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Introduction

A multivariate polynomial is called symmetric if it is unchanged
under any permutation of the variables.

Example

f (x1, x2, x3) = x1 + x2 + x3 − 2x1x2x3 is symmetric in x1, x2, x3.

g(x1, x2, x3) = x2
1 + x1x2 + x2

3 is not symmetric in x1, x2, x3
since, e.g., g(x2, x1, x3) = x2

2 + x1x2 + x2
3 6= g(x1, x2, x3).

In infinitely many variables (formal power series), these are
called symmetric functions.
They have many applications, including to

Galois theory
representation theory of the symmetric and general linear
groups
geometry of Grassmannian varieties
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Formal definitions

Definition
A weak composition a is an infinite sequence of nonnegative
integers, almost all zero. Let xa = xa1

1 xa2
2 · · · be the monomial

in infinitely many variables with exponent vector a.

Example
The weak composition

a = (0,4,0,0,1,0,2,1,0,0,0, . . .)

corresponds to the monomial

x (0,4,0,0,1,0,2,1,0,0,0,...) = x4
2 x1

5 x2
7 x1

8 .
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Formal definitions

Definition
A symmetric function over a ring R is a formal power series

f (x) =
∑

a

caxa

where a ranges over weak compositions and ca ∈ R, that is
unchanged under any permutation of the variables, i.e.

f (xw(1), xw(2), . . .) = f (x1, x2, . . .)

for any permutation of the positive integers.
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Definition
Let Λn denote the set of symmetric functions homogeneous of
degree n.

Example

f (x1, x2, . . .) =
∑

i

x3
i +

∑
i<j<k

xixjxk ∈ Λ3;

this is a symmetric function over Z, homogeneous of degree 3.

One may truncate a symmetric function to a symmetric
polynomial f (x1, . . . , xk ) in k variables: set xj = 0 for j > k .

Example
The truncation

f (x1, x2, x3) = x3
1 + x3

2 + x3
3 + x1x2x3

is a symmetric polynomial in 3 variables.
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Algebra structure

For this talk, we will typically assume the coefficient ring to be
the field of rational numbers Q. However, almost all results will
hold over the integers Z.

Proposition

If f ,g ∈ Λn then f + g ∈ Λn.
If f ∈ Λn and g ∈ Λm then fg ∈ Λn+m.

Accordingly, we may define a graded algebra:

Definition
The algebra of symmetric functions Λ is

Λ0 ⊕ Λ1 ⊕ Λ2 · · ·

where Λ0 is the coefficient ring Q (or Z).

Each Λn is a vector space over Q.
Dominic Searles Symmetric functions



General theme

Find and understand interesting and useful bases of Λn.

Explain how these bases relate to one another.

Describe the rich structure of the algebra of symmetric
functions.
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Partitions

Definition
A partition is a finite weakly decreasing sequence
λ = (λ1, . . . λk ) of nonnegative integers. For any weak
composition a, let sort(a) denote the partition obtained by
rearranging the positive entries of a into weakly decreasing
order.

When the entries of a sum to n, we say a is a weak composition
of n. Similarly if the entries of λ sum to n then λ is a partition of
n and we write λ ` n.

Example

a = (0,2,1,0,0,2,0,0,0, . . .) is a weak composition of 5, and
sort(a) = (2,2,1) ` 5.
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The monomial basis

Definition
Let λ ` n. The monomial symmetric function mλ ∈ Λn is defined
by

mλ =
∑

sort(a)=λ

xa.

Example

m(2,2,1) =
∑

i<j<k

x2
i x2

j xk +
∑

i<j<k

x2
i xjx2

k +
∑

i<j<k

xix2
j x2

k .

Truncating to three variables,

m(2,2,1)(x1, x2, x3) = x2
1 x2

2 x3 + x2
1 x2x2

3 + x1x2
2 x2

3 .

The functions mλ are symmetric by definition.
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The monomial basis

Proposition

The functions {mλ : λ ` n} form a basis for Λn.

