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The plan

(1) Understanding the statement and how to use it

(2) Henkin’s proof and amazing applications

(3) Applications to Number Theory



(X , ⌧) is a topological space when X is a set and ⌧ ⇢ P(X ) s.t.
;,X 2 ⌧

Ai 2 ⌧ )
S

i Ai 2 ⌧

A,B 2 ⌧ ) A \ B 2 ⌧

⌧ is a topology on X & its elements are called open sets.

Closed sets are the complements of open sets.

A subset of X is compact when every open covering of it has a
finite subcovering. Equivalently, any collection of closed subsets
with the finite intersection property has nonempty intersection.

Example. The Euclidean topology on Rn is generated by the
open balls Br (p) = {x 2 Rn : d(p, x) < r}.

– Rn is not compact: {Bn(0) : n 2 N} is an open covering

– {Rn \ Bn(0) : n 2 N} has the finite intersection property

X ⇢ Rn is compact , X is closed and bounded.



The following are equivalent (in ZF):

(1) The compactness theorem for first-order logic:
If every finite subset of a first-order theory T has a model,
then T has a model [finitely satisfiable (f.s.) ) satisfiable]

(2) Gödel completeness theorem: T |= ' () T ` '
(' is true wherever T is () there is a proof of ' from T )

(3) The space of L-structures (L-theories) is compact.

(4) Any product of compact Hausdorff spaces is compact.

(5) The Stone-Čech compactification theorem.

(6) Ideals in a Boolean algebra can be extended to prime ideals.

(7) (Banach-Alaoglu) The closed unit ball in the continuous dual
space of any normed space is weak-⇤ compact.



A language (or signature, or vocabulary) is a set L of symbols:
– relation symbols R with associated arity a(R) 2 N>0

– function symbols F with associated arity a(F ) 2 N
function symbols of arity 0 are called constant symbols.

Given a language L = {R, . . . ,F , . . . }, A = (A,RA, . . . ,FA, . . . )
is an L-structure when:

– A is a nonempty set, the underlying set (or universe) of A;
– RA ✓ Am, the interpretation of R in A, m = a(R);
– FA : An ! A the interpretation of F in A, n = a(R);

the interpretation of a constant c 2 L is some cA 2 A.

Example. Let L = {<,+,⇥, 0, 1}, where < is a binary relation
symbol, + and ⇥ are binary function symbols, 0 and 1 are
constant symbols. An example of L-structure is

A = (Z, <A,+A,⇥A, 0A, 1A), with standard interpretations.

With an abuse of notation, we will write A = (Z, <,+,⇥, 0, 1)



Let L = {⇥, i , 1}, ⇥ binary function symbol, i unary function
symbol, 1 constant symbol. Some L-structures:

A = (GL5(Z),⇥A, iA, 1A), ⇥A(X ,Y ) = XY , iA(X ) = X�1,1A = I5

B = (Z,⇥B, iB, 1B), ⇥B(x , y) = x + y , iB(x) = �x , 1B = 0

C = (Z,⇥C , iC , 1C), ⇥C(x , y) = byexc, iC(x) = x + 7, 1C = �23

Let L = {E}, E binary relation symb. A graph is an L-structure.

Let L = {<,+,⇥, 0, 1} as before. Some other L-structures:

A = (Z, <,+,⇥, 0, 1)

B = (Q, <,+,⇥, 0, 1)

C = (R, <,+,⇥, 0, 1)

D = (N, <,+,⇥, 0, 1)



Fix Var = {xi : i 2 I} � {x , y , z} a set of symbols, the variables.

L-terms are defined inductively as follows:
(i) each variable is an L-term;
(ii) if F 2 L is a n-ary function symbol & t1, . . . , tn are L-terms,

then F (t1, . . . , tn) is an L-term.

Examples. L = {+,⇥, 0, 1}. We will write xy + 3 for the term
+(⇥(x , y),+(+(1, 1), 1)) and 2x + y for +(+(x , x), y).

Given an L-structure A and an L-term t = t(~x), ~x = (x1, . . . , xm),
set tA : Am ! A as follows:

(i) t = xi ) tA(a) = ai for a = (a1, . . . , am) 2 Am;
(ii) t = F (t1, . . . , tn) ) tA(a) = FA(tA1 (a), . . . , tAn (a)), a 2 Am.

