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Abstract. We study the section conjecture of anabelian geometry and
the sufficiency of the finite descent obstruction to the Hasse principle for
the moduli spaces of principally polarized abelian varieties and of curves
over number fields. For the former we show that the section conjecture
fails and the finite descent obstruction holds for a general class of adelic
points, assuming several well-known conjectures. For the latter, we prove
some partial results that indicate that the finite descent obstruction suffices.
We also show how this sufficiency implies the same for all hyperbolic curves.

1 Introduction

Anabelian geometry is a program proposed by Grothendieck ([8, 9]) which
suggests that for a certain class of varieties (called anabelian but, as yet,
undefined) over a number field, one can recover the varieties from their étale
fundamental group together with the Galois action of the absolute Galois
group of the number field. Precise conjectures exist only for curves and some
of them have been proved, notably by Mochizuki ([19]). Grothendieck sug-
gested that moduli spaces of curves and abelian varieties (the latter perhaps
less emphatically) should be anabelian. Already Ihara and Nakamura [14]
have shown that moduli spaces of abelian varieties should not be anabelian as
one cannot recover their automorphism group from the fundamental group
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and we will further show that other anabelian properties fail in this case.
In the case of moduli of curves, we will provide further evidence that they
should indeed be considered anabelian.

The finite descent obstruction is a construction that describes a subset of
the adelic points of a variety over a number field containing the closure of the
rational (or integral) points and is conjectured to sometimes (e.g. for curves,
perhaps for anabelian varieties) to equal that closure. The relationship be-
tween the finite descent obstruction and the section conjecture in anabelian
geometry has been discussed by Harari and Stix [11, 34] and others. We
will review the relevant definitions below, although our point of view will be
slightly different.

The purpose of this paper is to study the section conjecture of anabelian
geometry and the finite descent obstruction for the moduli spaces of princi-
pally polarized abelian varieties and of curves over number fields. For the
moduli of abelian varieties we show that the section conjecture fails in general
and that both the the section conjecture and finite descent obstruction hold
for a general class of adelic points, assuming some established conjectures in
arithmetic geometry. We also give examples showing that weaker versions
of the finite descent obstruction do not hold. For the moduli of curves, we
prove some partial results that indicate that the finite descent obstruction
suffices. We also show how combining some of our result with the conjectured
sufficiency of finite descent obstruction for the moduli of curves, we deduce
the sufficiency of finite descent obstruction for all hyperbolic curves.

In the next section we give more precise definitions of the objects we use
and in the following two sections we give the applications mentioned above.

2 Preliminaries

Let X/K be a smooth geometrically connected variety over a field K. Let
GK be the absolute Galois group of K and X̄ the base-change of X to an
algebraic closure of K. We denote by π1(.) the algebraic fundamental group
functor on schemes and we omit base-points from the notation. We have the
fundamental exact sequence

1→ π1(X̄)→ π1(X)→ GK → 1. (1)

The map pX : π1(X)→ GK from the above sequence is obtained by functori-
ality from the structural morphism X → SpecK. Grothendieck’s anabelian
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program is to specify a class of varieties, termed anabelian, for which the va-
rieties and morphisms between them can be recovered from the correspond-
ing fundamental groups together with the corresponding maps pX when the
ground field is finitely generated over its prime field. As this is very vague, we
single out here two special cases with precise statements. The first is a (spe-
cial case of a) theorem of Mochizuki [19] which implies part of Grothendieck’s
conjectures for curves but also extends it by considering p-adic fields.

Theorem 2.1 (Mochizuki) Let X, Y be smooth projective curves of genus
bigger than one over a field K which is finitely generated over Qp. If there
is an isomorphism from π1(X) to π1(Y ) inducing the identity on GK via
pX , pY , then X is isomorphic to Y .

A point P ∈ X(K) gives, by functoriality, a section GK → π1(X) of the
fundamental exact sequence (1) well-defined up to conjugation by an element
of π1(X̄) (the indeterminacy is because of base points).

We denote by H(K,X) the set of sections GK → π1(X) modulo conju-
gation by π1(X̄) and we denote by σX/K : X(K) → H(K,X) the map that
associates to a point the class of its corresponding section, as above, and we
call it the section map. As part of the anabelian program, it is expected
that σX/K is a bijection if X is projective, anabelian and K is finitely gen-
erated over its prime field. This is widely believed in the case of hyperbolic
curves over number fields and is usually referred as the section conjecture.
For a similar statement in the non-projective case, one needs to consider the
so-called cuspidal sections, see [34]. Although we will discuss non-projective
varieties in what follows, we will not need to specify the notion of cuspidal
sections. The reason for this is that we will be considering sections that lo-
cally come from points (the Selmer set defined below) and these will not be
cuspidal.

We remark that the choice of a particular section s0 : GK → π1(X)
induces an action of GK on π1(X̄), x 7→ s0(γ)xs0(γ)−1. For an arbitrary
section s : GK → π1(X) the map γ 7→ s(γ)s0(γ)−1 is a 1-cocycle for the
above action of GK on π1(X̄) and this induces a bijection H1(GK , π1(X̄))→
H(K,X). We stress that this only holds when H(K,X) is non-empty and a
choice of s0 can be made. It is possible for H(K,X) to be empty, whereas
H1(GK , π1(X̄)) is never empty.

