Symmetric functions and their generalisations

Dominic Searles

Department of Mathematics and Statistics University of Otago

NZMRI Summer Workshop 2022

A multivariate polynomial is called *symmetric* if it is unchanged under any permutation of the variables. A multivariate polynomial is called *symmetric* if it is unchanged under any permutation of the variables.

Example

 $f(x_1, x_2, x_3) = x_1 + x_2 + x_3 - 2x_1x_2x_3$ is symmetric in x_1, x_2, x_3 .

A multivariate polynomial is called *symmetric* if it is unchanged under any permutation of the variables.

Example

 $f(x_1, x_2, x_3) = x_1 + x_2 + x_3 - 2x_1x_2x_3$ is symmetric in x_1, x_2, x_3 .

 $g(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + x_3^2$ is not symmetric in x_1, x_2, x_3 since, e.g., $g(x_2, x_1, x_3) = x_2^2 + x_1 x_2 + x_3^2 \neq g(x_1, x_2, x_3)$.

A multivariate polynomial is called *symmetric* if it is unchanged under any permutation of the variables.

Example

 $f(x_1, x_2, x_3) = x_1 + x_2 + x_3 - 2x_1x_2x_3$ is symmetric in x_1, x_2, x_3 .

 $g(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + x_3^2$ is not symmetric in x_1, x_2, x_3 since, e.g., $g(x_2, x_1, x_3) = x_2^2 + x_1 x_2 + x_3^2 \neq g(x_1, x_2, x_3)$.

In infinitely many variables (formal power series), these are called *symmetric functions*.

A multivariate polynomial is called *symmetric* if it is unchanged under any permutation of the variables.

Example

 $f(x_1, x_2, x_3) = x_1 + x_2 + x_3 - 2x_1x_2x_3$ is symmetric in x_1, x_2, x_3 . $g(x_1, x_2, x_3) = x_1^2 + x_1x_2 + x_3^2$ is not symmetric in x_1, x_2, x_3 .

since, e.g., $g(x_2, x_1, x_3) = x_2^2 + x_1x_2 + x_3^2 \neq g(x_1, x_2, x_3)$.

In infinitely many variables (formal power series), these are called *symmetric functions*.

They have many applications, including to

- Galois theory
- representation theory of the symmetric and general linear groups
- geometry of Grassmannian varieties

A *weak composition a* is an infinite sequence of nonnegative integers, almost all zero. Let $x^a = x_1^{a_1} x_2^{a_2} \cdots$ be the monomial in infinitely many variables with exponent vector *a*.

A weak composition *a* is an infinite sequence of nonnegative integers, almost all zero. Let $x^a = x_1^{a_1} x_2^{a_2} \cdots$ be the monomial in infinitely many variables with exponent vector *a*.

Example

The weak composition

$$a = (0, 4, 0, 0, 1, 0, 2, 1, 0, 0, 0, \ldots)$$

corresponds to the monomial

$$x^{(0,4,0,0,1,0,2,1,0,0,0,\ldots)} = x_2^4 x_5^1 x_7^2 x_8^1.$$

A symmetric function over a ring R is a formal power series

$$f(x) = \sum_{a} c_{a} x^{a}$$

where *a* ranges over weak compositions and $c_a \in R$, that is *unchanged under any permutation of the variables*, i.e.

$$f(x_{w(1)}, x_{w(2)}, \ldots) = f(x_1, x_2, \ldots)$$

for any permutation of the positive integers.

Let Λ^n denote the set of symmetric functions homogeneous of degree *n*.

Let Λ^n denote the set of symmetric functions homogeneous of degree *n*.

Example

$$f(x_1, x_2, \ldots) = \sum_i x_i^3 + \sum_{i < j < k} x_i x_j x_k \in \Lambda^3;$$

this is a symmetric function over \mathbb{Z} , homogeneous of degree 3.

Let Λ^n denote the set of symmetric functions homogeneous of degree *n*.

Example

$$f(x_1, x_2, \ldots) = \sum_i x_i^3 + \sum_{i < j < k} x_i x_j x_k \in \Lambda^3;$$

this is a symmetric function over $\ensuremath{\mathbb{Z}},$ homogeneous of degree 3.

One may truncate a symmetric function to a *symmetric* polynomial $f(x_1, ..., x_k)$ in k variables: set $x_j = 0$ for j > k.

Let Λ^n denote the set of symmetric functions homogeneous of degree *n*.

Example

$$f(x_1, x_2, \ldots) = \sum_i x_i^3 + \sum_{i < j < k} x_i x_j x_k \in \Lambda^3;$$

this is a symmetric function over \mathbb{Z} , homogeneous of degree 3.

One may truncate a symmetric function to a *symmetric* polynomial $f(x_1, ..., x_k)$ in k variables: set $x_j = 0$ for j > k.

Example

The truncation

$$f(x_1, x_2, x_3) = x_1^3 + x_2^3 + x_3^3 + x_1 x_2 x_3$$

is a symmetric polynomial in 3 variables.

Algebra structure

For this talk, we will typically assume the coefficient ring to be the field of rational numbers \mathbb{Q} . However, almost all results will hold over the integers \mathbb{Z} .