Example. If A is the ring of the integers, and t = 2x + y , then
tA : Z2 ! Z is given by tA(a, b) = 2a + b



The atomic L-formulas are:
(i) t1 = t2, where t1 and t2 are L-terms;
(ii) R(t1, . . . , tm), R is a m-ary rel sym & t1, . . . , tm are L-terms.

L-formulas are defined inductively as follows:
– each atomic L-formula is an L-formula;
– if ', are L-formulas, then so are ¬',' ^  ,' _  ;
– if ' is an L-form & x 2 Var, then 9x', 8x' are L-formulas.

Notation. We write ' !  for ¬' _  

Example. L = {<,+,⇥, 0, 1}

8xy 9z ((x < y) ! (x < z < y))

(9x(x 6 0)) ^ (x2 6= 5)

A L-sentence is a L-formula in which all occurrences of variables
are bound (no free variables). A L-theory is a set of L-sentences.



Given A an L-structure, set LA = L [ {c : c 2 A} and cA = c.

For any LA sentence �, define A |= � (� is true in A, or � holds
in A, or A satisfies �) as follows:

(i) A |= t1 = t2 iff tA1 = tA2 (t1, t2 variable-free LA-terms)

(ii) A |= R(t1, . . . , tm) iff (tA1 , . . . , tAm ) 2 RA (R is a m-ary

relation symbol & t1, . . . , tm variable-free LA-terms)

(iii) A |= ¬' iff A 6|= '

(iii) A |= ' ^  iff A |= ' & A |=  

(iv) A |= ' _  iff A |= ' or A |=  

(v) A |= 9x'(x) iff A |= '(a) for some a 2 A

(vi) A |= 8x'(x) iff A |= '(a) for all a 2 A



Given a set of L-sentences T (that is, an L-theory), we say that
the L-structure A is a model of T whenever A |= � for all � 2 T .

Notation: A |= T

Examples
(1) L = {<}, < binary relation symbol.

�1 := 8x ¬(x < x) ^ 8xyz ((x < y ^ y < z) ! x < z)

�2 := 8xy (x < y _ x = y _ y < x)

�3 := 8xy ((x < y) ! 9z (x < z < y))

�4 := 8x9yz (y < x < z)

A |= �1 () A is a partial order.

A |= {�1,�2} () A is a linear order.

A |= DLO = {�i}16i64 () A is a dense l.o. w/o endpoints.

Ex: Write a sentence for "every element has a unique successor"



(2) L = {<,+, 0,�}, < binary relation symbol,
+ binary, 0 const, � unary function symbols.
'1 := 8xyz ((x + y) + z) = x + (y + z))
'2 := 8x ((x +0 = x = 0+ x) ^ (x +(�x) = (�x)+ x = 0))
'3 := 8xy (x + y = y + x)
'4 := 8xyz (x < y ! ((x + z) < (y + z)))
 n := 8x (nx = 0 ! x = 0)

A |= {'1,'2} () A is a group.

A |= {'1,'2,'3} () A is an abelian group.

A |= {'i ,�1,�2}16i64 () A is an ordered abelian group.

A |= {'1,'2,'3, n}n2N>0 () A is a torsion-free abelian group.

ordered ) torsion-free: {'i ,�1,�2}16i64 |= { n}n2N

T1 |= T2 means “Every model of T1 is a model of T2"

We say that T2 follows from T1 or T2 is a consequence of T1.



An L-theory T is maximal when for each L-sentence �
either � 2 T or ¬� 2 T .

Given A an L-structure, key max theories (over L and LA) are:

Th(A) = {� : � is an L-sentence & A |= �}

ED(A) = {� : � is an LA-sentence & A |= �}

Example. L = {+,⇥, 0, 1}, A = (R,+,⇥, 0, 1)

9x (x2 = 2) 2 Th(A)

9x (x2 = ⇡) 2 ED(A)\Th(A)

Clearly, A |= Th(A) and A |= ED(A).

If B |= ED(A), then A embeds elementarily into B through

the map cA 7! cB for all c 2 A



T f.s. L-theory ) there is a maximal f.s. L-theory T 0 ◆ T .

Proof.
Order I = {T 0 : T 0 f.s. L-theory ,T 0 ◆ T} by inclusion.

If C ✓ I is a chain, then TC :=
S
{⌃ : ⌃ 2 C} is an upper bound.

By Zorn’s lemma, there is T 0 2 I maximal w.r.t. the partial order.