Proof: If λ 6= µ, then mλ and mµ share no monomials. Hence
{mλ} is linearly independent.

Let f ∈ Λn and suppose xa is a monomial in f . Then f must
contain every xb such that b is a rearrangement of a, so f
contains msort(a). Then consider f −msort(a), etc.

In particular, if f =
∑

a caxa ∈ Λn then f =
∑

λ`n cλmλ.

Corollary

The dimension of Λn is the number of partitions of n.
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The elementary symmetric functions

Definition
The elementary symmetric functions in Λ are

ek =
∑

1≤i1<···<ik

xi1 · · · xik

for k ≥ 0, and e0 = 1.

Example

e1 =
∑

i

xi e2 =
∑
i<j

xixj .

Truncating to 3 variables, we have

e1(x1, x2, x3) = x1+x2+x3 e2(x1, x2, x3) = x1x2+x1x3+x2x3.

Dominic Searles Symmetric functions



The elementary symmetric functions

Definition
The elementary symmetric functions in Λ are

ek =
∑

1≤i1<···<ik

xi1 · · · xik

for k ≥ 0, and e0 = 1.

Example

e1 =
∑

i

xi e2 =
∑
i<j

xixj .

Truncating to 3 variables, we have

e1(x1, x2, x3) = x1+x2+x3 e2(x1, x2, x3) = x1x2+x1x3+x2x3.

Dominic Searles Symmetric functions



Definition
Given a partition λ with m parts, define

eλ = eλ1eλ2 · · · eλm .

Example

e(2,1)(x1, x2, x3) = e2(x1, x2, x3)e1(x1, x2, x3)

= (x1x2 + x1x3 + x2x3)(x1 + x2 + x3)

= x2
1 x2 + x2

1 x3 + x1x2
2 + x2

2 x3 + x1x2
3 + x2x2

3 + 3x1x2x3.
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Expanding functions in a basis

Definition
Given a basis {vλ} of Λn, we say f ∈ Λn is v-positive if the
expansion of f in the basis {vλ} has nonnegative coefficients.

If f is v -positive, the coefficients sometimes have an
interpretation in algebra or combinatorics (dimensions of
modules, intersection numbers of varieties, etc).

Since the monomial symmetric functions are a basis of Λn, we
can expand the elementary symmetric functions as

eλ =
∑
µ`n

Mλ,µmµ.

Proposition

Mλ,µ is the number of (0,1) matrices with row sums λ and
column sums µ.
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Definition
Given a partition λ, the Young diagram D(λ) consists of
left-justified rows of boxes, with λ1 boxes in the first row, λ2
boxes in the second row, and so forth.

Example

If λ = (4,2,1), then

D(λ) = .

Definition
If λ ` n, define λ′ to be the partition of n whose entries are the
lengths of the columns of D(λ).

Example

If λ = (4,2,1), then λ′ = (3,2,1,1).
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Definition
The dominance order on partitions of n is the partial order
defined by µ ≤ λ if µ1 + · · ·+ µi ≤ λ1 + · · ·+ λi for all i .

Example

(2,2,2) ≤ (4,1,1), while (3,3) and (4,1,1) are incomparable.

Theorem
Let λ, µ ` n. Then Mλ,µ = 0 unless µ ≤ λ′. Moreover, Mλ,λ′ = 1.

Example

e(1,1,1) = m(3)+ 3m(2,1)+ 6m(1,1,1)

e(2,1) = m(2,1)+ 3m(1,1,1)

e(3) = m(1,1,1)
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The fundamental theorem of symmetric functions

Corollary (Fundamental theorem of symmetric functions)

The functions {eλ : λ ` n} form a basis for Λn.

Corollary

The functions {ek : k ≥ 0} algebraically generate Λ. In other
words, any symmetric function can be written as a polynomial
in {e0,e1,e2, . . .}.
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The complete basis

We now consider a third family of symmetric functions, which
are in some sense dual to the eλ.

