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Abstract. We prove estimates on character sums on the subset
of points of an elliptic curve over IFqn with x-coordinate of the form
α + t where t ∈ IFq varies and fixed α is such that IFqn = IFq(α).
We deduce that, for a suitable choice of α, this subset has a point of
maximal order in E(IFqn). This provides a deterministic algorithm
for finding a point of maximal order which for a very wide class of
finite fields is faster than other available algorithms.

1. Introduction

As usual, for a prime power q we use IFq to denote the finite field of
q elements. We study elliptic curves over extensions IFqn of IFq.

Let E be an elliptic curve give by given by an affine Weierstraß
equation

y2 = x3 + ax2 + bx+ c

with some a, b, c ∈ IFqn where q is assumed odd. We recall that the set
of all points on E forms an abelian group with the “point at infinity”
O as the neutral element, see [19] for background. Denoting by E(IFqn)
the set of IFqn-rational points on E, we have

#E(IFq) = ZZ/M × ZZ/L

for for unique integers M and L with L |M and #E(IFqn) = ML. The
number M is called the exponent of E(IFqn). Points P ∈ E(IFqn) of
order M are called points of maximum order .

We recall, that the celebrated work of Schoof [14] provides an al-
gorithm that computes #E(IFq) in deterministic polynomial time, see
also [1] for more recent improvements (both theoretic and practical).
Computing the group structure, that is, the numbers, M and L has also
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been considered in the literature and has turned out to be more difficult.
In particular, a probabilistic algorithm of Miller [12] runs in expected
polynomial time plus the time needed to factor gcd(#E(IFq), q − 1),
see also [2]. Furthermore, Friedlander, Pomerance and Shparlinski [7]
have shown that for a sufficiently large prime p and for almost all
elliptic curves E over IFp, the factorisation part of the algorithm is
in fact less time consuming than the rest of the computation (since
gcd(#E(IFq), p − 1) tends to be rather small). On the other hand,
in some case this greatest common divisor is large and is difficult to
factor.

The deterministic algorithm of [10] computes the group structure of
any elliptic curve over IFq (and if fact produces two generators of the
group of points) in exponential time O(q1/2+o(1)) which is too slow for
practical applications.

Here we show that, for high degree extensions IFqn of finite fields
IFq, one can design a deterministic polynomial time algorithm, which
generates a small set G of points on E(IFqn) such that at least one point
P ∈ G is of maximum order. We remark that this is an elliptic curve
analogue of the results of [5, 15, 17] (see also [18, Theorem 8]).

The idea is to show that if IFqn = IFq(α) for some root α of an
irreducible polynomial of degree n over IFq, then one can find a point
P ∈ E (IFqn) of maximum order with x(P ) = α + t for some t ∈ IFq,
where as usual, we write every point P 6= O on E as P = (x(P ), y(P )).
In turn, this result is based on a new estimate of character sums over
points P of an elliptic curve with x coordinates of the form x(P ) = α+t.
These estimates are analogues of those of Carlitz [3] and Katz [9]. We
note that if a finite field IFr is of the form r = qn with appropriate q and
n, then the above argument immediately gives an explicit construction
of small set of points on E(IFr) which contains a point of an appropriate
order. In the case that r is not of a suitable form (and thus IFr does
not have a desired subfield), we use the same approach as in [17].
More precisely, we first build an extension IFrm which has a necessary
subfield, apply our construction construction to E(IFrm) and then use
the trace map to come back to points on E(IFr).

Throughout the paper, the implied constants in the symbols ‘O’, and
‘�’ are absolute (we recall that the notation U � V is equivalent to
U = O(V )).
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2. Character Sum Bound

Let α be such that IFqn = IFq(α).

First, t 7→ α + t extends to a map

ψα : IP1 → RIFqn/IFqIP
1 ' (IP1)n,

where RIFqn/IFq stands for the Weil restriction of scalars functor (see,

for example, [6]). We denote A = RIFqn/IFq(E) and let π : A → (IP1)n

be the map induced from x : E → IP1. Let also Cα ⊆ A be the curve

(1) Cα = π−1(ψα(IP1)).

Over IFqn the cover Cα → IP1 is given by the system of equations

y2i = hi(t), i = 1, . . . , n,

where

(2) hi(T ) = (T +α(i))3 +a(i)(T +α(i))2 + b(i)(T +α(i)) + c(i) ∈ IFqn [T ],

and we denote by γ(i), i = 1, . . . , n, the conjugates of γ ∈ IFqn over IFq,

that is, γ(i) = γq
i
. We also use A(IFq) and Cα(IFq) to denote the set of

IFq-rational points on A and Cα respectively.

Theorem 1. If the polynomials h1, . . . , hn given by (2) are pairwise
relatively prime then, for any non-trivial character χ of A(IFq), we
have ∑

P∈Cα(IFq)

χ(P )� n2nq1/2.

