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The plan

(1) Understanding the statement and how to use it

(2) Henkin’s proof and amazing applications

(3) Applications to Number Theory



(X, 7) is a topological space when X is a set and 7 C P(X) s.t.
@ ). Xer
@ Aier= [JAer
@ ABer= AnBer

7 is a topology on X & its elements are called open sets.

Closed sets are the complements of open sets.

A subset of X is compact when every open covering of it has a
finite subcovering. Equivalently, any collection of closed subsets
with the finite intersection property has nonempty intersection.

Example. The Euclidean topology on R" is generated by the
open balls B,(p) = {x € R" : d(p, x) < r}.

— R is not compact: {B,(0) : n € N} is an open covering

— {R"\ By(0) : n € N} has the finite intersection property

X Cc R"is compact < X is closed and bounded.



The following are equivalent (in ZF):

(1) The compactness theorem for first-order logic:
If every finite subset of a first-order theory T has a model,
then T has a model [finitely satisfiable (f.s.) = satisfiable]

(2) Godel completeness theorem: T ¢ < T ¢
(¢ is true wherever T is < there is a proof of ¢ from T)

3) The space of L-structures (L-theories) is compact.
4) Any product of compact Hausdorff spaces is compact.
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(3)

(4)

(5) The Stone-Cech compactification theorem.

(6) ldeals in a Boolean algebra can be extended to prime ideals.
(7)

/) (Banach-Alaoglu) The closed unit ball in the continuous dual
space of any normed space is weak-* compact.



A language (or signature, or vocabulary) is a set L of symbols:
— relation symbols R with associated arity a(R) € N>9
— function symbols F with associated arity a(F) € N
function symbols of arity 0 are called constant symbols.
Givenalanguage L={R,...,F,...}, A= (A R4,...,FA,...)
is an L-structure when:
— Ais a nonempty set, the underlying set (or universe) of A;
— RA C A", the interpretation of Rin A, m = a(R);
— FA: A" — Athe interpretation of Fin A, n = a(R);
the interpretation of a constant ¢ € L is some ¢ € A.

Example. Let L = {<,+, x,0,1}, where < is a binary relation
symbol, + and x are binary function symbols, 0 and 1 are
constant symbols. An example of L-structure is

A = (Z, <A, +4, x4,04,14), with standard interpretations.

With an abuse of notation, we will write A = (Z, <, +, x,0,1)



Let L = {x,i,1}, x binary function symbol, i unary function
symbol, 1 constant symbol. Some L-structures:

A = (GLs(Z), x4, 4 14), xA(X, Y) = XY, iA(X) = X114 = Js
B=(Z,x5B,i818), xB(x,y)=x+y,i%(x)=-x,18=0

C = (Z,x%,i€1°), xC(x,y) = |ye*], i(x) = x+7,1¢ = 23
Let L = {E}, E binary relation symb. A graph is an L-structure.

Let L = {<,+, x,0,1} as before. Some other L-structures:
@ A=(Z,<,+,x%,0,1)
@ B=(Q,<,+,x,0,1)
@ C=(R,<,+,x,0,1)
@ D=(N,<,+,%x,0,1)



Fix Var = {x; : i € I} D {x,y, z} a set of symbols, the variables.

L-terms are defined inductively as follows:
(i) each variable is an L-term;
(i) if F € Lis a n-ary function symbol & t4,..., t, are L-terms,
then F(ty,..., ;) is an L-term.

Examples. L = {+, x,0,1}. We will write xy + 3 for the term
+(x(x, ), +(+(1,1),1)) and 2x + y for +(+(x, x), y).

Given an L-structure A and an L-term t = t(X), X = (X1, ..., Xm),
set|t4: A" — Alas follows:

(i t=x, = tYa)=a;fora=(ay,...,am) € A™;
(i) t=F(t,....tn) = tYa) = FYtNa),...,t(a), ac A™.

