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From last time

Four bases of Λn: {mλ}, {eλ}, {hλ}, {pλ}.

An involution ω : Λ→ Λ given by ω(eλ) = hλ.

{pλ} are eigenvectors for ω, with eigenvalues ±1.

The Hall inner product, satisfying 〈mλ,hµ〉 = δλ,µ.

{pλ} is orthogonal (not orthonormal), and ω is an isometry.

Question
Is there a natural orthonormal basis of Λ with respect to the Hall
inner product?
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Answer: the Schur functions.

A very important and widely-studied basis, intimately
connected to representation theory of Sn and GLn and
cohomology of Grassmannian varieties.

There are many equivalent (but not obviously equivalent)
definitions of Schur functions. For ease of exposition, we will
use the combinatorial definition.
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Semistandard Young tableaux

Definition
A semistandard Young tableau of shape λ is a filling of the
boxes of D(λ) with positive integers (called “entries”), one per
box, such that entries weakly increase from left to right in each
row and strictly increase from bottom to top in each column.

Let SSYT(λ) denote the set of all semistandard Young tableaux
of shape λ. For the sake of restriction to symmetric polynomials
in n variables, let SSYTn(λ) denote the elements of SSYT(λ)
with entries at most n.
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Schur functions

Example

The set SSYT3(2,1) is

2
1 1

3
1 1

2
1 2

3
1 2

2
1 3

3
1 3

3
2 2

3
2 3

Definition
The Schur function sλ is defined by

sλ =
∑

T∈SSYT(λ)

xwt(T ),

where the i th entry of wt(T ) is the number of i ’s in T .

Example

The Schur function s(2,1)(x1, x2, x3) is

x2
1 x2 + x2

1 x3 + x1x2
2 + 2x1x2x3 + x1x2

3 + x2
2 x3 + x2x2

3 .

Dominic Searles Symmetric functions



Schur functions

Example

The set SSYT3(2,1) is

2
1 1

3
1 1

2
1 2

3
1 2

2
1 3

3
1 3

3
2 2

3
2 3

Definition
The Schur function sλ is defined by

sλ =
∑

T∈SSYT(λ)

xwt(T ),

where the i th entry of wt(T ) is the number of i ’s in T .

Example

The Schur function s(2,1)(x1, x2, x3) is

x2
1 x2 + x2

1 x3 + x1x2
2 + 2x1x2x3 + x1x2

3 + x2
2 x3 + x2x2

3 .

Dominic Searles Symmetric functions



Schur functions

Example

The set SSYT3(2,1) is

2
1 1

3
1 1

2
1 2

3
1 2

2
1 3

3
1 3

3
2 2

3
2 3

Definition
The Schur function sλ is defined by

sλ =
∑

T∈SSYT(λ)

xwt(T ),

where the i th entry of wt(T ) is the number of i ’s in T .

Example

The Schur function s(2,1)(x1, x2, x3) is

x2
1 x2 + x2

1 x3 + x1x2
2 + 2x1x2x3 + x1x2

3 + x2
2 x3 + x2x2

3 .

Dominic Searles Symmetric functions



Unlike all the previously-considered bases of Λn, it is not clear
from the definition that the Schur functions are symmetric.

Theorem (Bender-Knuth involution)

Let T ∈ SSYT(λ). Fix i, and define a map SSYT(λ)→ SSYT(λ)
as follows. Given a row of T , suppose there are r i ’s in that row
that do not have an i + 1 in the same column, and s i + 1’s in
that row that do not have an i in the same column.
For each row of T , replace the r i ’s and s i + 1’s with s i’s and r
i + 1’s.
This map is well-defined, and is an involution (thus bijection) on
SSYT(λ) that swaps the number of i ’s and number of i + 1’s.

Example
An example of the involution on i = 6. Here r = 2, s = 4.

6 6
6 6 6 7 7 7 7 7 7
7

7→ 6 6
6 6 6 6 6 7 7 7 7
7
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Definition
The Kostka numbers Kλ,µ are the coefficients of the expansion
of a Schur function into monomial symmetric functions:

sλ =
∑
µ`n

Kλ,µmµ.