Proposition

- If $f, g \in \Lambda^n$ then $f + g \in \Lambda^n$.
- If $f \in \Lambda^n$ and $g \in \Lambda^m$ then $fg \in \Lambda^{n+m}$.

Accordingly, we may define a graded algebra:

Definition

The algebra of symmetric functions Λ is

$$\Lambda^0\oplus\Lambda^1\oplus\Lambda^2\cdots$$

where Λ^0 is the coefficient ring \mathbb{Q} (or \mathbb{Z}).

Each Λ^n is a vector space over \mathbb{Q} .

- Find and understand interesting and useful bases of Λ^n .
- Explain how these bases relate to one another.
- Describe the rich structure of the algebra of symmetric functions.

A *partition* is a finite weakly decreasing sequence $\lambda = (\lambda_1, \dots, \lambda_k)$ of nonnegative integers. For any weak composition *a*, let sort(*a*) denote the partition obtained by rearranging the positive entries of *a* into weakly decreasing order.

A *partition* is a finite weakly decreasing sequence $\lambda = (\lambda_1, \dots, \lambda_k)$ of nonnegative integers. For any weak composition *a*, let sort(*a*) denote the partition obtained by rearranging the positive entries of *a* into weakly decreasing order.

When the entries of *a* sum to *n*, we say *a* is a *weak composition* of *n*. Similarly if the entries of λ sum to *n* then λ is a *partition of n* and we write $\lambda \vdash n$.

A *partition* is a finite weakly decreasing sequence $\lambda = (\lambda_1, \dots, \lambda_k)$ of nonnegative integers. For any weak composition *a*, let sort(*a*) denote the partition obtained by rearranging the positive entries of *a* into weakly decreasing order.

When the entries of *a* sum to *n*, we say *a* is a *weak composition* of *n*. Similarly if the entries of λ sum to *n* then λ is a *partition of n* and we write $\lambda \vdash n$.

Example

a = (0, 2, 1, 0, 0, 2, 0, 0, 0, ...) is a weak composition of 5, and sort(a) = (2, 2, 1) \vdash 5.

Definition

Let $\lambda \vdash n$. The monomial symmetric function $m_{\lambda} \in \Lambda^n$ is defined by _____

$$m_{\lambda} = \sum_{\operatorname{sort}(a)=\lambda} x^{a}.$$

Definition

Let $\lambda \vdash n$. The *monomial symmetric function* $m_{\lambda} \in \Lambda^n$ is defined by

$$m_{\lambda} = \sum_{\operatorname{sort}(a)=\lambda} x^{a}.$$

Example

$$m_{(2,2,1)} = \sum_{i < j < k} x_i^2 x_j^2 x_k + \sum_{i < j < k} x_i^2 x_j x_k^2 + \sum_{i < j < k} x_i x_j^2 x_k^2.$$

Definition

Let $\lambda \vdash n$. The *monomial symmetric function* $m_{\lambda} \in \Lambda^n$ is defined by

$$m_{\lambda} = \sum_{\operatorname{sort}(a)=\lambda} x^{a}.$$

Example

$$m_{(2,2,1)} = \sum_{i < j < k} x_i^2 x_j^2 x_k + \sum_{i < j < k} x_i^2 x_j x_k^2 + \sum_{i < j < k} x_i x_j^2 x_k^2.$$

Truncating to three variables,

$$m_{(2,2,1)}(x_1, x_2, x_3) = x_1^2 x_2^2 x_3 + x_1^2 x_2 x_3^2 + x_1 x_2^2 x_3^2.$$

Definition

Let $\lambda \vdash n$. The *monomial symmetric function* $m_{\lambda} \in \Lambda^n$ is defined by

$$m_{\lambda} = \sum_{\operatorname{sort}(a)=\lambda} x^{a}.$$

Example

$$m_{(2,2,1)} = \sum_{i < j < k} x_i^2 x_j^2 x_k + \sum_{i < j < k} x_i^2 x_j x_k^2 + \sum_{i < j < k} x_i x_j^2 x_k^2.$$

Truncating to three variables,

$$m_{(2,2,1)}(x_1, x_2, x_3) = x_1^2 x_2^2 x_3 + x_1^2 x_2 x_3^2 + x_1 x_2^2 x_3^2.$$

The functions m_{λ} are symmetric by definition.

Proposition

The functions $\{m_{\lambda} : \lambda \vdash n\}$ form a basis for Λ^n .

Proposition

The functions $\{m_{\lambda} : \lambda \vdash n\}$ form a basis for Λ^n .

Proof: If $\lambda \neq \mu$, then m_{λ} and m_{μ} share no monomials. Hence $\{m_{\lambda}\}$ is linearly independent.

Proposition

The functions $\{m_{\lambda} : \lambda \vdash n\}$ form a basis for Λ^n .

Proof: If $\lambda \neq \mu$, then m_{λ} and m_{μ} share no monomials. Hence $\{m_{\lambda}\}$ is linearly independent.

Let $f \in \Lambda^n$ and suppose x^a is a monomial in f. Then f must contain *every* x^b such that b is a rearrangement of a, so f contains $m_{\text{sort}(a)}$. Then consider $f - m_{\text{sort}(a)}$, etc.

In particular, if $f = \sum_{a} c_{a} x^{a} \in \Lambda^{n}$ then $f = \sum_{\lambda \vdash n} c_{\lambda} m_{\lambda}$.