Example. If A is the ring of the integers, and t = 2x + y, then
tA: 72 — Zis given by t4(a,b) =2a+ b



The atomic L-formulas are:
(i) t = t, where ty and b, are L-terms;
(i) R(ty,...,tm), Risam-aryrelsym&#t,...,ty are L-terms.

L-formulas are defined inductively as follows:

— each atomic L-formula is an L-formula;

— if ¢, 9 are L-formulas, then so are =, p A P, p V 1P;

— If pis an L-form & x € Var, then dx¢p, VX are L-formulas.
Notation. We write ¢ — ¢ for —p V¢

Example. L = {<,+, x,0,1}
Vxy Iz (x<y) = (x<z<Yy))

(3x(x < 0)) A (x2 #5)

A L-sentence is a L-formula in which all occurrences of variables
are bound (no free variables). A L-theory is a set of L-sentences.




Given A an L-structure, set Ly = LU {c:c € A} and ¢c* = c.

For any L4 sentence o, define

AEo

in A, or A satisfies o) as follows:

iy | At =t iff [tt=t

(o is true in A, or o holds

(t1, b variable-free L,-terms)

(i) [A = R, ... tn)| iff | (£
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Lt e R4 (Risam-ary

relation symbol & t4, ..., I, variable-free L-terms)

(i) [A = | iff [AWE@

i) [AEpAw] iff [AEe & AR

(iv) |[AEoVvy| iff |AEe or

A=

(V) |AE3xe(x)| iff | AE=p(a)

forsomeac A

i) [AE vxe(x)| it [AE e(a)

forallac A




Given a set of L-sentences T (that is, an L-theory), we say that
the L-structure A is a model of T whenever A =c forallo € T.

Notation: |AET

Examples
(1) L= {<}, < binary relation symbol.
o1 =Vx(x<x) AN Vxyz(x<yny<z)—x<2z
oo =Xy (X< yVvx=yVvy<X)
o3 =Vxy ((x<y)—3dz(x<z<y))
o4 :=Vx3yz (y < X < 2)

AE=oy <= Aisa partial order.
AE{o1,00} <= Aisalinear order.

A= DLO = {0}1<i<4 < Ais a dense |.0. w/o endpoints.

Ex: Write a sentence for "every element has a unique successor"



(2) L={<,+,0,—}, < binary relation symbol,
+ binary, 0 const, — unary function symbols.
p1 :=Vxyz (X +y)+2)=x+(y+2))
w2 =YX ((Xx+0=x=04+x) A (X+(—X)=(—x)+x =0))
p3 =YXy (X+y=y+Xx)
p4 =VXxyz (x <y = ((x+2) <(y+2)))
Yn =Vx (nx=0— x =0)

AE {1,020} <= Aisagroup.
A E{pv1, 02,03} <= Ais an abelian group.
A = A{yi, 01,02} 1<ica <= Ais an ordered abelian group.
A = {01, 02,93, ¥n} nen>0 < A is a torsion-free abelian group.

ordered = torsion-free: {y;, 01,02} 1<ica E {¥n}nen

Ty = T> | means “Every model of T4 is a model of T,"

We say that T, follows from 74 or 7> is a consequence of T;.



An L-theory T is maximal when for each L-sentence o
eitheroce Tor—-o e T.

Given A an L-structure, key max theories (over L and Lj,) are:

@ Th(A) ={o:0isan L-sentence & A = o}
@ ED(A) = {0 :0isan Ls-sentence & A = o}

Example. L ={+,x,0,1}, A= (R, +, x,0,1)
Ix (x> = 2) € Th(A)
3x (x? = m) € ED(A)\Th(A)
Clearly, A = Th(A) and A = ED(A).
If B = ED(A), then A embeds elementarily into B through

themap c*—cB forallce A



T f.s. L-theory = there is a maximal f.s. L-theory T" D T.