Let X/K as above, where K is now a number field. If v is a place
of K, we have the completion Kv and a fixed inclusion K ⊂ Kv induces
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a map αv : GKv → GK and a map βv : π1(Xv) → π1(X), where Xv is
the base-change of X to Kv. We define the Selmer set of X/K as the set
S(K,X) ⊂ H(K,X) consisting of the equivalence classes of sections s such
that for all places v, there exists Pv ∈ X(Kv) with s ◦ αv = βv ◦ σX/Kv(Pv).
Note that if v is complex, then the condition at v is vacuous and that if
v is real, σX/Kv is constant on X(Kv)•, the set of connected components
of X(Kv), equipped with the quotient topology (see [27]). So we have the
following diagram:

X(K) //

σX/K

��

∏
X(Kv)•∏

σX/Kv
��

⊃ Xf

S(K,X) ⊂ H(K,X) α //
∏
H(Kv, X).

We define the set Xf (the finite descent obstruction) as the set of points
(Pv)v ∈

∏
vX(Kv)• for which there exists s ∈ H(K,X) (which is then nec-

essarily an element of S(K,X)) satisfying s ◦ αv = βv ◦ σX/Kv(Pv) for all
places v. Also, it is clear that the image of X(K) is contained in Xf and also
that Xf is closed (this follows from the compactness of GK). One says that
the finite descent obstruction is the only obstruction to strong approxima-
tion if the closure of the image of X(K) in

∏
X(Kv)• equals Xf . A related

statement is the equality σX/K(X(K)) = S(K,X), which is implied by the
“section conjecture”, i.e., the bijectivity of σX/K : X(K)→ H(K,X). More
explicitly,

Proposition 2.2 We have that Xf = ∅ if and only if S(K,X) = ∅. If,
moreover, σX/Kv induces an injective map on X(Kv)• for all places v of K
then σX/K(X(K)) = S(K,X) if and only if Xf is the image of X(K).

Proof. If Xf 6= ∅ and (Pv) ∈ Xf , then there exists s ∈ S(K,X) with
s ◦ αv = βv ◦ σX/Kv(Pv) for all places v, so S(K,X) 6= ∅. If we also have
σX/K(X(K)) = S(K,X), then s = σX/K(P ), P ∈ X(K). It follows from the
injectivity of σX/Kv on X(Kv)• that the image of P in X(Kv)• coincides with
the image of Pv in X(Kv)• for all v, so Xf is the image of X(K).

If s ∈ S(K,X), there exists (Pv) with s ◦ αv = βv ◦ σX/Kv(Pv) for all
places v. So (Pv) ∈ Xf . If Xf is the image of X(K), then (Pv) is the image
of P ∈ X(K). It follows that s = σX/K(P ).
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If X is not projective, then one has to take into account questions of
integrality. We choose an integral model X/OS,K , where S is a finite set of
places of K and OS,K is the ring of S-integers of K. The image of X(K)
in Xf actually lands in the adelic points which are the points that satisfy
Pv ∈ X (Ov) for all but finitely many v, where Ov is the local ring at v.
Similarly, the image of σX/K belongs to the subset of S(K,X) where the
corresponding local points Pv also belong to X (Ov) for all but finitely many
v. We denote this subset of S(K,X) by S0(K,X) and call it the integral
Selmer set.

3 Moduli of abelian varieties

The moduli space of principally polarized abelian varieties of dimension g
is denoted by Ag. It is actually a Deligne-Mumford stack or orbifold and
we will consider its fundamental group as such. For a general definition of
fundamental groups of stacks including a proof of the fundamental exact
sequence in this generality, see [41]. For a discussion of the case of Ag, see
[10]. We can also get what we need from [14] (see below) or by working with
a level structure which bring us back to the case of smooth varieties.

As Ag is defined over Q, we can consider it over an arbitrary number
field K. As per our earlier conventions, Āg is the base change of Ag to
an algebraic closure of Q and not a compactification. In fact, we will not
consider a compactification at all here. The topological fundamental group
of Āg is the symplectic group Sp2g(Z) and the algebraic fundamental group is
its profinite completion. When g > 1 (which we henceforth assume) Sp2g(Z)
has the congruence subgroup property ([1],[17]) and therefore its profinite
completion is Sp2g(Ẑ).

The group π1(Ag) is essentially described by the exact sequences (3.2)

and (3.3) of [14] and it follows that the set H(K,Ag) consists of Ẑ repre-
sentations of GK of rank 2g preserving the symplectic form up to scalar and
having as determinant the cyclotomic character. Indeed, it is clear that every
section gives such a representation and the converse follows formally from the
diagram below, which is a consequence of (3.2) and (3.3) of [14].
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Here χ : GK → Ẑ∗, the cyclotomic character.

1 // π1(Āg) //

∼=
��

π1(Ag) //

��

GK
//

χ
��

1

1 // Sp2g(Ẑ) // GSp2g(Ẑ) // Ẑ∗ // 1.

The coverings of Āg corresponding to the congruence subgroups of Sp2g(Ẑ)
are those obtained by adding level structures. In particular, for an abelian
variety A, σAg/K(A) =

∏
T`(A), the product of its Tate modules considered,

as usual, as a GK-module. If K is a number field, whenever two abelian va-
rieties are mapped to the same point by σAg/K , then they are isogenous, by
Faltings ([4]). Whether σAg/K is injective to S0(K,Ag) or not does depend
on K and g, see Sect. 4. For example, if g = 1 and K admits an embedding
into the field R of real numbers then σA1/K is injective. On the other hand,
for each g there exists K with non-injective σAg/K . However, for any K and
g every fiber of σAg/K is finite.