Proposition

The functions $\{m_{\lambda} : \lambda \vdash n\}$ form a basis for Λ^n .

Proof: If $\lambda \neq \mu$, then m_{λ} and m_{μ} share no monomials. Hence $\{m_{\lambda}\}$ is linearly independent.

Let $f \in \Lambda^n$ and suppose x^a is a monomial in f. Then f must contain *every* x^b such that b is a rearrangement of a, so f contains $m_{\text{sort}(a)}$. Then consider $f - m_{\text{sort}(a)}$, etc.

In particular, if $f = \sum_{a} c_{a} x^{a} \in \Lambda^{n}$ then $f = \sum_{\lambda \vdash n} c_{\lambda} m_{\lambda}$.

Corollary

The dimension of Λ^n is the number of partitions of *n*.

The elementary symmetric functions

Definition

The elementary symmetric functions in Λ are

$$e_k = \sum_{1 \leq i_1 < \cdots < i_k} x_{i_1} \cdots x_{i_k}$$

for $k \ge 0$, and $e_0 = 1$.

The elementary symmetric functions

Definition

The elementary symmetric functions in Λ are

$$e_k = \sum_{1 \le i_1 < \cdots < i_k} x_{i_1} \cdots x_{i_k}$$

for $k \ge 0$, and $e_0 = 1$.

Example

$$e_1 = \sum_i x_i$$
 $e_2 = \sum_{i < j} x_i x_j$

Truncating to 3 variables, we have

 $e_1(x_1, x_2, x_3) = x_1 + x_2 + x_3$ $e_2(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 + x_2 x_3.$

Given a partition λ with *m* parts, define

$$\boldsymbol{e}_{\lambda} = \boldsymbol{e}_{\lambda_1} \boldsymbol{e}_{\lambda_2} \cdots \boldsymbol{e}_{\lambda_m}.$$

Given a partition λ with *m* parts, define

$$\boldsymbol{e}_{\lambda} = \boldsymbol{e}_{\lambda_1} \boldsymbol{e}_{\lambda_2} \cdots \boldsymbol{e}_{\lambda_m}.$$

Example

$$e_{(2,1)}(x_1, x_2, x_3) = e_2(x_1, x_2, x_3)e_1(x_1, x_2, x_3)$$

= $(x_1x_2 + x_1x_3 + x_2x_3)(x_1 + x_2 + x_3)$
= $x_1^2x_2 + x_1^2x_3 + x_1x_2^2 + x_2^2x_3 + x_1x_3^2 + x_2x_3^2 + 3x_1x_2x_3.$

Definition

Given a basis $\{v_{\lambda}\}$ of Λ^n , we say $f \in \Lambda^n$ is *v*-positive if the expansion of *f* in the basis $\{v_{\lambda}\}$ has nonnegative coefficients.

Definition

Given a basis $\{v_{\lambda}\}$ of Λ^n , we say $f \in \Lambda^n$ is *v*-positive if the expansion of *f* in the basis $\{v_{\lambda}\}$ has nonnegative coefficients.

If f is v-positive, the coefficients sometimes have an interpretation in algebra or combinatorics (dimensions of modules, intersection numbers of varieties, etc).

Definition

Given a basis $\{v_{\lambda}\}$ of Λ^n , we say $f \in \Lambda^n$ is *v*-positive if the expansion of *f* in the basis $\{v_{\lambda}\}$ has nonnegative coefficients.

If *f* is *v*-positive, the coefficients sometimes have an interpretation in algebra or combinatorics (dimensions of modules, intersection numbers of varieties, etc).

Since the monomial symmetric functions are a basis of Λ^n , we can expand the elementary symmetric functions as

$$e_{\lambda} = \sum_{\mu \vdash n} M_{\lambda,\mu} m_{\mu}.$$

Definition

Given a basis $\{v_{\lambda}\}$ of Λ^n , we say $f \in \Lambda^n$ is *v*-positive if the expansion of *f* in the basis $\{v_{\lambda}\}$ has nonnegative coefficients.

If f is v-positive, the coefficients sometimes have an interpretation in algebra or combinatorics (dimensions of modules, intersection numbers of varieties, etc).

Since the monomial symmetric functions are a basis of Λ^n , we can expand the elementary symmetric functions as

$$e_{\lambda} = \sum_{\mu \vdash n} M_{\lambda,\mu} m_{\mu}.$$

Proposition

 $M_{\lambda,\mu}$ is the number of (0, 1) matrices with row sums λ and column sums μ .

Given a partition λ , the *Young diagram* $D(\lambda)$ consists of left-justified rows of boxes, with λ_1 boxes in the first row, λ_2 boxes in the second row, and so forth.

Given a partition λ , the *Young diagram* $D(\lambda)$ consists of left-justified rows of boxes, with λ_1 boxes in the first row, λ_2 boxes in the second row, and so forth.

Example

If $\lambda = (4, 2, 1)$, then $D(\lambda) = \boxed{\boxed{}.$

Given a partition λ , the *Young diagram* $D(\lambda)$ consists of left-justified rows of boxes, with λ_1 boxes in the first row, λ_2 boxes in the second row, and so forth.

Example

If $\lambda = (4, 2, 1)$, then

$$D(\lambda) =$$

Definition

If $\lambda \vdash n$, define λ' to be the partition of *n* whose entries are the lengths of the *columns* of $D(\lambda)$.