Equivalently, these are the number of SSYT of shape λ with
weight µ.

No simple formula is known in general for these numbers, but
an important special case is µ = (1,1, . . . ,1). Here Kλ,µ counts
the standard Young tableaux of shape λ; those SSYT with
entries 1,2, . . . ,n each appearing once.
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Definition
The hook associated to a box in D(λ) is the collection of boxes
weakly above in the same column and weakly right in the same
row. The hook length is the number of such boxes.

Example

A hook of length 4 (left); all hook lengths for λ = (4,3,2) (right).
x
x x x

2 1
4 3 1
6 5 3 1

Theorem (Hook-length formula: Frame, Robinson, Thrall 1953)

For u a box in D(λ), let h(u) denote the hook length of u. Then

Kλ,1n =
n!∏

u∈D(λ) h(u)
.

Thus, e.g., K(4,3,2),(19) = 9!
6·5·3·1·4·3·1·2·1 = 168.
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The irreducible complex representations of Sn are indexed by
the partitions of n.

The number Kλ,1n , often written as f λ, is the dimension of the
irreducible representation corresponding to λ.
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Schur functions are a basis

Proposition
The Kostka number Kλ,µ is zero unless µ ≤ λ. Moreover,
Kλ,λ = 1.

Corollary

The functions {sλ : λ ` n} form a basis for Λn.
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Theorem
The Schur functions are an orthonormal basis of Λ with respect
to the Hall inner product, i.e.,

〈sλ, sµ〉 = δλ,µ.

Recall λ′ is the partition consisting of the column lengths of
D(λ).

Theorem
For any Schur function sλ, we have

ω(sλ) = sλ′ .
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It is of particular interest in representation theory and geometry
to understand the structure constants of the Schur basis, i.e.,
the numbers cνλ,µ in the formula

sλ · sµ =
∑
ν

cνλ,µsν .

Surprisingly, these numbers are nonnegative integers.
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Schensted insertion

Definition
A near Young tableau of shape λ is a filling of the boxes of λ
with distinct integers. Let NYT(λ) denote the set of all near
Young tableaux of shape λ.

Example
Any standard Young tableau is a near Young tableau. Also, if
λ = (2,1) then

4
1 3

3
2 7

are examples of near Young tableaux of shape (2,1).

An important algorithmic process known as Schensted insertion
takes as input a near Young tableau T and a positive integer i
that does not appear in T , and outputs another near Young
tableau that has one more box than T and contains the entry i .
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Schensted insertion

Definition (Schensted insertion)

Let T ∈ NYT(λ) and i1 a positive integer that doesn’t appear in
T . Define a new NYT, denoted T ← i1, as follows.

1 If i1 is larger than the last entry in row 1 of T , place i1 at the
end of row 1, and stop. Otherwise,

2 replace the leftmost entry of row 1 that is strictly larger
than i1 (call this i2) by i1, and repeat these steps with i2 and
row 2, i3 and row 3, etc.

Example

7
2 5 8
1 3 6 9

← 4 = 7 8
2 5 6
1 3 4 9

.

Insertion of a sequence of distinct integers a1a2 . . . ak is defined
iteratively by (· · · ((∅ ← a1)← a2)← · · · )← ak .
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Definition
Given two partitions ν, λ such that λi ≤ νi for all i , one can form
the skew diagram ν/λ by removing D(λ) from inside D(ν).

Example

If λ = (4,3,2) and ν = (2,2), then

D(ν/λ) = .

Definition
A standard Young tableau of (skew) shape ν/λ is a filling of the
boxes of ν/λ with 1,2, . . . , |ν| − |λ| such that entries increase
from left to right in each row and bottom to top in each column.

Let SYT(ν/λ) denote the set of all standard Young tableaux of
shape ν/λ.
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Definition
For T ∈ SYT(ν/λ), let col(T ) denote the permutation obtained
by listing the entries from the columns in decreasing order,
starting with the leftmost column and proceeding rightwards.