Note also that the hypotheses of proposition 2.2 do not hold for Ag
as the `-adic representation is locally constant in the v-adic topology for
non-archimedian v, so for those places σAg/Kv is not injective. Regarding
surjectivity, we will prove that those elements of S0(K,Ag) for which the
corresponding Galois representation is absolutely irreducible (see below for
the precise hypothesis and corollary 3.6 for a precise statement) are in the
image of σAg/K , assuming the Fontaine-Mazur conjecture, the Grothendieck-
Serre conjecture on semi-simplicity of `-adic cohomology of smooth projec-
tive varieties, and the Tate and Hodge conjectures. The integral Selmer set
S0(K,Ag), defined in the previous section, corresponds to the set of Galois
representations that are almost everywhere unramified and, locally, come
from abelian varieties (which thus are of good reduction for almost all places
of K) and we will also consider a few variants of the question of surjectivity
of σAg/K to S0(K,Ag) by different local hypotheses and discuss what we can
and cannot prove. A version of this kind of question has also been considered
by B. Mazur [16].

Here is the setting. Let K be a number field, with GK = Gal(K/K).
Fix a finite set of rational primes S, and suppose we are given a weakly
compatible system of almost everywhere unramified `-adic representations

{ρ` : GK → GLN(Q`)}`6∈S,
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satisfying the following two properties:

1. For some prime `1 6∈ S, ρ`1 is absolutely irreducible.

2. For some prime `2 6∈ S, and at least one place v|`2 of K, ρ`2|GKv is de
Rham with Hodge-Tate weights −1, 0, each with multiplicity N

2
. (Note

that this condition holds if there exists an abelian variety Av/Kv such
that ρ`2|GKv ∼= V`2(Av), the latter denoting the rational Tate module of
Av.)

Our aim is to prove the following:

Theorem 3.1 Assume the Hodge, Tate, Fontaine-Mazur, and Grothendieck-
Serre conjectures, and suppose that the set S is empty. Then there exists an
abelian variety A over K such that ρ` ∼= V`(A) for all `.

We begin by making somewhat more precise the combined implications of
the Grothendieck-Serre, Tate, and Fontaine-Mazur conjectures (the Hodge
conjecture will only be used later, in the proof of Lemma 3.4). For any
field k and characteristic zero field E, let Mk,E denote the category of pure
homological motives over k with coefficients in E (omitting E from the no-
tation will mean E = Q); since we assume the Tate conjecture (when k is
finitely-generated), the Standard Conjectures hold over k (even when k is
not finitely-generated, e.g. k = C), so we have a motivic Galois formalism:
Mk,E is equivalent to Rep(Gk,E) for some pro-reductive group Gk,E over E,
the equivalence depending on the choice of an E-linear fiber functor. Our
k will always have characteristic zero, so such a fiber functor is obtained by
embedding k into C and taking Betti cohomology; this will be left implicit in
all that follows. For an extensions of fields k′/k, we denote the base-change
of motives by

(·)|k′ : Mk,E →Mk′,E.

This is not to be confused with the change of coefficients. Fix an embedding
ι : Q ↪→ Q`, so that when E is a subfield of Q we can speak of the `-adic
realization

Hι : Mk,E → RepQ`(Gk)

associated to ι.

Lemma 3.2 Let r` : GK → GLN(Q`) be an irreducible geometric Galois rep-
resentation. Then there exists an object M of MK,Q such that

r` ⊗Q` Q`
∼= Hι(M).
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Proof. The Fontaine-Mazur conjecture asserts that for some smooth pro-
jective variety X/k, r` is a sub-quotient of H i(XK ,Q`)(j) for some integers i
and j, and the Grothendieck-Serre conjecture implies this sub-quotient is in
fact a direct summand. We denote by H i(X)(j) the object ofMK whose ex-
istence is ensured by the Künneth Standard Conjecture. The Tate conjecture
then says that

Hι : EndMK

(
H i(X)(j)

)
⊗Q Q`

∼−→ EndQ`[GK ]

(
H i(XK ,Q`)(j)

)
(2)

is an isomorphism.
Now, there is a projector (of Q`[GK ]-modules) H i(XK ,Q`)(j) � r`, which

combined with Equation (2) yields a projector in EndMK
(H i(X)(j))⊗Q Q`

whose image has `-adic realization r`. But EndMK
(H i(X)(j)) is a semi-

simple algebra over Q, which certainly splits over Q, so the decomposition
of H i(X)(j) into simple objects of MK,Q` is already realized in MK,Q.1

Returning to our particular setting, fix any `0 6∈ S and an embedding
ι0 : Q ↪→ Q`0 , so that Lemma 3.2 provides us with a number field E ⊂ Q
(which we may assume Galois over Q) and a motivic Galois representation
ρ : GK,E → GLN,E such that Hι0(ρ) ∼= ρ`0⊗Q`0 . Let us denote by λ0 the place

of E induced by E ⊂ Q ι0−→ Q`. Then for all finite places λ of E (say λ|`), and
for almost all places v of K, compatibility gives us the following equality of
rational numbers (note that ρλ denotes the λ-adic realization of the motivic
Galois representation ρ, while ρ` denotes the original `-adic representation
in our compatible system):

tr(ρλ(frv)) = tr(ρλ0(frv)) = tr(ρ`0(frv)) = tr(ρ`(frv).

Here we use the fact that the collection of `-adic realizations of a motive form
a (weakly) compatible system; this follows from the Lefschetz trace formula.
We deduce as usual (Brauer-Nesbitt and Chebotarev) that ρ` ⊗Q` Eλ

∼= ρλ;
this holds for all λ for which ρ` makes sense, i.e. for all λ above ` 6∈ S.