T f.s. L-theory, ' L-sentence ) T [ {'} or T [ {¬'} f.s.

Proof.
If T [ {'} is not f.s. there is a finite � ✓ T , � |= ¬'.

If ⌃ ✓ T is finite, then ⌃ [� is finite and has a model M,

M |= � [⌃ [ {¬'}. So T [ {¬'} is f.s.

Therefore T 0 is a maximal L-theory.



Using the compactness theorem

Assume we know that

If every finite subset of T has a model, then T has a model.

Goal:

Getting a mathematical object A

Strategy:

Find a language L and a L-theory T such that

(1) A is a model of T (or A embeds in any model of T ) &

(2) you can find a model for any finite subset of T



A partial order (P, <) can be extended to a linear one
Let L = {�} [ {a : a 2 P}, � binary relation symbol.

Let T be the L-theory given by:

(1) � is a linear ordering;

(2) a � b whenever a < b [that is, add ED(P, <)];

Given a finite T0 ⇢ T , let P0 ⇢ P be the finite subset of P
corresponding to the constants in T0 from (2).

< can be extended to a linear <0 on P0 by induction on |P0|.

(P0, <
0) is a model of T0. By compactness, T has a model A.

Define <0 on P as:

a <0 b () A |= a � b

<0 is a linear ordering on P extending <



If every finite subset of a graph � is k -colorable,
then � is k -colorable

Let L = {E , u1, . . . , uk} [ {v : v 2 �}, E binary relation symbol,
ui unary relation symbols.

Let T be the L-theory given by:
(1) 8x8y (¬E(x , x) ^ (E(x , y) ! E(y , x))) [optional]
(2) E(v ,w) whenever there is an edge between v & w in �
(3) 8x (u1(x) _ · · · _ uk (x)) [each vertex is colored]

(4) 8x8y

 k̂

i=1

(ui(x) ^ ui(y) ! ¬E(x , y)

!
[k -coloring]

Given a finite T0 ⇢ T , let � = {v1, . . . , vn} where v1, . . . vn are
the constants in T0 from (2). Then � is the universe of a model
of T0 because it is k -colorable by assumption.

By compactness, T has a model A. A k -coloring on � is:

v has color i , vA 2 uA
i



Every torsion-free abelian group G can be ordered

Let L = {<,+} [ {a : a 2 G}, < binary relation symbol,
+ binary function symbol.

Let T be the L-theory given by:

(1) the axioms of ordered abelian groups;

(2) ED(G,+): axioms of the group operation on the elem of G;

Given a finite T0 ⇢ T , let H = ha1, . . . , ani where a1, . . . an are the
constant symbols in T0 from (2). H is a finitely generated
subgroup of G (torsion-free), so H ⇠= Zk , where k 6 n.
So (H, <lex) |= T0.

By compactness, T has a model A. Set G0 = {aA : a 2 G}.

(G0, <A,+A) is an ordered abelian group, group-isomorphic to G.



Exercises 1.

(1) Fix a language L and find an L-theory T whose models are:
(i) the divisible abelian groups,
(ii) the fields of characteristic 0,
(iii) the algebraically closed fields,
(iv) the bounded metric spaces with diameter D,
(v) the vector spaces over the field K.

(2) Prove (i)–(iv) are not finitely axiomatizable. How about (v)?

(3) Let L = {+,⇥, 0, 1}. Fix d 2 N>0. Write an L-sentence �d
such that for any field K, K |= �d if and only if every injective
polynomial map f : K ! K with degree at most d is surjective
(generalize it to �n,d and f : K n ! K n where each coordinate
function has degree at most d)



The compactness theorem

If every finite subset of a first-order L-theory T has a model,
then T has a model.

Main idea of Henkin’s proof: Building a model of T by adding
enough constants to the language so that every element of the
model will be named by a constant symbol.



Summary
A language is a set L of symbols:

– relation symbols R with associated arity a(R) 2 N>0

– function symbols F with associated arity a(F ) 2 N

Given a language L = {R, . . . ,F , . . . }, A = (A,RA, . . . ,FA, . . . )
is an L-structure when:

– A is a nonempty set, the underlying set (or universe) of A;
– RA ✓ Am, the interpretation of R in A, m = a(R);
– FA : An ! A the interpretation of F in A, n = a(R);



L-terms are defined inductively as follows:
(i) each variable is an L-term;
(ii) if F 2 L is a n-ary function symbol & t1, . . . , tn are L-terms,

then F (t1, . . . , tn) is an L-term.