Given a partition λ , the Young diagram $D(\lambda)$ consists of left-justified rows of boxes, with λ_1 boxes in the first row, λ_2 boxes in the second row, and so forth.

Example

If $\lambda = (4, 2, 1)$, then

$$D(\lambda) =$$

Definition

If $\lambda \vdash n$, define λ' to be the partition of *n* whose entries are the lengths of the *columns* of $D(\lambda)$.

Example

If
$$\lambda = (4, 2, 1)$$
, then $\lambda' = (3, 2, 1, 1)$.

The *dominance order* on partitions of *n* is the partial order defined by $\mu \leq \lambda$ if $\mu_1 + \cdots + \mu_i \leq \lambda_1 + \cdots + \lambda_i$ for all *i*.

The *dominance order* on partitions of *n* is the partial order defined by $\mu \leq \lambda$ if $\mu_1 + \cdots + \mu_i \leq \lambda_1 + \cdots + \lambda_i$ for all *i*.

Example

 $(2,2,2) \leq (4,1,1),$ while (3,3) and (4,1,1) are incomparable.

The *dominance order* on partitions of *n* is the partial order defined by $\mu \leq \lambda$ if $\mu_1 + \cdots + \mu_i \leq \lambda_1 + \cdots + \lambda_i$ for all *i*.

Example

 $(2,2,2) \leq (4,1,1),$ while (3,3) and (4,1,1) are incomparable.

Theorem

Let $\lambda, \mu \vdash n$. Then $M_{\lambda,\mu} = 0$ unless $\mu \leq \lambda'$. Moreover, $M_{\lambda,\lambda'} = 1$.

The *dominance order* on partitions of *n* is the partial order defined by $\mu \leq \lambda$ if $\mu_1 + \cdots + \mu_i \leq \lambda_1 + \cdots + \lambda_i$ for all *i*.

Example

 $(2,2,2) \leq (4,1,1),$ while (3,3) and (4,1,1) are incomparable.

Theorem

Let $\lambda, \mu \vdash n$. Then $M_{\lambda,\mu} = 0$ unless $\mu \leq \lambda'$. Moreover, $M_{\lambda,\lambda'} = 1$.

Example

<i>e</i> _(1,1,1) =	$m_{(3)}+$	3 <i>m</i> _(2,1) +	6 <i>m</i> _(1,1,1)
<i>e</i> _(2,1) =		<i>m</i> (2,1)+	3 <i>m</i> _(1,1,1)
$e_{(3)} =$			$m_{(1,1,1)}$

The fundamental theorem of symmetric functions

Corollary (Fundamental theorem of symmetric functions)

The functions $\{e_{\lambda} : \lambda \vdash n\}$ form a basis for Λ^n .

The fundamental theorem of symmetric functions

Corollary (Fundamental theorem of symmetric functions)

The functions $\{e_{\lambda} : \lambda \vdash n\}$ form a basis for Λ^n .

Corollary

The functions $\{e_k : k \ge 0\}$ algebraically generate Λ . In other words, any symmetric function can be written as a polynomial in $\{e_0, e_1, e_2, \ldots\}$.

The complete basis

We now consider a third family of symmetric functions, which are in some sense dual to the e_{λ} .

The complete basis

We now consider a third family of symmetric functions, which are in some sense dual to the e_{λ} .

Definition

The complete (homogeneous) symmetric functions are

$$h_k = \sum_{1 \le i_1 \le \dots \le i_k} x_{i_1} \cdots x_{i_k}$$

for k > 0, and $h_0 = 1$.

The complete basis

We now consider a third family of symmetric functions, which are in some sense dual to the e_{λ} .

Definition

The complete (homogeneous) symmetric functions are

$$h_k = \sum_{1 \le i_1 \le \cdots \le i_k} x_{i_1} \cdots x_{i_k}$$

for
$$k > 0$$
, and $h_0 = 1$.

Example

$$h_1 = e_1 = \sum_i x_i \qquad h_2 = \sum_{i \leq j} x_i x_j.$$

Truncating to 3 variables, we have

$$h_2(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + x_1x_2 + x_1x_3 + x_2x_3.$$

Given a partition λ with *m* parts, define

$$h_{\lambda} = h_{\lambda_1} h_{\lambda_2} \cdots h_{\lambda_m}.$$

Given a partition λ with *m* parts, define

$$h_{\lambda} = h_{\lambda_1} h_{\lambda_2} \cdots h_{\lambda_m}$$

Example

$$\begin{aligned} h_{(2,1)}(x_1, x_2, x_3) &= h_2(x_1, x_2, x_3) h_1(x_1, x_2, x_3) \\ &= (x_1^2 + x_2^2 + x_3^2 + x_1 x_2 + x_1 x_3 + x_2 x_3)(x_1 + x_2 + x_3) = \\ x_1^3 + x_2^3 + x_3^3 + 2x_1^2 x_2 + 2x_1^2 x_3 + 2x_1 x_2^2 + 2x_2^2 x_3 + 2x_1 x_3^2 + 2x_2 x_3^2 + 3x_1 x_2 x_3 \end{aligned}$$

$$h_{\lambda} = \sum_{\mu} N_{\lambda,\mu} m_{\mu}.$$

$$h_{\lambda} = \sum_{\mu} N_{\lambda,\mu} m_{\mu}.$$

Proposition

 $N_{\lambda,\mu}$ is the number of \mathbb{N} -matrices with row sums λ and column sums μ .

$$h_{\lambda} = \sum_{\mu} N_{\lambda,\mu} m_{\mu}.$$

Proposition

 $N_{\lambda,\mu}$ is the number of \mathbb{N} -matrices with row sums λ and column sums μ .