The next question is whether having each (or almost all) ρλ in fact de-
finable over Q` forces ρ to be definable over Q. Recall that for some `1 6∈ S,
we have assumed ρ`1 is absolutely irreducible. A fortiori, ρ is absolutely
irreducible, and then by the Tate conjecture all ρ` (` 6∈ S) are absolutely
irreducible. Since the ρλ descend to Q`, the Tate conjecture implies that

1In fact, it is realized over the maximal CM subfield of Q: see e.g. [28, Lemma 4.1.22].
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for all σ ∈ Gal(E/Q), σρ ∼= ρ; and since End(ρ) is E, the obstruction to
descending ρ to a Q-rational representation of GK is an element obsρ of
H1(Gal(E/Q),PGLN(E)).

Lemma 3.3 With the notation above, obsρ in fact belongs to

ker

(
H1(Gal(E/Q),PGLN(E))→

∏
`6∈S

H1(Gal(Eλ/Q`),PGLN(Eλ)

)
.

In particular, if S is empty, then ρ can be defined over Q.

Proof. We know that each of the λ-adic realizations ρλ (for λ|` 6∈ S)
can be defined over Q`; to prove the lemma, we have to recall how these
are constructed from ρ itself. The surjection GK � GK admits a continuous
section on Q`-points, s` : GK → GK(Q`); composition with ρ ⊗E Eλ yields
ρλ. We have seen that ρλ can be defined over Q`, so that after GLN(Eλ)-
conjugation we can assume that the composite

GK
s`−→ GK(Q`) ⊂ GK,E(Eλ)

ρ⊗EEλ−−−−→ GLN(Eλ)

has values in GLN(Q`). The Tate and Grothendieck-Serre conjectures im-
ply that s`(GK) is Zariski-dense in GK,Eλ , by applying, for instance, [3, I,
Proposition 3.1]. Thus ρ⊗E Eλ must be definable over Q`, since composing
with any element of Gal(Eλ/Q`) the result agrees with ρ ⊗ Eλ on s`(GK),
hence must equal ρ⊗ Eλ. It follows that obsρ has trivial restriction to each
Gal(Eλ/Q`), as desired.

For the final claim, note that by Hilbert 90 we can regard obsρ as an
element of

ker

(
H2(Gal(E/Q), E×)→

∏
`6∈S

H2(Gal(Eλ/Q`), E
×
λ )

)
.

If S is empty, then the structure of the Brauer group of Q (which has only
one infinite place!) then forces obsρ to be trivial.

Proof. [Proof of Theorem 3.1] From now on we assume S = ∅, so that
our compatible system {ρ`}` arises from a rational representation

ρ : GK → GLN,Q.
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Let M be the rank N object of MK corresponding to ρ via the Tannakian
equivalence. Recall that we are given a prime `2 and a place v|`2 of K for
which we are given that ρ`2|GKv is de Rham with Hodge numbers equal to
those of an abelian variety of dimension N

2
. All objects of MK enjoy the

de Rham comparison theorem of ‘`2-adic Hodge theory’: denoting Fontaine’s
period ring over Kv by BdR,Kv , and the de Rham realization functor by
HdR : MK → FilK (the category of filtered K-vector spaces), we have the
comparison (respecting filtration and GKv -action)

HdR(M)⊗K BdR,Kv
∼−→ H`2(M)⊗Q`2

BdR,Kv ,

hence
HdR(M)⊗K Kv

∼= DdR,Kv(H`2(M)).

The Hodge filtration on HdR(M) therefore satisfies

dimK gr0 (HdR(M)) = dimK gr−1 (HdR(M)) =
N

2
(3)

and gri (HdR(M)) = 0 for i 6= 0,−1.
Now we turn to the Betti picture. Recall that to define the fiber functor

on MK we had to fix an embedding K ↪→ C; we regard K as a subfield
of C via this embedding. Then we also have the analytic Betti-de Rham
comparison isomorphism

HdR(M)⊗K C
∼−→ HB(M |C)⊗Q C. (4)

We collect our findings in the following lemma, which relies on an application
of the Hodge conjecture:

Lemma 3.4 There is an abelian variety A over K, and an isomorphism of
motives H1(A) ∼= M .

Proof. We see from Equations (3) and (4) that HB(M |C) is a polarizable
rational Hodge structure of type {(0,−1), (−1, 0)}. It follows from Riemann’s
theorem that there is an abelian variety A/C and an isomorphism of Q-Hodge
structures H1(A(C),Q) ∼= HB(M |C). The Hodge conjecture implies that this
isomorphism comes from an isomorphism H1(A)

∼−→M |C in MC.
For any σ ∈ Aut(C/Q), we deduce an isomorphism

σH1(A)
∼−→ σM |C = M |C

∼←− H1(A),

and again from Riemann’s theorem we see that σA and A are isogenous.
The following statement will be proven later in this paper.
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Lemma 3.5 Let K be a countable subfield of the field C and K̄ the algebraic
closure of K in C. Let A be a complex abelian variety of positive dimension
g such that for each field automorphism σ ∈ Aut(C/K) the complex abelian
varieties A and its “conjugate” σA = A ×C,σ C are isogenous. Then there
exists an abelian variety A0 over K̄ such that A0 ×K̄ C is isomorphic to A.