The atomic L-formulas are:
(i) t1 = t2, where t1 and t2 are L-terms;
(ii) R(t1, . . . , tm), R is a m-ary rel sym & t1, . . . , tm are L-terms.

A L-sentence is a L-formula in which all occurrences of variables
are bound (no free variables). A L-theory is a set of L-sentences.

A model of an L-theory T is an L-structure where all sentences
of T are true. Notation: A |= T .



Main steps of Henkin’s proof

If every finite subset of a first-order L-theory T has a model,
then T has a model.

(1) Add constants to L and sentences to T to get a f.s.
L⇤-theory T ⇤ with the witness property:
for any L⇤-formula '(x) there is c 2 L⇤ s.t.

T ⇤ |= (9x '(x)) ! '(c)

(2) Extend T ⇤ to a maximal f.s. L⇤-theory T 0 (with the w.p.):

for any L⇤-sentence � either � 2 T 0 or ¬� 2 T 0

(3) Define a model of T 0 on a quotient of the constants in L⇤.



T finitely satisfiable L-theory ) T is satisfiable.
(1) For any L-formula '(x), let c' be a new constant symbol and

⇥' : (9x '(x)) ! '(c')

Set L1 := L [ {c' : '(x) is an L-formula} and

T1 := T [ {⇥' : '(x) is an L-formula}. T1 is finitely satisfiable:

If � ✓ T1 is finite, then � = �0 [ {⇥'1 , . . . ,⇥'n}, �0 ✓ T .

Take A |= �0. If A |= 9x 'i(x), take ai 2 A s.t. A |= 'i(ai) and

set cA0
'i

= ai . Otherwise, let cA0
'i

be any a 2 A. Clearly A0 |= �.

Iteretating: L ✓ L1 ✓ L2 ✓ . . . , T ✓ T1 ✓ T2 ✓ . . . Set

L⇤ :=
[

Li T ⇤ :=
[

Ti

T ⇤ is f.s. & for any L⇤-formula '(x) there is c 2 L⇤ s.t.

T ⇤ |= (9x '(x)) ! '(c)
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T finitely satisfiable L-theory ) T is satisfiable.
(1) For any L-formula '(x), let c' be a new constant symbol and

⇥' : (9x '(x)) ! '(c')

Set L1 := L [ {c' : '(x) is an L-formula} and

T1 := T [ {⇥' : '(x) is an L-formula}. T1 is finitely satisfiable:

If � ✓ T1 is finite, then � = �0 [ {⇥'1 , . . . ,⇥'n}, �0 ✓ T .

Take A |= �0. If A |= 9x 'i(x), take ai 2 A s.t. A |= 'i(ai) and

set cA0
'i

= ai . Otherwise, let cA0
'i

be any a 2 A. Clearly A0 |= �.

Iteretating: L ✓ L1 ✓ L2 ✓ . . . , T ✓ T1 ✓ T2 ✓ . . . Set

L⇤ :=
[

Li T ⇤ :=
[

Ti

T ⇤ is f.s. & for any L⇤-formula '(x) there is c 2 L⇤ s.t.

T ⇤ |= (9x '(x)) ! '(c)



T f.s. L-theory ) there is a maximal f.s. L-theory T 0 ◆ T .

Proof.
Order I = {T 0 : T 0 f.s. L-theory ,T 0 ◆ T} by inclusion.

If C ✓ I is a chain, then TC :=
S
{⌃ : ⌃ 2 C} is an upper bound.

By Zorn’s lemma, there is T 0 2 I maximal w.r.t. the partial order.

T f.s. L-theory, ' L-sentence ) T [ {'} or T [ {¬'} f.s.

Proof.
If T [ {'} is not f.s. there is a finite � ✓ T , � |= ¬'.

If ⌃ ✓ T is finite, then ⌃ [� is finite and has a model M,

M |= � [⌃ [ {¬'}. So T [ {¬'} is f.s.

Therefore T 0 is a maximal L-theory.



(3) Let T 0 be a f.s. maximal L⇤-theory extending T ⇤.
We can show that T 0 has a model A:
Let C ✓ L⇤ be the set of constant symbols of L⇤.
For c, d 2 C define c ⇠ d , T 0 |= c = d
⇠ is an equivalence relation because T 0 is f.s. & maximal.