Definition
The complete (homogeneous) symmetric functions are

hk =
∑

1≤i1≤···≤ik

xi1 · · · xik

for k > 0, and h0 = 1.

Example

h1 = e1 =
∑

i

xi h2 =
∑
i≤j

xixj .

Truncating to 3 variables, we have

h2(x1, x2, x3) = x2
1 + x2

2 + x2
3 + x1x2 + x1x3 + x2x3.
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are in some sense dual to the eλ.

Definition
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hk =
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xi1 · · · xik
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Definition
Given a partition λ with m parts, define

hλ = hλ1hλ2 · · · hλm .

Example

h(2,1)(x1, x2, x3) = h2(x1, x2, x3)h1(x1, x2, x3)

= (x2
1 + x2

2 + x2
3 + x1x2 + x1x3 + x2x3)(x1 + x2 + x3) =

x3
1 +x3

2 +x3
3 +2x2

1 x2+2x2
1 x3+2x1x2

2 +2x2
2 x3+2x1x2

3 +2x2x2
3 +3x1x2x3.
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We can expand the complete symmetric functions as

hλ =
∑
µ

Nλ,µmµ.

Proposition
Nλ,µ is the number of N-matrices with row sums λ and column
sums µ.

Unlike the case for the eλ, the transition matrix between {hλ}
and {mµ} is not upper-triangular.

Example

h(1,1,1) = 6m(1,1,1) + 3m(2,1) + m(3)

h(2,1) = 3m(1,1,1) + 2m(2,1) + m(3)

h(3) = m(1,1,1) + m(2,1) + m(3)

We thus need another approach to show {hλ} is a basis of Λn.
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An involution on symmetric functions

Definition
The omega involution is the endomorphism ω : Λ→ Λ given by

ω(ek ) = hk , k ≥ 1 (and therefore ω(eλ) = hλ).

Theorem
The endomorphism ω is an involution; equivalently, ω(hk ) = ek .

Proof sketch: Define formal power series

H(t) =
∑
k≥0

hk tk , E(t) =
∑
k≥0

ek tk ∈ Λ[[t ]].

Then we have H(t) =
∏

k

(1− xk t)−1, E(t) =
∏

k

(1 + xk t).

and thus H(t)E(−t) = 1. Equate coefficients of tk to obtain

0 =
k∑

i=0

(−1)ieihk−i , k ≥ 1.
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Apply ω:

0 =
k∑

i=0

(−1)iω(ei)ω(hk−i)

=
k∑

i=0

(−1)ihiω(hk−i)

= (−1)k
k∑

i=0

(−1)iω(hi)hk−i

and therefore ω(hi) = ei .

Corollary

The functions hλ such that λ ` n form a basis for Λn.
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The power sum basis

Definition
The power sum symmetric functions are

pk =
∑

i

xk
i

for k > 0, and p0 = 1.

Example

p1 = e1 = h1 =
∑

i

xi p2 =
∑

i

x2
i .

Truncating to 3 variables, we have

p2(x1, x2, x3) = x2
1 + x2

2 + x2
3 .
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Definition
Given a partition λ with m parts, define

pλ = pλ1pλ2 · · · pλm .

Example

p(2,1)(x1, x2, x3) = p2(x1, x2, x3)p1(x1, x2, x3)

= (x2
1 + x2

2 + x2
3 )(x1 + x2 + x3)

= x3
1 + x3

2 + x3
3 + x2

1 x2 + x2
1 x3 + x1x2

2 + x2
2 x3 + x1x2

3 + x2x2
3 .
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We can expand the power sum symmetric functions as

pλ =
∑
µ

Rλ,µmµ.

Proposition
Let ` be the number of parts of µ. Then Rλ,µ is the number of
ordered partitions π = (B1, . . . ,Bk ) of the set {1, . . . , `} such
that µj =

∑
i∈Bj

λi for each 1 ≤ j ≤ k.