It follows from Lemma 3.5 that A has a model AQ over Q. The morphism

HomMQ
(H1(AQ),M |Q)→ HomMC

(H1(A),M |C)

is an isomorphism, and then by general principles we deduce the existence
of some finite extension L/K inside Q over which A descends to an abelian
variety AL, and where we have an isomorphism H1(AL)

∼−→M |L in ML.
Finally, we treat the descent to K itself. We form the restriction of scalars

abelian variety ResL/K(AL); under the fully faithful embedding

AV0
K ⊂MK

B 7→ H1(B),

we can think of H1(ResL/K(AL)) as IndKL (H1(AL)), where the induction is
taken in the sense of motivic Galois representations (note that the quotient
GK/GL is canonically Gal(L/K), so this is just the usual induction from a
finite-index subgroup). Frobenius reciprocity then implies the existence of
a non-zero map M → IndKL (H1(AL)) in MK . Since M is a simple mo-
tive, this map realizes it as a direct summand in MK , and consequently
(full-faithfulness) in AV0

K as well. That is, there is an endomorphism of
ResL/K(AL) whose image is an abelian variety A over K with H1(A) ∼= M .

Proof of Lemma 3.5. Since K̄ is also countable, we may replace K
by K̄, i.e., assume that K is algebraically closed. Since the isogeny class
of A consists of a countable set of (complex) abelian varieties (up to an
isomorphism), we conclude that the set Aut(C/K)(A) of isomorphism classes
of complex abelian varieties of the form {σA | σ ∈ Aut(C/K)} is either finite
or countable.

Our plan is as follows. Let us consider a fine moduli space Ag,? over Q of
g-dimensional abelian varieties (schemes) with certain additional structures
(there should be only finitely many choices of these structures for any given
abelian variety) such that it is a quasiprojective subvariety in some projective
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space PN . Choose these additional structures for A (there should be only
finitely many choices) and let P ∈ Ag,?(C) be the corresponding point of our
moduli space. We need to prove that

P ∈ Ag,?(K).

Suppose that it is not true. Then the orbit Aut(C/K)(P ) of P is uncountable.
Indeed, P lies in one of the (N+1) affine charts/spaces AN that do cover PN .
This implies that P does not belong to AN(K) and therefore (at least) one
of its coordinates is transcendental over K. But the Aut(C/K)-orbit of this
coordinate coincides with uncountable C \ K and therefore the Aut(C/K)-
orbit Aut(C/K)(P ) of P is uncountable in Ag,?(C). However, for each σ ∈
Aut(C/K) the point σ(P ) corresponds to σA with some additional structures
and there are only finitely many choices for these structures. Since we know
that the orbit Aut(C/K)(A) of A, is, at most, countable, we conclude that
the orbit Aut(C/K)(P ) of P is also, at most, countable, which is not the
case. This gives us a desired contradiction.

We choose as Ag,? the moduli space of (polarized) abelian schemes of
relative dimension g with theta structures of type δ that was introduced and
studied by D. Mumford [21]. In order to choose (define) a suitable δ, let us
pick a totally symmetric ample invertible sheaf L0 on A [21, Sect. 2] and
consider its 8th power L := L8

0 in Pic(A). Then L is a very ample invertible
sheaf that defines a polarization Λ(L) on A [21, Part I, Sect. 1] that is a
canonical isogeny from A to its dual; the kernel H(L) of Λ(L) is a finite
commutative subgroup of A(C) (that contains all points of order 8). The
order of H(L) is the degree of the polarization. The type δ is essentially
the isomorphism class of the group H(L) [21, Part I, Sect. 1, p. 294]. The
resulting moduli space Mδ [21, Part II, Sect. 6] enjoys all the properties that
we used in the course of the proof.

Here is the anabelian application:

Corollary 3.6 Suppose s ∈ S0(K,Ag) gives rise to a system of `-adic Galois
representations one of which is absolutely irreducible. Then there exists up
to isomorphism a unique abelian variety B/K with σAg/K(B) = s.

Proof. Let us write s` for the `-adic representation associated to s; thus
s` is a representation of GK on a free Z`-module of rank 2g, automatically
satisfying Hypothesis 2 of Theorem 3.1 since s belongs to S0(K,Ag). Hy-
pothesis 1 of Theorem 3.1 is satisfied by assumption, so we obtain an abelian
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variety A/K (well-defined up to isogeny) whose rational Tate modules V`(A)
are isomorphic to the given s` ⊗Z` Q` (for all `). Moreover Hypothesis 1 im-
plies that the endomorphism ring of A is Z. It remains to see that within the
isogeny class of A there is an abelian variety B over K whose integral Tate
modules T`(B) are isomorphic to the s` (as Z`-representations), i.e. such
that σAg/K(B) = s. For this, we first observe that by [2, Proposition 3.3]
(which readily generalizes to abelian varieties of any dimension), it suffices
to show that for almost all `, there is an isomorphism T`(A) ∼= s`. Since
End(A) = Z, [40, Corollary 5.4.5] implies that A[`] is absolutely simple for
almost all `, and hence that for almost all `, all Galois-stable lattices in V`(A)
are of the form `mT`(A) for some integer m; we conclude that T`(A) is iso-
morphic to s` for almost all `. Thus there exists B in the isogeny class of A
such that σAg/K(B) = s. This B is moreover unique up to isomorphism since
End(B) = Z does not have locally trivial, non-trivial rank one modules.

Results in the same vein as this corollary have been obtained for elliptic
curves over Q in [12] and [34] and for elliptic curves over function fields in
[38].

Now we will construct an example of Galois representation that will pro-
vide us with examples that show that some of the hypotheses of the above
results are indispensable.