Set A = C/ ⇠ and for any c 2 C, set c⇤ 2 A and cA = c⇤

T maximal f.s. L-theory, � |= �, � ✓ T finite ) � 2 T

Proof.
� 62 T ) ¬� 2 T ) � [ {¬�} ✓ T finite & unsatisfiable.
Contradiction.



For any R 2 L⇤ n-ary relation symbol, set

RA = {(c⇤
1, . . . , c

⇤
n) 2 An : R(c1, . . . , cn) 2 T 0}

RA is well-defined: ci ⇠ di ) ci = di 2 T 0

So if ~c ⇠ ~d then R(~c) 2 T 0 , R(~d) 2 T 0



For any F 2 L⇤ n-ary function symbol, and any c1, . . . , cn+1 2 C:

FA(c⇤
1, . . . , c

⇤
n) = c⇤

n+1 , F (c1, . . . , cn) = cn+1 2 T 0

FA is well-defined: ci ⇠ di ) ci = di 2 T 0

As ; |= 9x (F (c1, . . . , cn) = x) & T 0 has the witness property,

there is cn+1 2 C such that F (c1, . . . , cn) = cn+1 2 T 0.

Similarly, F (d1, . . . , dn) = dn+1 2 T 0 & cn+1 ⇠ dn+1.

So A = (A, c⇤, . . . ,RA, . . . ,FA, . . . ) is an L⇤-structure.



A |= T 0:

For any L⇤-formula '(x1, . . . , xn) and c1, . . . , cn 2 C

A |= '(~c) , '(~c) 2 T 0

Proof.
By induction on the complexity of ' (using that T 0 has the
witness property and is maximal finitely satisfiable).



T finitely satisfiable L-theory ) T is satisfiable.

Corollary. Let T be an L-theory & � an L-sentence.

T |= � =) there is a finite T0 ✓ T such that T0 |= �

Proof.
If not, for each finite T0 ✓ T , T0 [ {¬�} has a model.
Therefore, T [ {¬�} is finitely satisfiable.
By compactness, T [ {¬�} is satisfiable. Contradiction.

Example: Algebraically Closed Fields.



Algebraically closed fields

Let L = {+,⇥, 0, 1} and T be the L-theory of fields.

(That is, + is an abelian group operation with identity 0, 0 6= 1,
⇥ is an abelian group operation on the non-zero elements with
identity 1, left and right distribution laws of ⇥ with respect to +).

'n := 8u1 . . . un 9x (xn + u1xn�1 + · · ·+ un = 0)

ACF := T [ {'n : n > 1}

ACF0 := ACF [ {n1 6= 0 : n > 1}, ACFp := ACF [ {p1 = 0}

Let F be an L-structure. Then

F |= ACF , F is an algebraically closed field.

F |= ACF0 , F acf of characteristic 0

F |= ACFp , F acf of characteristic p



Algebraically closed fields
Let L = {+,⇥, 0, 1} and T be the L-theory of fields.

(That is, + is an abelian group operation with identity 0, 0 6= 1,
⇥ is an abelian group operation on the non-zero elements with
identity 1, left and right distribution laws of ⇥ with respect to +).

'n := 8u1 . . . un 9x (xn + u1xn�1 + · · ·+ un = 0)

ACF := T [ {'n : n > 1}

ACF0 := ACF [ {n1 6= 0 : n > 1}, ACFp := ACF [ {p1 = 0}

Let F be an L-structure. Then

F |= ACF , F is an algebraically closed field.

F |= ACF0 , F acf of characteristic 0 , Th(F) = Th(C)

F |= ACFp , F acf of characteristic p , Th(F) = Th(Falg
p )

For each � L-sentence either ACFk |= � or ACFk |= ¬�



Algebraically closed fields

Corollary. Let � be an L-sentence, L = {+,⇥, 0, 1}. TFAE:
(i) � is true in the complex field.
(ii) � is true in some acf of characteristic 0.
(iii) � is true in every acf of characteristic 0.
(iv) There is an m such that for all p > m, � is true in all

acf of characteristic p.
(v) There are arbitrarily large p such that � is true in

some acf of characteristic p.

iii iv Bycompactness FToeACE finitesit To to

v i If 4 O then K F 70 contradiction



Let f : Cn ! Cn be injective & polynomial. Then f is surj.