Proof.
Order | = {T': T' f.s. L-theory , T' O T} by inclusion.

If C C lis achain, then T :=J{X : X' € C} is an upper bound.

By Zorn’s lemma, there is T’ € | maximal w.r.t. the partial order.

T f.s. L-theory, p L-sentence = T U {p}or T U{—p} fs.

Proof.
If TU{p}isnotf.s. thereisafinite AC T, A —g.

If 3 C T is finite, then X U A is finite and has a model M,
MEAUXU{-p}. So TU{—yp}ists.

Therefore T’ is a maximal L-theory.



Using the compactness theorem

Assume we know that

If every finite subset of T has a model, then T has a model.

Goal:

Getting a mathematical object A

Strategy:
Find a language L and a L-theory T such that

(1) Ais a model of T (or A embeds in any model of T) &

(2) you can find a model for any finite subset of T



A partial order (P, <) can be extended to a linear one
Let L = {<}U{a: a e P}, < binary relation symbol.

Let T be the L-theory given by:
(1) < is a linear ordering;
(2) a<b whenever a < b[thatis, add ED(P, <)];

Given a finite To C T, let Py C P be the finite subset of P
corresponding to the constants in Ty from (2).

< can be extended to a linear <’ on Py by induction on |Py].
(Po, <) is a model of Ty. By compactness, T has a model A.
Define <’ on P as:

a<'b < AEFa=<b

<’ is a linear ordering on P extending <



If every finite subset of a graph I is k-colorable,
then I' is k-colorable

LetL={E,uy,...,ux} U{v:v e}, Ebinary relation symbol,
u; unary relation symbols.

Let T be the L-theory given by:

(1) VxVy (mE(x,x) A (E(x,y) — E(y, X))) [optional]
(2) E(v,w) whenever there is an edge between v & win I

(3) Vx (ui(x) V-V ug(x)) [each vertex is colored]

k
(4) VxVy ( A Wi(x) A ui(y) — ﬁE(x,y)> [k-coloring]

i=1
Given afinite To C T, let A = {vq,..., vy} where v4,...v, are
the constants in Ty from (2). Then A is the universe of a model
of To because it is k-colorable by assumption.

By compactness, T has a model A. A k-coloring on I is:

v has colori < v* e u



Every torsion-free abelian group G can be ordered

Let L = {<,+} U{a: ae G}, < binary relation symbol,
+ binary function symbol.

Let T be the L-theory given by:

(1) the axioms of ordered abelian groups;

(2) ED(G,+): axioms of the group operation on the elem of G;

Given a finite To C T,let H= (ay,...,an) where a4,...a, are the
constant symbols in To from (2). H is a finitely generated
subgroup of G (torsion-free), so H = ZX, where k < n.

So (H7 <lex) ): TO-

By compactness, T has a model A. Set G = {a* : ac G}.

(G, <A, +4) is an ordered abelian group, group-isomorphic to G.



Exercises 1.

(1) Fix a language L and find an L-theory T whose models are:
(i) the divisible abelian groups,
(i) the fields of characteristic 0,
(iii) the algebraically closed fields,
(iv) the bounded metric spaces with diameter D,
(v) the vector spaces over the field K.

(2) Prove (i)—(iv) are not finitely axiomatizable. How about (v)?

(3) Let L = {+, x,0,1}. Fix d € N>0. Write an L-sentence ¢4
such that for any field IC, K = @4 if and only if every injective
polynomial map f: K — K with degree at most d is surjective
(generalize itto ¢, 4 and f: K" — K" where each coordinate
function has degree at most d)



The compactness theorem

If every finite subset of a first-order L-theory T has a model,
then T has a model.

Main idea of Henkin’s proof: Building a model of T by adding
enough constants to the language so that every element of the
model will be named by a constant symbol.