Definition
For T ∈ SYT(µ), let T sup(µ) ∈ SYT(µ) be the SYT whose
entries in the first row are 1,2, . . . , µ1, in the second row are
µ1 + 1, . . . , µ1 + µ2, etc.

Theorem (Littlewood-Richardson rule)
In the formula

sλ · sµ =
∑
ν

cνλ,µsν ,

cνλ,µ is the number of T ∈ SYT(ν/λ) such that Schensted
insertion of col(T ) gives T sup(µ).
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Example

We compute cνλ,µ for λ = (2,1), µ = (2,1), ν = (3,2,1). Below
are SYT(ν/λ) and their column words.

1
2

3

1
3

2

2
1

3

2
3

1

3
1

2

3
2

1

123 132 213 231 312 321

Performing Schensted insertion on each of these, we find that
only 132,312 insert to T sup(µ) = 3

1 2
. For example,

((φ← 3)← 1)← 2 = ( 3 ← 1)← 2 = 3
1
← 2 = 3

1 2
.

Therefore,
c(3,2,1)
(2,1),(2,1) = 2.

Dominic Searles Symmetric functions



Example

We compute cνλ,µ for λ = (2,1), µ = (2,1), ν = (3,2,1). Below
are SYT(ν/λ) and their column words.

1
2

3

1
3

2

2
1

3

2
3

1

3
1

2

3
2

1

123 132 213 231 312 321

Performing Schensted insertion on each of these, we find that
only 132,312 insert to T sup(µ) = 3

1 2
.

For example,

((φ← 3)← 1)← 2 = ( 3 ← 1)← 2 = 3
1
← 2 = 3

1 2
.

Therefore,
c(3,2,1)
(2,1),(2,1) = 2.

Dominic Searles Symmetric functions



Example

We compute cνλ,µ for λ = (2,1), µ = (2,1), ν = (3,2,1). Below
are SYT(ν/λ) and their column words.

1
2

3

1
3

2

2
1

3

2
3

1

3
1

2

3
2

1

123 132 213 231 312 321

Performing Schensted insertion on each of these, we find that
only 132,312 insert to T sup(µ) = 3

1 2
. For example,

((φ← 3)← 1)← 2 = ( 3 ← 1)← 2 = 3
1
← 2 = 3

1 2
.

Therefore,
c(3,2,1)
(2,1),(2,1) = 2.

Dominic Searles Symmetric functions



Example

We compute cνλ,µ for λ = (2,1), µ = (2,1), ν = (3,2,1). Below
are SYT(ν/λ) and their column words.

1
2

3

1
3

2

2
1

3

2
3

1

3
1

2

3
2

1

123 132 213 231 312 321

Performing Schensted insertion on each of these, we find that
only 132,312 insert to T sup(µ) = 3

1 2
. For example,

((φ← 3)← 1)← 2 = ( 3 ← 1)← 2 = 3
1
← 2 = 3

1 2
.

Therefore,
c(3,2,1)
(2,1),(2,1) = 2.

Dominic Searles Symmetric functions



Skew Schur functions

Definition
The skew Schur function sν/λ is the weighted sum of
SSYT(ν/λ).

Example

Let λ = (1) and ν = (2,1). Then SSYT2((2,1)/(1)) is

1
1

1
2

2
1

2
2
,

So s(2,1)/(1)(x1, x2) = x2
1 + 2x1x2 + x2

2 .
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Theorem
Let f ∈ Λn. Then 〈sλf , sν〉 = 〈f , sν/λ〉. In other words, the
operation of multiplying by sλ and the operation of skewing by λ
are adjoint. In particular,

〈sλsµ, sν〉 = 〈sµ, sν/λ〉.

Since 〈sλsµ, sν〉 = cνλ,µ by the Littlewood-Richardson rule, we
have

〈sµ, sν/λ〉 = cνλ,µ.

Thus skew Schur functions expand positively in Schur
functions.