Recall that if L is a field then we write L̄ for its algebraic closure and GL

for its absolute Galois group Aut(L̄/L). If Y is an abelian variety over a field
L then we write End(Y ) for its ring of all L̄-endomorphisms and End0(Y ) for
the corresponding (finite-dimensional semisimple) Q-algebra End(Y ) ⊗ Q.
If ` is a prime different from char(L) then we write T`(Y ) for the Z`-Tate
module of Y that is a free Z`-module of rank 2dim (Y ) provided with the
natural continuous homomorphism

ρ`,Y : GL → AutZ`(T`(Y ))

and the Z`-ring embedding

el : End(Y )⊗ Z` ↪→ EndZ`(T`(Y )).

If all endomorphisms of Y are defined over L then the image of End(Y )⊗Z`
commutes with ρ`,Y (GL). Tensoring by Q` (over Z`), we obtain the Q`-Tate
module of Y

V`(Y ) = T`(Y )⊗Z` Q`,
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which is a 2dim (Y )-dimensional Q`-vector space containing T`(Y ) = T`(Y )⊗
1 as a Z`-lattice. We may view ρ`,Y as an `-adic representation

ρ`,Y : GL → AutZ`(T`(Y )) ⊂ AutQ`
(V`(Y ))

and extend e` by Q`-linearity to the embedding of Q`-algebras

End0(Y )⊗Q Q` = End(Y )⊗Q` ↪→ EndQ`
(V`(Y )),

which we still denote by e`. Further we will identify End0(Y )⊗Q Q` with its
image in

This provides V`(Y ) with the natural structure of GL-module; in addition,
if all endomorphisms of Y are defined over L then End0(Y ) ⊗Q Q` is a Q`-
(sub)algebra of endomorphisms of the Galois module V`(Y ). In other words,

End0(Y )⊗Q Q` ⊂ EndGL(V`(Y )).

Let k be a real quadratic field. Let us choose a prime p that splits in
k. Now let D be the indefinite quaternion k-algebra that splits everywhere
outside (two) prime divisors of p and is ramified at these divisors. If a prime
` 6= p then we have

D ⊗Q Q` = [D ⊗k k]⊗Q Q` = D ⊗k [k ⊗Q Q`].

This implies that if ` 6= p is a prime then D ⊗Q Q` is either (isomorphic to)
the simple matrix algebra (of size 2) over a quadratic extension of Q` or a
direct sum of two copies of of the simple matrix algebra (of size 2) over Q`.
(In both cases, D ⊗Q Q` is isomorphic to the matrix algebra of size 2 over
k ⊗Q Q`.

In particular, the image of D ⊗Q Q` under each nonzero Q`-algebra ho-
momorphism contains zero divisors.

Let Y be an abelian variety over field L. Suppose that all endomorphisms
of Y are defined over L and there is a Q-algebra embedding

D ↪→ End0(Y )

that sends 1 to 1. This gives us the embedding

D ⊗Q Q` ⊂ End0(Y )⊗Q Q` ⊂ EndGL(V`(Y )).
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Recall that if ` 6= p then D⊗QQ` is isomorphic to the matrix algebra of size 2
over k⊗QQ`. This implies that there are two isomorphic Q`[GL]-submodule
W1,`(Y ) and W2,`(Y ) in V`(Y ) such that

V`(Y ) = W1,`(Y )⊕W2,`(Y ) ∼= W1,`(Y )⊕W1,`(Y ) ∼= W2,`(Y )⊕W2,`(Y ).

If we denote by W`(Y ) the Q`[GL]-module W1,` then we get an isomorphism
of Q`[GL]-modules

V`(Y ) ∼= W`(Y )⊕W`(Y ).

If ` = p thenD⊗QQp splits into a direct sum of two (mutually isomorphic)
quaternion algebras over Qp. This also gives us a splitting of the Galois
module V`(Y ) into a direct sum

V`(Y ) = W1,p(Y )⊕W2,p(Y ).

of its certain nonzero Qp[GL]-submodules W1,p(Y ) and W2,p(Y ). (In fact,
one may check that

dim QpW1,p = dim QpW2,p = dim (Y ).)

Remark. Suppose that D = End0(Y ). Then it follows from Faltings’
results about the Galois action on Tate modules of abelian varieties [4] that
if ` 6= p then

EndGLW`(Y ) = k ⊗Q Q`

while the GL-module W1,p(Y ) and W2,p(Y ) are non-isomorphic.

According to Shimura ([32], see also the case of Type II(e0 = 2) with m =
1 in [23, Table 8.1 on p. 498] and [26, Table on p. 23]) there exists a complex
abelian fourfold X, whose endomorphism algebra End0(X) is isomorphic to
D. Clearly, X is defined over a finitely generated field of characteristic zero.
It follows from Serre’s variant of Hilbert’s irreducibility theorem for infinite
Galois extensions combined with results of Faltings that there exists a number
field K and an abelian fourfold A over K such that the endomorphism algebra
End0(A) of all K̄-endomorphisms of A is also isomorphic to D (see [22, Cor.
1.5 on p. 165]). Enlarging K, we may assume that all points of order 12 on
A are defined over K. Now Raynaud’s criterion ([7], see also [30]) implies
that A has everywhere semistable reduction. On the other hand,

dim Q End0(A) = dim QD = 8 > 4 = dim (A).
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By [23, Lemma 3.9 on p. 484], A has everywhere potential good reduction.
This implies that A has good reduction everywhere. If v is a nonarchimedean
place of K with finite residue field κ(v) then we write A(v) for the reduction
of A at v; clearly, A(v) is an abelian fourfold over κ(v). If char(κ(v)) 6= 2
then all points of order 4 on A(v) are defined over κ(v); if char(κ(v)) 6= 3 then
all points of order 3 on A(v) are defined over κ(v). It follows from a theorem
of Silverberg [29] that all κ(v)-endomorphisms of A(v) are defined over κ(v).
(The same result implies that all K̄-endomorphisms of A are defined over
K.) For each v we get an embedding of Q-algebras

D ∼= End0(A) ↪→ End0(A(v)).