Summary

A language is a set L of symbols:
— relation symbols R with associated arity a(R) € N>Y
— function symbols F with associated arity a(F) € N

Givenalanguage L={R,....F,...}, A= (A R4, ...,FA, ...)
Is an L-structure when:

— Ais a nonempty set, the underlying set (or universe) of A;
— R4 C A™, the interpretation of Rin A, m = a(R);
— FA: A" — Athe interpretation of Fin A, n= a(R);



L-terms are defined inductively as follows:
(i) each variable is an L-term;
(i) if F € Lis a n-ary function symbol & t4,..., f, are L-terms,
then F(t,...,1y) is an L-term.

The atomic L-formulas are:
(i) {4 = t, where ty and b, are L-terms;
(i) R(ty,...,tm), Risam-aryrelsym&t,...,ty are L-terms.

A L-sentence is a L-formula in which all occurrences of variables
are bound (no free variables). A L-theory is a set of L-sentences.

A model of an L-theory T is an L-structure where all sentences
of T are true. Notation: A = T.



Main steps of Henkin’s proof

If every finite subset of a first-order L-theory T has a model,
then T has a model.

(1) Add constants to L and sentences to T to get a f.s.
L*-theory T* with the witness property:

for any L*-formula ¢(x) there is ¢ € L* s.1.
T (3x o(x)) = ¢(c)
(2) Extend T* to a maximal f.s. L*-theory T’ (with the w.p.):
for any L*-sentence o eitherc € T"or —c € T’

(3) Define a model of T’ on a quotient of the constants in L*.



T finitely satisfiable L-theory = T is satisfiable.

(1) For any L-formula ¢(x), let ¢, be a new constant symbol and

Op: (3x p(x)) = wlcy)

_@f’ L=4+ %x0,19 W (x): x%-¢
g, Irix=s) = (<7 =5) LF 6,

:(}R\"';%)O)';C;;\@) ]:@‘P
— (IR) T, 5,000 C°3:._\f5> )59(‘,

(.e
“Q./ (@ "':Xll/$=’>*:@f



T finitely satisfiable L-theory = T is satisfiable.

(1) For any L-formula ¢(x), let ¢, be a new constant symbol and

O, 1 (Ix (X)) — ¢(cy)
Set Ly := LU {c, : ¢(x) is an L-formula} and
T1 :==TU{B, : p(x) is an L-formula}. Ty is finitely satisfiable:
If A C Ty is finite, then A = Ag U{O,,,...,0,,}, Ay C T.
Take A = Ag. If A = 3x pi(x), take a; € As.t. A = ¢(a;) and
set ¢/l = a;. Otherwise, let ¢’ be any a € A. Clearly A’ |= A.
lteretating: LCLi C L, C..., TCT{ CTrC... Set

=, T={T
T*isf.s. & for any L*-formula (x) there is ¢ € L* s.t.

T (3x ¢(x)) = ()



T f.s. L-theory = there is a maximal f.s. L-theory T" D T.

Proof.
Order | = {T': T' f.s. L-theory , T' O T} by inclusion.

If C C lis achain, then T :=J{X : X' € C} is an upper bound.

By Zorn’s lemma, there is T’ € | maximal w.r.t. the partial order.

T f.s. L-theory, p L-sentence = T U {p}or T U{—p} fs.

Proof.
If TU{p}isnotf.s. thereisafinite AC T, A —g.

If 3 C T is finite, then X U A is finite and has a model M,
MEAUXU{-p}. So TU{—yp}ists.

Therefore T’ is a maximal L-theory.



(3) Let T’ be a f.s. maximal L*-theory extending T*.

We can show that T’ has a model A:

Let C C L* be the set of constant symbols of L*.
Forc,d € Cdefinec~d & T'E=c=d

~ is an equivalence relation because T’ is f.s. & maximal.

Set

A=C/~

and for any ¢ € C, set ¢c* € Aand

cA =c*

T maximal f.s. L-theory, A=0, AC T finte=0c€ T

Proof.
o T = -ceT = AU{-c} C T finite & unsatisfiable.
Contradiction.