Unlike the case for the e_{λ} , the transition matrix between $\{h_{\lambda}\}$ and $\{m_{\mu}\}$ is not upper-triangular.

$$h_{\lambda} = \sum_{\mu} N_{\lambda,\mu} m_{\mu}.$$

Proposition

 $N_{\lambda,\mu}$ is the number of \mathbb{N} -matrices with row sums λ and column sums μ .

Unlike the case for the e_{λ} , the transition matrix between $\{h_{\lambda}\}$ and $\{m_{\mu}\}$ is not upper-triangular.

Example

$$h_{(1,1,1)} = 6m_{(1,1,1)} + 3m_{(2,1)} + m_{(3)}$$

$$h_{(2,1)} = 3m_{(1,1,1)} + 2m_{(2,1)} + m_{(3)}$$

$$h_{(3)} = m_{(1,1,1)} + m_{(2,1)} + m_{(3)}$$

$$h_{\lambda} = \sum_{\mu} N_{\lambda,\mu} m_{\mu}.$$

Proposition

 $N_{\lambda,\mu}$ is the number of \mathbb{N} -matrices with row sums λ and column sums μ .

Unlike the case for the e_{λ} , the transition matrix between $\{h_{\lambda}\}$ and $\{m_{\mu}\}$ is not upper-triangular.

Example

$$h_{(1,1,1)} = 6m_{(1,1,1)} + 3m_{(2,1)} + m_{(3)}$$

$$h_{(2,1)} = 3m_{(1,1,1)} + 2m_{(2,1)} + m_{(3)}$$

$$h_{(3)} = m_{(1,1,1)} + m_{(2,1)} + m_{(3)}$$

We thus need another approach to show $\{h_{\lambda}\}$ is a basis of Λ^{n} .

Definition

The *omega involution* is the endomorphism $\omega : \Lambda \to \Lambda$ given by

 $\omega(e_k) = h_k, \ k \ge 1 \ (and therefore \ \omega(e_{\lambda}) = h_{\lambda}).$

Definition

The *omega involution* is the endomorphism $\omega : \Lambda \to \Lambda$ given by

 $\omega(e_k) = h_k, \ k \ge 1 \ (\text{and therefore } \omega(e_\lambda) = h_\lambda).$

Theorem

The endomorphism ω is an involution; equivalently, $\omega(h_k) = e_k$.

Definition

The *omega involution* is the endomorphism $\omega : \Lambda \to \Lambda$ given by

 $\omega(e_k) = h_k, \ k \ge 1 \ (and therefore \ \omega(e_{\lambda}) = h_{\lambda}).$

Theorem

The endomorphism ω is an involution; equivalently, $\omega(h_k) = e_k$.

Proof sketch: Define formal power series

$$H(t) = \sum_{k\geq 0} h_k t^k, \qquad E(t) = \sum_{k\geq 0} e_k t^k \in \Lambda[[t]].$$

Definition

The *omega involution* is the endomorphism $\omega : \Lambda \to \Lambda$ given by

 $\omega(e_k) = h_k, \ k \ge 1 \ (\text{and therefore } \omega(e_\lambda) = h_\lambda).$

Theorem

The endomorphism ω is an involution; equivalently, $\omega(h_k) = e_k$.

Proof sketch: Define formal power series

$$H(t) = \sum_{k \ge 0} h_k t^k, \qquad E(t) = \sum_{k \ge 0} e_k t^k \in \Lambda[[t]].$$

Then we have $H(t) = \prod_k (1 - x_k t)^{-1}, \quad E(t) = \prod_k (1 + x_k t).$
and thus $H(t)E(-t) = 1.$

Definition

The *omega involution* is the endomorphism $\omega : \Lambda \to \Lambda$ given by

 $\omega(e_k) = h_k, \ k \ge 1 \ (\text{and therefore } \omega(e_\lambda) = h_\lambda).$

Theorem

The endomorphism ω is an involution; equivalently, $\omega(h_k) = e_k$.

Proof sketch: Define formal power series

$$H(t) = \sum_{k \ge 0} h_k t^k, \qquad E(t) = \sum_{k \ge 0} e_k t^k \in \Lambda[[t]].$$

Then we have $H(t) = \prod_k (1 - x_k t)^{-1}, \quad E(t) = \prod_k (1 + x_k t).$

and thus H(t)E(-t) = 1. Equate coefficients of t^k to obtain

$$0 = \sum_{i=0}^{n} (-1)^{i} e_{i} h_{k-i}, \ k \ge 1.$$

Apply ω :

$$0 = \sum_{i=0}^{k} (-1)^{i} \omega(e_{i}) \omega(h_{k-i})$$

= $\sum_{i=0}^{k} (-1)^{i} h_{i} \omega(h_{k-i})$
= $(-1)^{k} \sum_{i=0}^{k} (-1)^{i} \omega(h_{i}) h_{k-i}$

and therefore $\omega(h_i) = e_i$.