In particular, End0(A(v)) is a noncommutative Q-algebra, whose Q-dimension
is divisible by 8.

Theorem 3.7 If ` := char(κ(v)) 6= p then A(v) is not simple over κ(v).

Proof. We write qv for the cardinality of κ(v). Clearly, qv is a power of `.
Suppose that A(v) is simple over κ(v). Since all endomorphisms of A(v)

are defined over κ(v), the abelian variety A(v) is absolutely simple.
Let π be a Weil qv-number that corresponds to the κ(v)-isogeny class of

A(v) [36, 37]. In particular, π is an algebraic integer (complex number), all
whose Galois conjugates have (complex) absolute value

√
qv. In particular,

the product
ππ̄ = qv,

where π̄ is the complex conjugate of π.
Let E = Q(π) be the number field generated by π and let OE be the

ring of integers in E. Then E contains π̄ and is isomorphic to the center of
End0(A(v)) [36, 37]; one may view End0(A(v)) as a central division algebra
over E. It is known that E is either Q, Q(

√
`) or a (purely imaginary) CM

field [37, p. 97]. It is known (ibid) that in the first two (totally real) cases
simple A(v) has dimension 1 or 2, which is not the case. So, E is a CM field;
Since dim (A(v)) = 4 and [E : Q] divides 2dim (A(v)), we have [E : Q] = 2, 4
or 8. By [37, p. 96, Th. 1(ii), formula (2)] 2,

8 = 2 · 4 = 2dim (A(v))) =

√
dim E(End0(A(v)) · [E : Q].

2In [37] our E is denoted by F while our End0(A(v)) is denoted by E.
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Since End0(A(v)) is noncommutative, it follows that E is either an imaginary
quadratic field and End0(A(v)) is a 16-dimensional division algebra over E or
E is a CM field of degree 4 and End0(A(v)) is a 4-dimensional (i.e., quater-
nion) division algebra over E. In both cases End0(A(v)) is unramified at all
places of E except some places of residual characteristic ` [37, p. 96, Th.
1(ii)]. It follows from the Hasse–Brauer-Noether theorem that End0(A(v)) is
unramified at, at least, two places of E with residual characteristic `. This
implies that OE contains, at least, two maximal ideals that lie above `.

Clearly,
π, π̄ ∈ OE.

Recall that ππ̄ = qv is a power of `. This implies that for every prime r 6= `
both π and π̄ are r-adic units in E.

First assume that E has degree 4 and End0(A(v)) is a quaternion alge-
bra. Then (thanks to the theorem of Hasse–Brauer–Noether) there exists
a place w of E with residual characteristic ` and such that the localization
End0(A(v))⊗E Ew is a quaternion division algebra over the w-adic field Ew.
On the other hand, there is a nonzero (because it sends 1 to 1) Q`-algebra
homomorphism

D ⊗Q Q` → End0(A(v))⊗Q Q` � End0(A(v))⊗E Ew.

This implies that End0(A(v))⊗E Ew contains zero divisors, which is not the
case and we get a contradiction.

So, now we assume that E is an imaginary quadratic field and

dim E(End0(A(v))) = 16 = 42.

In particular, the order of the class of End0(A(v)) in the Brauer group of E
divides 4 and therefore is either 2 or 4.

We have already seen that there exist, at least, two maximal ideals in OE
that lie above `. Since E is an imaginary quadratic field, the ideal `OL of
OL splits into a product of two distinct complex-conjugate maximal ideals
w1 and w2 and therefore

Ew1 = Q`, Ew2 = Q`; [Ew1 : Q`] = [Ew2 : Q`] = 1.

Let
ordwi : E∗ � Z
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be the discrete valuation map that corresponds to wi. Recall that qv is a
power of `, i.e., qv = `N for a certain positive integer N . Clearly

ordwi(`) = 1, ordwi(π) + ordwi(π̄) = ordwi(qv) = N.

By [37, page 96, Th. 1(ii), formula (1)], the local invariant of End0(A(v)) at
wi is

ordwi(π)

ordwi(qv)
· [Ew1 : Q`](mod1) =

ordwi(π)

N
(mod1).

In addition, the sum in Q/Z of local invariants of End0(A(v)) at w1 and
w2 is zero [37, Sect. 1, Theorem 1 and Example b)]; we have already seen
that its local invariants at all other places of E do vanish. Using the Hasse–
Brauer-Noether theorem and taking into account that the order of the class
of End0(A(v)) in the Brauer group of E is either 2 or 4, we conclude that the
local invariants of End0(A(v)) at {w1, w2} are either {1/4 mod 1, 3/4 mod 1}
or {3/4 mod 1, 1/4 mod 1} (and in both cases the order of End0(A(v)) in the
Brauer group of E is 4) or {1/2 mod 1, 1/2 mod 1}. In the latter case it
follows from the formula for the wi-adic invariant of End0(A(v)) that

ordwi(π) =
N

2
= ordwi(π̄)

and therefore π̄/π is a wi-adic unit for both w1 and w2. Therefore π̄/π is an
`-adic unit. This implies that π̄/π is a unit in imaginary quadratic E and
therefore is a root of unity. It follows that

π2

qv
=
π2

ππ̄
=
π

π̄

is a root of unity. This implies that there is a positive (even) integer m such
that

πm = qm/2v ∈ Q

and therefore Q(πm) = Q. Let κ(v)m be the finite degree m field extension
of κ(v), which consists of qmv elements. Then πm is the Weil qmv -number that
corresponds to the simple 4-dimensional abelian variety A(v) × κ(v)m over
κ(v)m. Since Q(πm) = Q, we conclude (as above) that A(v) × κ(v)m has
dimension 1 or 2, which is not the case.