For any R € L* n-ary relation symbol, set

RAY={(c},....c;) € A" R(cy,...,cn) € T'}

RA is well-defined: Cj ~ d,’ = Cj = d,' cT
Soifé~dthen R(@)eT < R(d)eT



For any F € L* n-ary function symbol, and any ¢y, ...,¢ch 1 € C:
FA(CT,...,ch)=Chyy & F(Ct,...,Cn)=Cpp1 €T

FAis well-defined: ¢i~di = ¢ci=dieT

As () = 3x (F(cq,...,cn) = x) & T' has the witness property,
there is ¢,.1 € C such that F(cq,...,cn) =ch1 € T.
Similarly, F(di,...,dn) = dni1 € T' & Cpyt ~ ni1.
SoA=(Ac*...,RA ... FA ...)isan L*-structure.



AE T

For any L*-formula ¢(xq,...,xp)and ¢q,...,ch € C

AEp(€) & ¢C)eT

Proof.
By induction on the complexity of ¢ (using that T’ has the
witness property and is maximal finitely satisfiable).



T finitely satisfiable L-theory = T is satisfiable.

Corollary. Let T be an L-theory & ¢ an L-sentence.

T Eo = thereisafinite Ty C T suchthat To = o

Proof.
If not, for each finite To C T, Ty U {—c} has a model.

Therefore, T U {—c} is finitely satisfiable.
By compactness, T U {—c} is satisfiable. Contradiction.

Example: Algebraically Closed Fields.



Algebraically closed fields

Let L = {+, x,0,1} and T be the L-theory of fields.

(That is, + is an abelian group operation with identity 0, 0 # 1,
x is an abelian group operation on the non-zero elements with
identity 1, left and right distribution laws of x with respect to +).

on:=YUqy... Uy IX (X" +uyx" 1+ 4 up =0)
ACF =TU{pp:n>1}
ACFy:=ACFU{n1 #£0:n> 1}, ACFp, := ACFU{p1 =0}
Let F be an L-structure. Then
F EACF <« Fisanalgebraically closed field.

F = ACFy < F acf of characteristic 0
F = ACF, < F acf of characteristic p



Algebraically closed fields
Let L = {4+, x,0,1} and T be the L-theory of fields.

(That is, + is an abelian group operation with identity 0, 0 # 1,
x i1s an abelian group operation on the non-zero elements with
identity 1, left and right distribution laws of x with respect to +).

@n::vu1...un3x(x”+u1x”—1+---+un:0)
ACFy = ACF U {1 7Ao n> 1}, ACF, := ACF U {p1 = 0}

Let F be an L-structure. Then

F =ACF <« Fisan algebraically closed field.

F = ACFy < F acf of characteristic 0 < Th(F) = Th(C)
F = ACF, < F acf of characteristic p < Th(F) = Th(F39)

For each o L-sentence either ACFy = o or ACFx = —o



Algebraically closed fields

Corollary. Let 0 be an L-sentence, L = {+, x,0,1}. TFAE:
(i) o istrue in the complex field.

(i) o is true in some acf of characteristic O.

(i) o is true in every acf of characteristic O.
)

(iv) Thereis an m such that for all p > m, o is true in all
acf of characteristic p.

(v) There are arbitrarily large p such that o is true in
some acf of characteristic p.

(1) (V) - By compdefnes Jd 7o < ACR fulk st T £0Oo .

(V) = (O I{. C g o, then CETo , tonfigdichon .



Let f: C" — C" be injective & polynomial. Then f is surj.

Claim. Every injective polynomial map f: (Fglg)” — (]Fglg)” is
surjective.