Apply ω :

$$0 = \sum_{i=0}^{k} (-1)^{i} \omega(e_{i}) \omega(h_{k-i})$$
$$= \sum_{i=0}^{k} (-1)^{i} h_{i} \omega(h_{k-i})$$
$$= (-1)^{k} \sum_{i=0}^{k} (-1)^{i} \omega(h_{i}) h_{k-i}$$

and therefore $\omega(h_i) = e_i$.

Corollary

The functions h_{λ} such that $\lambda \vdash n$ form a basis for Λ^n .

The power sum basis

Definition

The power sum symmetric functions are

$$p_k = \sum_i x_i^k$$

for k > 0, and $p_0 = 1$.

The power sum basis

Definition

The power sum symmetric functions are

$$p_k = \sum_i x_i^k$$

for k > 0, and $p_0 = 1$.

Example

$$p_1 = e_1 = h_1 = \sum_i x_i$$
 $p_2 = \sum_i x_i^2$

Truncating to 3 variables, we have

$$p_2(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2.$$

Given a partition λ with *m* parts, define

$$p_{\lambda} = p_{\lambda_1} p_{\lambda_2} \cdots p_{\lambda_m}.$$

Given a partition λ with *m* parts, define

$$p_{\lambda} = p_{\lambda_1} p_{\lambda_2} \cdots p_{\lambda_m}.$$

Example

$$p_{(2,1)}(x_1, x_2, x_3) = p_2(x_1, x_2, x_3)p_1(x_1, x_2, x_3)$$
$$= (x_1^2 + x_2^2 + x_3^2)(x_1 + x_2 + x_3)$$
$$= x_1^3 + x_2^3 + x_3^3 + x_1^2x_2 + x_1^2x_3 + x_1x_2^2 + x_2^2x_3 + x_1x_3^2 + x_2x_3^2.$$

We can expand the power sum symmetric functions as

$${oldsymbol
ho}_\lambda = \sum_\mu {oldsymbol R}_{\lambda,\mu} m_\mu.$$

We can expand the power sum symmetric functions as

$$p_{\lambda} = \sum_{\mu} R_{\lambda,\mu} m_{\mu}.$$

Proposition

Let ℓ be the number of parts of μ . Then $R_{\lambda,\mu}$ is the number of ordered partitions $\pi = (B_1, \ldots, B_k)$ of the set $\{1, \ldots, \ell\}$ such that $\mu_j = \sum_{i \in B_i} \lambda_i$ for each $1 \le j \le k$.

We can expand the power sum symmetric functions as

$$p_{\lambda} = \sum_{\mu} R_{\lambda,\mu} m_{\mu}.$$

Proposition

Let ℓ be the number of parts of μ . Then $R_{\lambda,\mu}$ is the number of ordered partitions $\pi = (B_1, \ldots, B_k)$ of the set $\{1, \ldots, \ell\}$ such that $\mu_j = \sum_{i \in B_j} \lambda_i$ for each $1 \le j \le k$.

Example

To find the coefficient of $m_{(3,2,1)}$ in

$$p_{(2,2,1,1)} = (x_1^2 + x_2^2 + x_3^2)(x_1^2 + x_2^2 + x_3^2)(x_1 + x_2 + x_3)(x_1 + x_2 + x_3),$$

we have either

$$B_1 = \{1,3\}, B_2 = \{2\}, B_3 = \{4\}$$
 or
 $B_1 = \{1,4\}, B_2 = \{2\}, B_3 = \{3\}$ or
 $B_1 = \{2,3\}, B_2 = \{1\}, B_3 = \{4\}$ or
 $B_1 = \{2,4\}, B_2 = \{1\}, B_3 = \{3\}$. Hence the coefficient is 4.

Corollary

$$R_{\lambda,\mu} = 0$$
 unless $\lambda \leq \mu$. Moreover,

$$R_{\lambda,\lambda} = \prod_i m_i!$$

where λ has m_1 parts equal to 1, m_2 parts equal to 2, etc.

Corollary

$$R_{\lambda,\mu} = 0$$
 unless $\lambda \leq \mu$. Moreover,

$$R_{\lambda,\lambda} = \prod_i m_i!$$

where λ has m_1 parts equal to 1, m_2 parts equal to 2, etc.

Corollary

The functions p_{λ} such that $\lambda \vdash n$ form a basis for Λ^n .

Corollary

$$R_{\lambda,\mu} = 0$$
 unless $\lambda \leq \mu$. Moreover,

$$R_{\lambda,\lambda} = \prod_i m_i!$$

where λ has m_1 parts equal to 1, m_2 parts equal to 2, etc.

Corollary

The functions p_{λ} such that $\lambda \vdash n$ form a basis for Λ^n .

Note the diagonal entries of the transition matrix between $\{p_{\lambda}\}$ and $\{m_{\lambda}\}$ are $\prod_{i} m_{i}(\lambda)!$ which is typically not equal to 1. So this matrix is not invertible over \mathbb{Z} , although it is invertible over \mathbb{Q} .