Claim. Every injective polynomial map f : (Falg
p )n ! (Falg

p )n is
surjective.

Proof of the Claim.
If not, let ā 2 (Falg

p )s be the coefficients of f and let b̄ 2 (Falg
p )n

not in the range of f . Let K be the subfield of Falg
p generated by

ā, b̄. Then the restriction of f to K n is an injective but not
surjective polynomial map K n ! K n. But Falg

p = [Fpn is locally
finite, so K is finite, contradiction.

Let f : Cn ! Cn be a counterexample and let d be the largest
degree of the coordinate functions of f . Let �d be the sentence
saying "every injective polynomial function in n variables with n
coordinate functions with degree at most d is surjective".
Falg

p |= �d for all p by the Claim. So C |= �d , contradiction.



Every field F has an algebraic closure

Let L = {+, ·, 0, 1} [ {c : c 2 F} and T the L-theory given by:

(1) the axioms of fields;

(2) ED(F): axioms of the ring operations on the elements of F ;

(3) for each non-zero polynomial p 2 F [x ], an axiom saying that
p splits.

Given a finite T0 ⇢ T , there are finitely many polynomials from
(3), so we can find a finite extension of F that is a model of T0.

By compactness, T has a model A.

FA := {cA : c 2 F} is a field isomorphic to F .

F := {a 2 A : a is algebraic over FA} is algebraically closed.



The algebraic closure of F is unique

Let E , K be algebraic closures of F .

Set L = {+, ·, 0, 1} [ {c : c 2 E} [ {d : d 2 K}.

Let T be the L-theory given by:

(1) the axioms of fields;

(2) axioms of the ring operations on the elements of E and K .

Given T0 ⇢ T , only finitely many elements of E and K appear,
and there is a finite field extension of F that models T0.

By compactness, there is a model A of T .

EA := {cA : c 2 E} is isomorphic to E .

KA := {dA : d 2 K} is isomorphic to K .

EA and KA are isomorphic and agree on F .



Exercises 2.

(1) Prove the compactness theorem is equivalent to the
compactness of the topological space of satisfiable maximal
L-theories (see previous slide)

(2) Prove the compactness theorem is equivalent to the
compactness of the quotient of L-structure by elementarily
equivalence (see previous slide)

(3) Show that the following are not first-order axiomatizable.
That is, there is no first-order theory T whose models are

(i) the finite sets (or finite groups, or finite fields, etc.),
(ii) the connected graphs,
(iii) the torsion groups



Some references

(1) Lou van den Dries’ Logic Notes

(2) David Marker’s article in the The Princeton Companion to
Mathematics, Princeton University Press (2008),
IV.23 Logic and Model Theory, pg 635–646.

(3) David Marker’s book: Model Theory: An Introduction,
Springer GTM 217 (2002).

https://faculty.math.illinois.edu/~vddries/main2.pdf


Let X be the set of satisfiable maximal L-theories.
Set T' = {T 2 X : ' 2 T} for any L-sentence '.
This is a basis for a topology ⌧ on X .

Every f.s. L-theory is satisfiable () (X , ⌧) is compact
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Let X be the set of satisfiable maximal L-theories.
Set T' = {T 2 X : ' 2 T} for any L-sentence '.
This is a basis for a topology ⌧ on X .

Every f.s. L-theory is satisfiable () (X , ⌧) is compact

Equivalently, let S be the set of L-structures and set Y = S/ ⇠

A ⇠ B , Th(A) = Th(B) Set A⇤ = [A] 2 Y

Set S' = {A⇤ 2 Y : A |= '} for any L-sentence '.

This is a basis for a topology ⌧ on Y .

Every f.s. L-theory is satisfiable () (Y , ⌧) is compact
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Nonstandard analysis
Let R be an ordered field. Then the following are equivalent:

Th(R) = Th(R) = RCF (R is a real closed field)

Every positive element in R is a square &
every polynomial of odd degree has a root in R.

R(
p
�1) is algebraically closed.

There are non-Archimedean real closed fields.

Let L = {<,+,⇥, 0, 1, c}, T = Th(R) [ {0 < c < 1
n : n 2 N}

For any finite T0 ✓ T , R |= T0. By compactness, T has a model.

Let R be a model of T . Does
�1

n
 

n2N ! cR ?