Proof of the Claim.
If not, let @ € (F39)S be the coefficients of f and let b € (F39)"

not in the range of f. Let K be the subfield of Falg generated by
a, b. Then the restriction of f to K" is an |nject|ve but not
surjective polynomial map K" — K. But Fa’g UFpn is locally
finite, so K is finite, contradiction. ]

Let f: C" — C" be a counterexample and let d be the largest
degree of the coordinate functions of f. Let ¢4 be the sentence
saying "every injective polynomial function in n variables with n
coordinate functions with degree at most d is surjective".

IE«“f’,’g = &, for all p by the Claim. So C = &4, contradiction.



Every field F has an algebraic closure

Let L= {+,-,0,1}U{c: c € F} and T the L-theory given by:
(1) the axioms of fields;

(2) ED(F): axioms of the ring operations on the elements of F;

(3) for each non-zero polynomial p € F[x], an axiom saying that
p splits.

Given a finite To C T, there are finitely many polynomials from
(3), so we can find a finite extension of F that is a model of Ty.

By compactness, T has a model A.
FA .= {c*:cc F}is afield isomorphic to F.

F :={ac A: ais algebraic over F4} is algebraically closed.



The algebraic closure of F is unique

Let E, K be algebraic closures of F.
SetL={+,-,0,1}u{c:ce E}u{d:d e K}.
Let T be the L-theory given by:

(1) the axioms of fields;

(2) axioms of the ring operations on the elements of £ and K.

Given Ty C T, only finitely many elements of E and K appeatr,
and there is a finite field extension of F that models Tj.

By compactness, there is a model A of T.
E4:= {c*: c e E}isisomorphic to E.
KA := {d*: d € K} is isomorphic to K.

EA and K are isomorphic and agree on F.



Exercises 2.

(1) Prove the compactness theorem is equivalent to the
compactness of the topological space of satisfiable maximal
L-theories (see previous slide)

(2) Prove the compactness theorem is equivalent to the
compactness of the quotient of L-structure by elementarily
equivalence (see previous slide)

(3) Show that the following are not first-order axiomatizable.
That is, there is no first-order theory T whose models are

(i) the finite sets (or finite groups, or finite fields, etc.),
(i) the connected graphs,
(iii) the torsion groups



Some references

(1) Lou van den Dries’ Logic Notes

(2) David Marker’s article in the The Princeton Companion to
Mathematics, Princeton University Press (2008),
IV.23 Logic and Model Theory, pg 635—646.

(3) David Marker’'s book: Model Theory: An Introduction,
Springer GTM 217 (2002).


https://faculty.math.illinois.edu/~vddries/main2.pdf

Let X be the set of satisfiable maximal L-theories.
Set T, ={T € X :p € T} forany L-sentence .
This is a basis for a topology 7 on X.

Every f.s. L-theory is satisfiable <— (X, 7) is compact

o = : S open coverin ¢ _

D | U=ATe: €Sk open corring ST =0 =T,
Z‘ - Z)—[(P’ P e Sj- ULnsaH;,L}dlaLe PeS
}\A'hi"c 20 C 2 uasgL\'S[—;dbbe [)Tcp = ¢
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Let X be the set of satisfiable maximal L-theories. l{— AET  max
"

Set T, ={T € X:p € T} forany L-sentence . Th(A)

This is a basis for a topology 7 on X.

Every f.s. L-theory is satisfiable <— (X, 7) is compact

é:' Z {-.s. L'-H‘JGO\H1
{ = % TC : Q€ Z 5* closed el with the {im{l“e inl'evsec(nbm /Mo/ﬁﬁ}j .
= 10

n_«¢ o= bewuse 2 s, (X))
;ﬂ —Eﬂ' = ¢. Q- Ay iﬁé ]l Compe)c)“ =)

D_IJ— iﬁb f_ /)"]; 2% has d modaf




Let X be the set of satisfiable maximal L-theories.
Set T, ={T € X:p € T} forany L-sentence .
This is a basis for a topology 7 on X.