Proof. If h1, . . . , hn are pairwise relatively prime, then the cover C →
IP1 has geometric Galois group (ZZ/2)n, as the polynomials h1, . . . , hn
are independent modulo squares. It follows that Cα is absolutely irre-
ducible under these conditions. Furthermore, the zeros of each hi and
the point at infinity have 2n−1 pre-images in Cα all with ramification
index 2. It follows from the Hurwitz formula that the genus of Cα is
2n−13(n− 1) + 1.

We now show that Cα generates A as an algebraic group. Let J be
the Jacobian of Cα. We need to show that the map J → A obtained
by functoriality is surjective. It is enough to show that the map on the
tangent spaces at the origin is surjective or, equivalently, that the dual
map is injective. Over IFqn , owing to the description of Cα, this latter
map is the natural map sending a n-dimensional vector space to the
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space generated by the differential forms dx/yi, i = 1, . . . , n, inside the
space of holomorphic differentials on Cα. Assume that

(3)
n∑
i=1

cidx/yi = 0.

By the Hurwitz formula, dx/yi vanishes exactly at the ramification
points of the map Cα → Ei, where Ei : y2 = hi(t). As the map
t : Ei → IP1 ramifies at the zeros of hi and infinity, the map Cα → Ei
ramifies at the points above the zeros of hj, j 6= i but not at the points
above the zeros of hi. So, evaluating the sum on the left hand side of (3)
at a point above a zero of hi yields ci = 0, showing the injectivity of
our map, as desired.

Finally, it follows that χ is a non-trivial character on Cα with trivial
conductor so the bound on the theorem follows from the Weil bound
(see, for example, [10]). ut

Remark 2. The curve Cα is not always absolutely irreducible. Here is
an example

q = n = 3, E : y2 = x3 − x, α3 − α = −1.

Then h1 = h2 and Cα(IF3) = {O}, so some condition on α is needed.

Using an elliptic curve of the same equation but now q = n = p > 3,
p prime, αp−α = c, where c is a non-square in IFp, we get an example
where Cα is absolutely irreducible and, yet, we still have Cα(IFp) = {O}.
The reason this time is that NormIFpp/IFp((t+α)3−(t+α)) = c3, t ∈ IFp,
so E(IFpp) has no point with x-coordinate t+ α, t ∈ IFp.

3. Construction

We always assume that we are given an element ϑ ∈ IFqn with
IFq(ϑ) = IFqn .

Theorem 3. For any ε > 0, sufficiently large prime power q, and
integer n with

n ≤
(

1

2 log 2
− ε
)

log q

and any set R ⊂ IFq of size #R = 9n+ 1 there is r ∈ R such that for
α = rϑ there is P ∈ Cα(IFq) of maximum order.

Proof. Let Xd be set of characters χ of A(IFq) of order d; that is, such
that χd = χ0, where χ0 is the principal character. By the orthogonality
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property of characters,

1

d

∑
χ∈Xd

χ(P ) =

{
1, if P = dQ for some Q ∈ A(IFq),

0, otherwise.

Therefore, if M is the exponent of E(IFqn), then using the standard
inclusion exclusion principle, we derive

∑
d|M

µ(d)

d

∑
χ∈Xd

χ(P ) =

{
1, if P is of maximum order,

0, otherwise,

where µ(d) is the Möbius function.

For α ∈ IFqn we denote by Nα the number of points P ∈ Cα(IFq) of
maximum order. Then from the above, we see that

Nα =
∑

P∈Cα(IFq)

∑
d|M

µ(d)

d

∑
χ∈Xd

χ(P ) =
∑
d|M

µ(d)

d

∑
χ∈Xd

∑
P∈Cα(IFq)

χ(P ).

The contribution from the principal character χ0 is

#Cα(IFq)
∑
d|M

µ(d)

d
=
ϕ(M)

M
#Cα(IFq),

where ϕ(M) is the Euler function, see [8, Equation (16.3.1)]. Therefore∣∣∣∣Nα −
ϕ(M)

M
#Cα(IFq)

∣∣∣∣ ≤∑
d|M

1

d

∑
χ∈Xd
χ 6=χ0

∣∣∣∣∣∣
∑

P∈Cα(IFq)

χ(P )

∣∣∣∣∣∣ .(4)

To apply Theorem 1 to the character sums in (4) we need to find α
such that the polynomials h1, . . . , hn given by (2) are pairwise relatively
prime. If βj, j = 1, 2, 3 are the roots of x3 + ax2 + bx+ c, this leads us
to the condition on α is that

α(i) − α 6= β
(i)
j − βk, 1 ≤ i < n, j, k = 1, 2, 3

(recall that α(n) = αq
n

= α).

Recall that IFq(ϑ) = IFqn , implies that ϑ(i) − ϑ 6= 0 for 1 ≤ i < n.
Consider α = rϑ with r ∈ IF∗q. Then α(i)−α = r(ϑ(i)−ϑ). If #R > 9n,
by inspection of 9n+ 1 values of r ∈ R we can find at least one with

r 6= (β
(i)
j − βk)/(ϑ(i) − ϑ), 1 ≤ i < n, j, k = 1, 2, 3.
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With this r, for α = rϑ we apply Theorem 1 and derive from (4)∣∣∣∣Nα −
ϕ(M)

M
#Cα(IFq)

∣∣∣∣� n2nq1/2
∑
d|M

1

d
#Xd � τ(M)n2nq1/2

where τ(M) is the number of integer positive divisors of M .