Let $\lambda \vdash n$ and suppose λ has m_1 1's, m_2 2's, etc. Define

$$\varepsilon_{\lambda} = (-1)^{m_2 + m_4 + \cdots} = (-1)^{n - \ell(\lambda)}$$

where $\ell(\lambda)$ is the number of parts of λ .

Let $\lambda \vdash n$ and suppose λ has m_1 1's, m_2 2's, etc. Define

$$\varepsilon_{\lambda} = (-1)^{m_2 + m_4 + \cdots} = (-1)^{n - \ell(\lambda)}$$

where $\ell(\lambda)$ is the number of parts of λ .

This has a natural interpretation: recall that partitions of n correspond to conjugacy classes in the symmetric group S_n .

Let $\lambda \vdash n$ and suppose λ has m_1 1's, m_2 2's, etc. Define

$$\varepsilon_{\lambda} = (-1)^{m_2+m_4+\cdots} = (-1)^{n-\ell(\lambda)}$$

where $\ell(\lambda)$ is the number of parts of λ .

This has a natural interpretation: recall that partitions of n correspond to conjugacy classes in the symmetric group S_n .

Proposition

For $w \in S_n$, let $\rho(w)$ denote the cycle type of w. Then $\varepsilon_{\rho(w)} = 1$ if w is an even permutation and -1 if w is an odd permutation.

Let $\lambda \vdash n$ and suppose λ has m_1 1's, m_2 2's, etc. Define

$$\varepsilon_{\lambda} = (-1)^{m_2+m_4+\cdots} = (-1)^{n-\ell(\lambda)}$$

where $\ell(\lambda)$ is the number of parts of λ .

This has a natural interpretation: recall that partitions of n correspond to conjugacy classes in the symmetric group S_n .

Proposition

For $w \in S_n$, let $\rho(w)$ denote the cycle type of w. Then $\varepsilon_{\rho(w)} = 1$ if w is an even permutation and -1 if w is an odd permutation.

Hence, the map $S_n \to \{\pm 1\}$ given by $w \mapsto \varepsilon_{\rho(w)}$ is the well-known sign homomorphism.

Let $\lambda \vdash n$ and suppose λ has m_1 1's, m_2 2's, etc. Define

$$\varepsilon_{\lambda} = (-1)^{m_2+m_4+\cdots} = (-1)^{n-\ell(\lambda)}$$

where $\ell(\lambda)$ is the number of parts of λ .

This has a natural interpretation: recall that partitions of n correspond to conjugacy classes in the symmetric group S_n .

Proposition

For $w \in S_n$, let $\rho(w)$ denote the cycle type of w. Then $\varepsilon_{\rho(w)} = 1$ if w is an even permutation and -1 if w is an odd permutation.

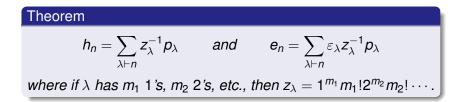
Hence, the map $S_n \to \{\pm 1\}$ given by $w \mapsto \varepsilon_{\rho(w)}$ is the well-known sign homomorphism.

Theorem

The power sum symmetric functions are eigenvectors for the operator ω , with $\omega(p_{\lambda}) = \varepsilon_{\lambda} p_{\lambda}$.

In general, expanding e_{λ} , h_{λ} and m_{λ} in p_{λ} is messy and not especially interesting. However, the special cases of h_n and e_n are worth mentioning.

In general, expanding e_{λ} , h_{λ} and m_{λ} in p_{λ} is messy and not especially interesting. However, the special cases of h_n and e_n are worth mentioning.



In general, expanding e_{λ} , h_{λ} and m_{λ} in p_{λ} is messy and not especially interesting. However, the special cases of h_n and e_n are worth mentioning.

Theorem

$$h_n = \sum_{\lambda \vdash n} z_{\lambda}^{-1} p_{\lambda}$$
 and $e_n = \sum_{\lambda \vdash n} \varepsilon_{\lambda} z_{\lambda}^{-1} p_{\lambda}$
where if λ has m_1 1's, m_2 2's, etc., then $z_{\lambda} = 1^{m_1} m_1! 2^{m_2} m_2! \cdots$.

One may also ask what the image of m_{λ} is under ω . The functions $\omega(m_{\lambda})$ are known as the *forgotten symmetric functions* f_{λ} .

Definition

The *Hall inner product* on Λ is defined by declaring $\{m_{\lambda}\}$ and $\{h_{\mu}\}$ to be dual bases, i.e., for all partitions λ, μ ,

 $\langle m_{\lambda}, h_{\mu} \rangle = \delta_{\lambda,\mu}.$

Definition

The *Hall inner product* on Λ is defined by declaring $\{m_{\lambda}\}$ and $\{h_{\mu}\}$ to be dual bases, i.e., for all partitions λ, μ ,

$$\langle m_{\lambda}, h_{\mu} \rangle = \delta_{\lambda,\mu}.$$

Proposition

The Hall inner product is symmetric: $\langle f, g \rangle = \langle g, f \rangle$ for all $f, g \in \Lambda$.

Definition

The *Hall inner product* on Λ is defined by declaring $\{m_{\lambda}\}$ and $\{h_{\mu}\}$ to be dual bases, i.e., for all partitions λ, μ ,

$$\langle m_{\lambda}, h_{\mu} \rangle = \delta_{\lambda,\mu}.$$

Proposition

The Hall inner product is symmetric: $\langle f, g \rangle = \langle g, f \rangle$ for all $f, g \in \Lambda$.