Every f.s. L-theory is satisfiable <— (X, 7) is compact

Equivalently, let S be the set of L-structures and set Y = S/ ~
A~ B < Th(A) = Th(B) Set A" =[A]leY

Set S, = {A* € Y: A= ¢} forany L-sentence .

This is a basis for a topology 7 on Y.

Every f.s. L-theory is satisfiable <— (Y, 7) is compact




Nonstandard analysis
Let R be an ordered field. Then the following are equivalent:

@ Th(R) = Th(R) = RCF (R is a real closed field)

@ Every positive element in R is a square &
every polynomial of odd degree has a root in R.

@ R(v/—1) is algebraically closed.
R(V=1) =k C=R/[)
k=R

cdr O ReK
K dc+ ‘ md x r‘q_

(K)@,(@) s defmble v (/3,4, +,)<)
So a'csdcvd{c vavietes | Qreups Aer £ dve de}q‘mdble v 9 PcJ, R



Nonstandard analysis
Let R be an ordered field. Then the following are equivalent:

@ Th(R) = Th(R) = RCF (R is a real closed field)

@ Every positive element in R is a square &
every polynomial of odd degree has a root in R.

@ R(v/—1) is algebraically closed.

There are non-Archimedean real closed fields.

Let L = {<,+,x,0,1,¢}, T=Th(R)u{0<c< 1:neN}

For any finite To C T, R = Ty. By compactness, T has a model.

Let R be a model of T. Does {%}neN s cR? No-:

cL2c=c+c < ;’)— = C < é’_n ) confiad iclion .

pLy o does nof converge i ()




Nonstandard analysis
Let R be an ordered field. Then the following are equivalent:

@ Th(R) = Th(R) = RCF (R is a real closed field)

@ Every positive element in R is a square &
every polynomial of odd degree has a root in R.

@ R(v/—1) is algebraically closed.

There are non-Archimedean real closed fields.

Let L = {<,+,x,0,1,¢}, T=Th(R)u{0<c< 1:neN}
For any finite To C T, R = Ty. By compactness, T has a model.

Let R be a model of T. Does {1}, — ¢~ ?

There are real closed fields where no sequence converges,
unless it is eventually constant.




A first proof in Number Theory: The Division Algorithm
Let a,b € Z,b # 0. Then there are q,r € Z, 0 < r < |b| such that

a=qgb+r

Proof.

letS={a+kb:keZ & a+ kb>0}. S#I(.

Letr=min S, r = a+ kgb. Set g = —kg

fb>0andr > b,thenr—b=a+(kk—1)b>0
fb<Oandr> —b,thenr+b=a+(kg+1)b>0

Either way, r # min S, contradiction. So r < |b| O]



Peano Arithmetic (PA)
Let L = {<,+, x,0,1}. PAis the L-theory with axioms:
+ & x are commutative, associative, with identities 0 & 1
< iIs a linear order that agrees with + & x
Vxy (X <y <> 3z(z>0Ax+z=y))
VX(x>20AN (x>0—=>x2>1))

(0(0) AVX (0(X) = @(x +1))) — VX ©(x)
for any o(x)



Peano Arithmetic (PA)
Let L = {<,+, x,0,1}. PAis the L-theory with axioms:
+ & x are commutative, associative, with identities 0 & 1
< iIs a linear order that agrees with + & x
Vxy (X <y <> 3z(z>0Ax+z=y))
VX(x>20AN (x>0—=>x2>1))

(0(0) AVX (0(X) = @(x +1))) — VX ©(x)
for any o(x)

What about negative numbers?



The Integers

Define Z =

(Nx N)/ ~ where

(a,b) ~(c,d) & a+d=b+c

We can think of [(a, b)] as a — b. The following are well-defined:

(a,b)] @ [(c,d)] =[(a+c,b+d)
(a,b)] ® [(c,d)] = [(ac + bd, ad + bc)]
(a,b)] <[(c,d)] & a+d<b+c
0=[(a a)]
1=[(a+1,a)]
(N, <, 4+, x,0,1) embeds into (Z, <, ®, ®,0, 1) through the map

k — [(@a+k,a)]



Nonstandard models of Arithmetic
(N, <, +, x,0,1) is called the standard model of PA.