Example
To find the coefficient of m(3,2,1) in

p(2,2,1,1) = (x2
1 +x2

2 +x2
3 )(x2

1 +x2
2 +x2

3 )(x1 +x2 +x3)(x1 +x2 +x3),

we have either
B1 = {1,3},B2 = {2},B3 = {4} or
B1 = {1,4},B2 = {2},B3 = {3} or
B1 = {2,3},B2 = {1},B3 = {4} or
B1 = {2,4},B2 = {1},B3 = {3}. Hence the coefficient is 4.
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Corollary
Rλ,µ = 0 unless λ ≤ µ. Moreover,

Rλ,λ =
∏

i

mi !

where λ has m1 parts equal to 1, m2 parts equal to 2, etc.

Corollary

The functions pλ such that λ ` n form a basis for Λn.

Note the diagonal entries of the transition matrix between {pλ}
and {mλ} are

∏
i mi(λ)! which is typically not equal to 1. So this

matrix is not invertible over Z, although it is invertible over Q.
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Definition
Let λ ` n and suppose λ has m1 1’s, m2 2’s, etc. Define

ελ = (−1)m2+m4+··· = (−1)n−`(λ)

where `(λ) is the number of parts of λ.

This has a natural interpretation: recall that partitions of n
correspond to conjugacy classes in the symmetric group Sn.

Proposition

For w ∈ Sn, let ρ(w) denote the cycle type of w. Then ερ(w) = 1
if w is an even permutation and −1 if w is an odd permutation.

Hence, the map Sn → {±1} given by w 7→ ερ(w) is the
well-known sign homomorphism.

Theorem
The power sum symmetric functions are eigenvectors for the
operator ω, with ω(pλ) = ελpλ.
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In general, expanding eλ, hλ and mλ in pλ is messy and not
especially interesting. However, the special cases of hn and en
are worth mentioning.

Theorem

hn =
∑
λ`n

z−1
λ pλ and en =

∑
λ`n

ελz−1
λ pλ

where if λ has m1 1’s, m2 2’s, etc., then zλ = 1m1m1!2m2m2! · · · .

One may also ask what the image of mλ is under ω. The
functions ω(mλ) are known as the forgotten symmetric
functions fλ.
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The Hall inner product

Definition
The Hall inner product on Λ is defined by declaring {mλ} and
{hµ} to be dual bases, i.e., for all partitions λ, µ,

〈mλ,hµ〉 = δλ,µ.

Proposition

The Hall inner product is symmetric: 〈f ,g〉 = 〈g, f 〉 for all
f ,g ∈ Λ.

Proof:
〈hλ,hµ〉 = 〈

∑
ν

Nλ,νmν ,hµ〉 = Nλ,µ.

But Nλ,µ = Nµ,λ, since an N-matrix has row sum λ and column
sum µ if and only if its transpose has row sum µ and column
sum λ. Symmetry in general follows since {hλ} is a basis.
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Theorem
The power sum symmetric functions are an orthogonal basis,
with 〈pλ,pµ〉 = zλδλ,µ.

One can force this to be orthonormal by rescaling, but
√

zλ is
usually not rational, so this does not work over Q.

Theorem
The Hall inner product is positive-definite, i.e., 〈f , f 〉 = 0 if and
only if f = 0.

Proof: express f in the power sum basis, f =
∑

λ cλpλ. Then

〈f , f 〉 =
∑
λ

c2
λzλ

which is zero if and only if all cλ are zero, since zλ > 0.
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√

zλ is
usually not rational, so this does not work over Q.

Theorem
The Hall inner product is positive-definite, i.e., 〈f , f 〉 = 0 if and
only if f = 0.
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Theorem
ω is an isometry, i.e.,

〈ω(f ), ω(g)〉 = 〈f ,g〉.

Proof: It is enough to show 〈ω(pλ), ω(pµ)〉 = 〈pλ,pµ〉. We have

〈ω(pλ), ω(pµ)〉 = 〈ελpλ, εµpµ〉 = ελεµzλδλµ = zλδλµ = 〈pλ,pµ〉.

Question
Is there a “natural” orthonormal basis of Λ?
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