As we have seen in the proof of Theorem 1, Cα is an absolutely
irreducible curve of genus O(n2n). So, from the Weil bound we derive

#Cα(IFq) = q +O(n2nq1/2).

Using this bound together the well-known estimates on the divisor and
Euler functions

(5) τ(M) = M o(1) and ϕ(M) = M1+o(1),

as s → ∞, see [8, Theorems 317 and 328], we conclude that Nα > 0
under the conditions of the theorem. ut

In particular, we see that if r = pk for a prime p ≥ 3 and the integer
k → ∞ then for an elliptic curve E over IFr, in polynomial time, one
can find a set of ro(1) points P ∈ E (IFr) such that at least one of
them is of maximum order, provided that k contains a divisor n in an
appropriate range.

We now show that in fact a similar set can be constructed over any
finite field of small characteristic. First we need the following auxiliary
statement.

Lemma 4. The trace map Tr : A(IFqk) → A(IFq) sending a point to
the sum of its IFqk/IFq-conjugates, is surjective.

Proof. Consider first the map A(IFqk)→ A(IFqk) given by P 7→ Fr(P )−
P , where Fr is the IFq Frobenius and let G denote its image. Since the
kernel of this map is visibly A(IFq), we have #G = #A(IFqk)/#A(IFq).
We now show that G is the kernel of Tr and cardinality considerations
then implies the result. It is clear that G is contained in the kernel
of Tr. Let now P ∈ A(IFqk),Tr(P ) = O. By Lang’s theorem [11],
there exists Q ∈ A( ¯IFq), where ¯IFq is the algebraic closure of IFq, with
Fr(Q)−Q = P . Now

O = Tr(P ) = Tr(Fr(Q)−Q) = Frk(Q)−Q,

therefore Q ∈ A(IFqk) and P ∈ G. ut

Theorem 5. For any fixed ε > 0 and sufficiently large prime power
r = pn where p is prime and n ≥ 1 is an integer for an elliptic curve E
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over IFr, in time O
(
p2(2+ε)n

)
, one can find a set of O

(
p2(2+ε)n

)
points

Q ∈ E (IFr) such that at least one of them is of maximum order.

Proof. Fix some small ε > 0 and choose m as the smallest positive
integer satisfying the inequlaity

(6) n ≤
(

1

2 log 2
− ε
)
m log p.

We now put q = pm, and construct an irreducible polynomial of degree
n over IFq (which can be done deterministically in time p1/2(mn)O(1) =
p1/2nO(1), see [15]). Thus for any root ϑ of the polynomial we have
IFq(ϑ) = IFqn = IFpmn . We now examine the set of points (where Tr is
the IFq/IFp-trace)

Qα = {TrP : P ∈ Cα(IFq)}.

Clearly Qα ⊆ A(IFp) ' E (IFr) and #Qα = O
(
p2(2+ε)n

)
. So it remains

to show that Qα contains a point of maximum order. First we notice
that the exponent M of E (IFr) is a divisor of the exponent of E (IFqn) =
E (IFrm).

Furthermore, in the notation of the proof of Theorem 3, for any
non-trivial character χ of A(IFp) we have

(7)
∑

P∈Cα(IFq)

χ(TrP )� n2nq1/2.

Indeed we only need to notice that P 7→ χ(TrP ) is a non-trivial char-
acter of A(IFq). and this follows from Lemma 4.

Let Nα be the number of points Q ∈ Qα of maximum order.

So as in the proof of Theorem 3 we write

Nα =
∑

P∈Cα(IFq)

∑
d|M

µ(d)

d

∑
χ∈Xd

χ(TrP )

and derive

Nα =
ϕ(M)

M
#Cα(IFq) +O

(
τ(M)n2nq1/2

)
.

Since Equation (6) is equivalent to the condition of Theorem 3 on n
and q, we see that Nα > 0 provided that r is large enough. ut
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4. Comments

We note that the result of Theorem 5, in wide range of p and n gives a
much faster deterministic algorithm and a much smaller set containing
a point of maximum order on E(IFr) than that of [10].

On the other hand, it has an exponential dependence on n, while
its finite field analogues [16, 17, 18] depend on n polynomially. The
reason is the exponential factor 2n in the bound of Theorem 1, which
in turn comes from the evaluation of the genus of Cα and seems to be
unavoidable.

On the other hand, one can try to get an analogue of Theorem 1 for
incomplete sums (in the style of [13]) and then reduce the dependence
on p in Theorem 5 from linear to p1/2 (as it is done in [18, Theorem 8]
in the case of primitive roots of finite fields).

Finally, we notice that the actual identifying a point of maximum or-
der in any set requires computing and factoring the cardinality E(IFr),
we refer to [1] and [4] for a description of the state-of-art in both areas.
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