Any other model of PA is called nonstandard.

Theorem. There are nonstandard models of PA.

Proof.
Let L = {<,+, x,0,1, c}, ¢ a constant symbol.

Let T=PAU{c>n:neN}and Ty C T finite.
Then (N, <, +, x,0,1,m+ 1) is a model of T,
where mis the largest of the ¢ > n axioms in Tj.
By compactness, T has a model A.

¢ is a nonstandard element (and so are ¢c* + 1, etc.)

|s there a countable nonstandard model? Yes!



How small are the models we can find?

Theorem. (Lowenheim-Skolem | ) Let T be a satisfiable
L-theory and C be the set of constants in L. Then there is
a model of T with cardinality |C| + Xg. In particular, if C is
at most countable, then T has a countable model.

Proof.

By Henkin’s proof of the compactness theorem, there is a model
of T of cardinality |L*| = |L| 4+ RNp. N



How big are the models we can find?

Theorem. (Lowenheim-Skolem 1) Let T be a satisfiable
L-theory and C be the set of constants in L. If T has an
infinite model, then there is a model of T with cardinality A,
for each infinite A > |C].

Proof.
Let A be an infinite model of T and / be a set, |/| =\ > |C|.

Setl'=Lu{c:ielfand T'=TuU{ci#cj:i,jeli#j}

For any finite T C T, A (infinite) can be made a model of Tj.
By compactness, T’ has a model (with cardinality at least \).

By Henkin’s proof, T’ (and T) has a model with cardinality A. [



Limitations of first-order axiomatization
Finite groups, fields, graphs etc. are not first-order axiomatizable.

If a theory has only finite models, their size is bounded.

Proof.
Let T be an L-theory whose models are all finite. Suppose, by a
contradiction, that for each n € N, T has a model A,, |An| > n.

Let L' = LU {c, : n € N}, ¢, constant symbols. Let
I'=Tu{c#c:i#j}. It ToCT,|To| =n,then Ay = To.

By compactness, T’ has a model A, Ais infiniteand A = T.
Contradiction. ]
Similarly for torsion groups or connected graphs.
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Finite groups, fields, graphs etc. are not first-order axiomatizable.

If a theory has only finite models, their size is bounded.

Proof.
Let T be an L-theory whose models are all finite. Suppose, by a
contradiction, that for each n € N, T has a model A,, |An| > n.

Let L' = LU {c, : n € N}, ¢, constant symbols. Let
I'=Tu{c#c:i#j}. It ToCT,|To| =n,then Ay = To.

By compactness, T’ has a model A, Ais infiniteand A = T.
Contradiction. ]
Similarly for torsion groups or connected graphs.

Why we put up with the limitations of first-order logic?

Because of the Compactness Theorem!



Twin prime conjecture

(Polignac, 1849) There are infinitely many primes p such
that p+ 2 is also prime. [p & p+ 2 are called twin primes].
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Reading: Model Theory and Number Theory

@ Thomas Scanlon, Diophantine Geometry from Model
Theory (2001).

@ Kobi Peterzil & Sergei Starchenko, Tame complex analysis
and o-minimality (ICM 2010)

@ Jonathan Pila, O-minimality and Diophantine Geometry
(ICM 2014)


https://math.berkeley.edu/~scanlon/papers/bsl4ap00.pdf
https://math.berkeley.edu/~scanlon/papers/bsl4ap00.pdf
http://math.haifa.ac.il/kobi/Icm-final.pdf
http://math.haifa.ac.il/kobi/Icm-final.pdf
http://people.maths.ox.ac.uk/pila/ODG.pdf

