows from item (ii) of the proposition that item (ii) of the
theorem holds for f* whenever () holds for f and, in this case, we have the
corresponding bound on r(f).
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