There are real closed fields where no sequence converges,
unless it is eventually constant.

Max ref
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A first proof in Number Theory: The Division Algorithm
Let a, b 2 Z, b 6= 0. Then there are q, r 2 Z, 0 6 r < |b| such that

a = qb + r

Proof.
Let S = {a + kb : k 2 Z & a + kb > 0}. S 6= ;.
Let r = minS, r = a + k0b. Set q = �k0

If b > 0 and r > b, then r � b = a + (k0 � 1)b > 0
If b < 0 and r > �b, then r + b = a + (k0 + 1)b > 0
Either way, r 6= minS, contradiction. So r < |b|



Peano Arithmetic (PA)
Let L = {<,+,⇥, 0, 1}. PA is the L-theory with axioms:

+ & ⇥ are commutative, associative, with identities 0 & 1

< is a linear order that agrees with + & ⇥

8xy (x < y $ 9z (z > 0 ^ x + z = y))

8x (x > 0 ^ (x > 0 ! x > 1))

('(0) ^ 8x ('(x) ! '(x + 1))) ! 8x '(x)
for any '(x)

What about negative numbers?
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The Integers
Define Z = (N⇥ N)/ ⇠ where

(a, b) ⇠ (c, d) , a + d = b + c

We can think of [(a, b)] as a � b. The following are well-defined:

[(a, b)]� [(c, d)] = [(a + c, b + d)]

[(a, b)]⌦ [(c, d)] = [(ac + bd , ad + bc)]

[(a, b)] � [(c, d)] , a + d < b + c

0 = [(a, a)]

1 = [(a + 1, a)]

(N, <,+,⇥, 0, 1) embeds into (Z,�,�,⌦, 0, 1) through the map

k 7! [(a + k , a)]



Nonstandard models of Arithmetic
(N, <,+,⇥, 0, 1) is called the standard model of PA.

Any other model of PA is called nonstandard.

Theorem. There are nonstandard models of PA.

Proof.
Let L = {<,+,⇥, 0, 1, c}, c a constant symbol.

Let T = PA [ {c > n : n 2 N} and T0 ✓ T finite.

Then (N, <,+,⇥, 0, 1,m + 1) is a model of T0,

where m is the largest of the c > n axioms in T0.

By compactness, T has a model A.

cA is a nonstandard element (and so are cA + 1, etc.)

Is there a countable nonstandard model? Yes!



How small are the models we can find?

Theorem. (Löwenheim-Skolem # ) Let T be a satisfiable
L-theory and C be the set of constants in L. Then there is
a model of T with cardinality |C| + @0. In particular, if C is
at most countable, then T has a countable model.

Proof.
By Henkin’s proof of the compactness theorem, there is a model
of T of cardinality |L⇤| = |L|+ @0.



How big are the models we can find?

Theorem. (Löwenheim-Skolem " ) Let T be a satisfiable
L-theory and C be the set of constants in L. If T has an
infinite model, then there is a model of T with cardinality �,
for each infinite � > |C|.

Proof.
Let A be an infinite model of T and I be a set, |I| = � > |C|.
Set L0 = L [ {ci : i 2 I} and T 0 = T [ {ci 6= cj : i , j 2 I, i 6= j}
For any finite T0 ⇢ T 0, A (infinite) can be made a model of T0.
By compactness, T 0 has a model (with cardinality at least �).
By Henkin’s proof, T 0 (and T ) has a model with cardinality �.



Limitations of first-order axiomatization
Finite groups, fields, graphs etc. are not first-order axiomatizable.

If a theory has only finite models, their size is bounded.

Proof.
Let T be an L-theory whose models are all finite. Suppose, by a
contradiction, that for each n 2 N, T has a model An, |An| > n.

Let L0 = L [ {cn : n 2 N}, cn constant symbols. Let
T 0 = T [ {ci 6= cj : i 6= j}. If T0 ⇢ T , |T0| = n, then An |= T0.

By compactness, T 0 has a model A, A is infinite and A |= T .
Contradiction.
Similarly for torsion groups or connected graphs.

Why we put up with the limitations of first-order logic?
Because of the Compactness Theorem!
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Twin prime conjecture

(Polignac, 1849) There are infinitely many primes p such
that p+2 is also prime. [p & p+2 are called twin primes].

TPC Holds E Thereis a pairof nonstandard twinprimes
in a nonstandard model AF THIN
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