Example

Since c(2,1)
(1),(1,1) = c(2,1)

(1),(2) = 1 and c(2,1)
(1),µ = 0 for all other µ, we

have
s(2,1)/(1) = s(2) + s(1,1).
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Quasisymmetric functions

Motivation: An algebra that generalises symmetric functions,
can be used to study symmetric functions, and has many
interesting and useful properties.

Definition
A (strong) composition α of n is a sequence of positive integers
that sum to n. We write α � n. For any weak composition a of
n, define flat(a) to be the composition obtained by removing all
zeros from a.

Example

If a = (0,0,1,3,0,1,0,0, . . .) then flat(a) = (1,3,1) � 5.
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Quasisymmetric functions

Definition
A formal power series

∑
a caxa is a quasisymmetric function if

ca = cflat(a) for all a. Let QSymn denote the set of
quasisymmetric functions that are homogeneous of degree n.

Example

f (x1, x2, . . .) =
∑
i<j

x3
i xj +

∑
i<j<k

xix2
j xk

is quasisymmetric of degree 4. The truncation

f (x1, x2, x3) = x3
1 x2 + x3

1 x3 + x3
2 x3 + x1x2

2 x3

is a quasisymmetric polynomial in 3 variables. Note it is not
symmetric.
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Proposition

For all n, QSymn contains Λn. In particular, every symmetric
function is quasiymmetric.

Proof: This follows from the definition. For
∑

a caxa to be
symmetric, we need ca = csort(a), which implies the weaker
condition ca = cflat(a).

Proposition

If f ,g ∈ QSymn then f + g ∈ QSymn, and if f ∈ QSymn and
g ∈ QSymm, then fg ∈ QSymn+m.

Definition
Let QSym denote the algebra of quasisymmetric functions,
defined by

QSym = QSym0 ⊕ QSym1 ⊕ QSym2 ⊕ · · ·
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The monomial basis

A goal is to find useful bases of QSymn, discover their
properties and relations to one another, and relate these to
important bases of the subalgebra of symmetric functions.

Definition
Let α � n. The monomial quasisymmetric function Mα is
defined by

Mα =
∑

flat(a)=α

xa.

Example

M(2,1,2) =
∑

i<j<k

x2
i xjx2

k .

Truncating to 4 variables,

M(2,1,2)(x1, x2, x3, x4) = x2
1 x2x2

3 + x2
1 x2x2

4 + x2
1 x3x2

4 + x2
2 x3x2

4 .
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Proposition

The monomial quasisymmetric functions {Mα : α � n} form a
basis for QSymn.

Proof: If α 6= β, then Mα and Mβ share no monomials. Hence
{Mα} is linearly independent.

If f =
∑

a caxa ∈ QSymn, then f =
∑

α�n cαMα.
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Definition
Let α, β � n. If α can be obtained by adding consecutive entries
of β, then we say β refines α.

Example

(1,1,2,1) refines (2,3), but does not refine (3,2).

Definition
Let α � n. The fundamental quasisymmetric function Fα is
defined by

Fα =
∑

β refines α

Mβ.

Example

F(2,1,2) = M(2,1,2) + M(2,1,1,1) + M(1,1,1,2) + M(1,1,1,1,1).
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Proposition

The fundamental quasisymmetric functions {Fα : α � n} form a
basis for QSymn.

Proof: choose any total ordering on compositions that is
compatible with the partial ordering defined by refinement of
compositions. Then the transition matrix between {Fα} and
{Mβ} is upper triangular with respect to this ordering, with ones
on the diagonal.

In particular, Fα = Mα+ (lower order terms).
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Definition
Let T ∈ SYT(λ). An entry i of T is a descent of T if it is strictly
below i + 1 in T . If the descents of T are {i1 < · · · < ik}, then
the descent composition of T is (i1, i2 − i1, . . . ,n − ik ).

Example

SYT(3,1), their descents and their descent compositions:

4
1 2 3

(3,1), 3
1 2 4

(2,2), 2
1 3 4

(1,3)

Theorem (Gessel 1984)

sλ =
∑

T∈SYT(α)

FDes(T ).