Proof:

$$\langle h_{\lambda}, h_{\mu} \rangle = \langle \sum_{\nu} N_{\lambda,\nu} m_{\nu}, h_{\mu} \rangle = N_{\lambda,\mu}.$$

Definition

The *Hall inner product* on Λ is defined by declaring $\{m_{\lambda}\}$ and $\{h_{\mu}\}$ to be dual bases, i.e., for all partitions λ, μ ,

$$\langle m_{\lambda}, h_{\mu} \rangle = \delta_{\lambda,\mu}.$$

Proposition

The Hall inner product is symmetric: $\langle f, g \rangle = \langle g, f \rangle$ for all $f, g \in \Lambda$.

Proof:

$$\langle h_{\lambda}, h_{\mu} \rangle = \langle \sum_{\nu} N_{\lambda,\nu} m_{\nu}, h_{\mu} \rangle = N_{\lambda,\mu}.$$

But $N_{\lambda,\mu} = N_{\mu,\lambda}$, since an \mathbb{N} -matrix has row sum λ and column sum μ if and only if its transpose has row sum μ and column sum λ . Symmetry in general follows since $\{h_{\lambda}\}$ is a basis.

The power sum symmetric functions are an orthogonal basis, with $\langle p_{\lambda}, p_{\mu} \rangle = z_{\lambda} \delta_{\lambda,\mu}$.

The power sum symmetric functions are an orthogonal basis, with $\langle p_{\lambda}, p_{\mu} \rangle = z_{\lambda} \delta_{\lambda,\mu}$.

One can force this to be orthonormal by rescaling, but $\sqrt{z_{\lambda}}$ is usually not rational, so this does not work over \mathbb{Q} .

The power sum symmetric functions are an orthogonal basis, with $\langle p_{\lambda}, p_{\mu} \rangle = z_{\lambda} \delta_{\lambda,\mu}$.

One can force this to be orthonormal by rescaling, but $\sqrt{z_{\lambda}}$ is usually not rational, so this does not work over \mathbb{Q} .

Theorem

The Hall inner product is positive-definite, i.e., $\langle f, f \rangle = 0$ if and only if f = 0.

The power sum symmetric functions are an orthogonal basis, with $\langle p_{\lambda}, p_{\mu} \rangle = z_{\lambda} \delta_{\lambda,\mu}$.

One can force this to be orthonormal by rescaling, but $\sqrt{z_{\lambda}}$ is usually not rational, so this does not work over \mathbb{Q} .

Theorem

The Hall inner product is positive-definite, i.e., $\langle f, f \rangle = 0$ if and only if f = 0.

Proof: express *f* in the power sum basis, $f = \sum_{\lambda} c_{\lambda} p_{\lambda}$. Then

$$\langle f,f
angle = \sum_{\lambda} c_{\lambda}^2 z_{\lambda}$$

which is zero if and only if all c_{λ} are zero, since $z_{\lambda} > 0$.

 ω is an isometry, i.e.,

$$\langle \omega(f), \omega(g) \rangle = \langle f, g \rangle.$$

 ω is an isometry, i.e.,

$$\langle \omega(f), \omega(g) \rangle = \langle f, g \rangle.$$

Proof: It is enough to show $\langle \omega(\boldsymbol{p}_{\lambda}), \omega(\boldsymbol{p}_{\mu}) \rangle = \langle \boldsymbol{p}_{\lambda}, \boldsymbol{p}_{\mu} \rangle$. We have

$$\langle \omega(\boldsymbol{p}_{\lambda}), \omega(\boldsymbol{p}_{\mu}) \rangle = \langle \varepsilon_{\lambda} \boldsymbol{p}_{\lambda}, \varepsilon_{\mu} \boldsymbol{p}_{\mu} \rangle = \varepsilon_{\lambda} \varepsilon_{\mu} \boldsymbol{z}_{\lambda} \delta_{\lambda} \mu = \boldsymbol{z}_{\lambda} \delta_{\lambda} \mu = \langle \boldsymbol{p}_{\lambda}, \boldsymbol{p}_{\mu} \rangle.$$

 ω is an isometry, i.e.,

$$\langle \omega(f), \omega(g) \rangle = \langle f, g \rangle.$$

Proof: It is enough to show $\langle \omega(\boldsymbol{p}_{\lambda}), \omega(\boldsymbol{p}_{\mu}) \rangle = \langle \boldsymbol{p}_{\lambda}, \boldsymbol{p}_{\mu} \rangle$. We have

$$\langle \omega(\boldsymbol{p}_{\lambda}), \omega(\boldsymbol{p}_{\mu})
angle = \langle arepsilon_{\lambda} \boldsymbol{p}_{\lambda}, arepsilon_{\mu} \boldsymbol{p}_{\mu}
angle = arepsilon_{\lambda} arepsilon_{\mu} \boldsymbol{z}_{\lambda} \delta_{\lambda} \mu = \boldsymbol{z}_{\lambda} \delta_{\lambda} \mu = \langle \boldsymbol{p}_{\lambda}, \boldsymbol{p}_{\mu}
angle.$$

Question

Is there a "natural" orthonormal basis of Λ ?