Example

s(3,1) = F(3,1) + F(2,2) + F(1,3).
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Goal: Find analogues of the Schur basis of Λn in QSymn, i.e.,
bases of QSymn that reflect or extend properties of the Schur
functions.

The role played by fundamental quasisymmetric functions
in the representation theory of 0-Hecke algebras is
analogous to that played by Schur functions for symmetric
groups.

Recently-introduced bases of quasisymmetric functions that
are analogous to Schur functions include

(Young) Quasisymmetric Schur functions
Dual immaculate functions
Extended Schur functions
(Young) Row-strict quasisymmetric Schur functions

Each of these bases is F -positive, i.e., their elements expand
positively in the fundamental basis of QSym.
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Defining the quasisymmetric Schur functions

Definition
Let α � n. The diagram D(α) of α is the left-justified diagram of
boxes with αi boxes in row i .

Example

Let α = (2,1,3). Then

D(α) = .

Definition
A standard reversetableau of shape α is a filling of D(α) with
1, . . . ,n such that entries decrease from left to right along rows,
and increase from bottom to top in the first column.
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Defining the quasisymmetric Schur functions

Definition
The standard composition tableaux SCT(α) are the standard
revesetableaux of shape α such that for any pair of boxes
labelled a and b in the configuration below, if a > b then the box
labelled c must be in D(α), and c > b.

b
...

a c

Example

The elements of SCT(2,2,3) are
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Defining the quasisymmetric Schur functions

Definition
An entry i in T ∈ SCT(α) is a descent if i + 1 is weakly right of i
in T . If {i1 < . . . < ik} are the descents of T , then the descent
composition of T is the composition
Des(T ) = (i1, i2 − i1, . . . ,n − ik ).

Example

The elements of SCT(2,2,3), their descents and their descent
compositions are

7 6 5
4 3
2 1

7 6 4
5 3
2 1

7 6 5
4 1
3 2

7 6 3
5 1
4 2

7 6 4
5 1
3 2

(2,2,3) (2,1,2,2) (1,2,1,3) (1,1,2,1,2) (1,2,2,2)
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Definition (Haglund-Luoto-Mason-van Willigenburg 2011)

The quasisymmetric Schur function QSα is defined by

QSα =
∑

T∈SCT(α)

FDes(T ).

Example
Using the previous example,

QS(2,2,3) = F(2,2,3) + F(2,1,2,2) + F(1,2,1,3) + F(1,1,2,1,2) + F(1,2,2,2).

Theorem (Haglund-Luoto-Mason-van Willigenburg 2011)

sλ =
∑

sort(α)=λ

QSα.

Example

s(3,2,2) = QS(3,2,2) + QS(2,3,2) + QS(2,2,3).
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Similar tableau descriptions exist for other bases of
quasisymmetric functions, and relationships have been
established between these bases and the Schur functions.

Schur functions expand into dual immaculate
quasisymmetric functions via a determinantal formula
(Berg-Bergeron-Saliola-Serrano-Zabrocki 2014).

extended Schur functions contain the Schur functions as a
subset (Assaf-S. 2019).

Relationships between these bases established in certain
cases, e.g. dual immaculate functions expand positively in
Young quasisymmetric Schur functions (Allen-Hallam-Mason
2018), proved using insertion algorithms.
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Involutions on QSym

Proposition
There is a bijection between compositions of n and subsets of
[n − 1], via

(α1, . . . , αk ) 7→ Set(α) = {α1, α1 + α2, . . . , α1 + · · ·+ αk−1}.

Definition
For α � n, define αc to be the composition corresponding to the
complement of Set(α), and αt to be the reversal of αc . Then the
involutions

ψ : QSym→ QSym, ψ(Fα) = Fαc

ω : QSym→ QSym, ω(Fα) = Fαt

both restrict to the omega involution on Λ.
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Example
The images of the QSα under ω are the row-strict
quasisymmetric Schur functions.

There is an analogue of the Hall inner product. This pairs
elements of the Noncommutative symmetric functions NSym
with elements of QSym.

The algebras NSym and QSym are dual to one another as Hopf
algebras, while Λ is a self-dual Hopf algebra.
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