In both remaining cases the order of the algebra End0(A(v)) ⊗E Ew1 in
the Brauer group of the Ew1

∼= Q` is 4. This implies that End0(A(v))⊗EEw1
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is neither the matrix algebra of size 4 over Ew1 nor the matrix algebra of
size two over a quaternion algebra over Ew1 . The only remaining possibility
is that End0(A(v))⊗E Ew1 is a division algebra over Ew1 . However, there is
again a nonzero (because it sends 1 to 1) Q`-algebra homomorphism

D ⊗Q Q` → End0(A(v))⊗Q Q` � End0(A(v))⊗E Ew1 .

This implies that End0(A(v))⊗E Ew1 contains zero divisors, which is not the
case and we get a contradiction.

Now let us split A(v) up to a κ(v)-isogeny into a product of its κ(v)-
isotypic components (see, e.g., [31, Sect. 3]). In other words, there is a
κ(v)-isogeny

S :
∏
i∈I

Ai → A(v)

where each Ai is a nonzero abelian κ(v)-subvariety in A such that End0(Ai)
is a simple Q-algebra and S induces an isomorphism iof Q-algebras

End0(A(v)) ∼= End0(
∏
i∈I

Ai) = ⊕i∈I End0(Ai).

This gives us a nonzero Q-algebra isomorphisms

D → End0(Ai)

that must be injective, since D is a simple Q-algebra. This implies that
each End0(Ai) is a noncommutative simple Q-algebra, whose Q-dimension
is divisible by 8. In particular, all dim (Ai) ≥ 2 and therefore I consists of,
at most, 2 elements, since∑

i∈I

dim (Ai) = dim (A(v)) = 4.

If we have dim (Ai) = 2 for some i then either Ai is isogenous to a square of
a supersingular elliptic curve or Ai is an absolutely simple abelian surface.
However, each absolutely simple abelian surface over a finite field is either
ordinary (i.e., the slopes of its Newton polygon are 0 and 1, both of length
2) or almost ordinary (i.e., the slopes of its Newton polygon are 0 and 1,
both of length 1, and 1/2 with length 2): this assertion is well known and
follows easily from [39, Remark 4.1 on p. 2088]. However, in both (ordinary
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and almost ordinary) cases the endomorphism algebra of a simple abelian
variety is commutative [25]. This implies that if dim (Ai) = 2 then Ai is
κ(v)-isogenous to a square of a supersingular elliptic curve. However, if I
consists of two elements say, i and j then it follows that both Ai and Aj are
2-dimensional and therefore both isogenous to a square of a supersingular
elliptic curve. This implies that Ai and Aj are isotypic and therefore A
itself is isotypic and we get a contradiction, i.e., none of Ai has dimension
2. It is also clear that if dim (Ai) = 3 then dim (Aj) = 1, which could not
be the case. This implies that A(v) itself is isotypic. This implies that if
` = char(κ(v)) 6= p then A(v) is κ(v)-isogenous either to a 4th power of an
elliptic curve or to a square of an abelian surface over κ(v) (recall that A(v)
is not simple!). In both cases there exists an abelian surface B(v) over κ(v),
whose square B(v)2 is κ(v)-isogenous to A(v). Now one may lift B(v) to an
abelian surface Bv over Kv, whose reduction is B(v) (see [24, Prop. 11.1 on
p. 177]). Now if one restricts the action of GK on the Qr-Tate module (here
r is any prime different from char(κ(v))

Vr(A) = Tr(A)⊗Qr

to the decomposition group D(v) = GKv then the corresponding GKv -module
Vr(A) is unramified (i.e., the inertia group acts trivially) and isomorphic to

Vr(B
v)⊕ Vr(Bv).

Theorem 3.8 If r 6= p and char(κ(v)) 6= r then the GKv-modules Vr(B
v)

and Wr(A) are isomorphic. In particular, the GKv-modules

Vr(A) = Wr(A)⊕Wr(A)

and
Vr(B

v)⊕ Vr(Bv) = Vr((B
v)2)

are isomorphic.

Proof. We know that the GKv -modules Wr(A) ⊕Wr(A) and Vr(B
v) ⊕

Vr(B
v) are both isomorphic to V`(A). Since the Frobenius endomorphism of

A(v) acts on V`(A) as a semisimple linear operator (by a theorem of A. Weil),
the GKv -module V`(A) is semisimple. This implies that the GKv -modules
Vr(B

v) and Wr(A) are isomorphic.
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For primes ` 6= p, the algebra D ⊗ Q` splits and correspondingly, the
representation V`(A) splits as W` ⊕W`. Locally, at a place v - `, we have
W`
∼= V`(B

v) but the representation W` does not come from an abelian
variety, as A is simple. However, locally at v - `, W` comes from the abelian
variety Bv. The system of representations {W`}`6=p provides an example
showing that the previous result would be false under weaker requirements
on the sets of ` and v for which the representation locally comes from an
abelian variety.

4 Abelian varieties with isomorphic Tate mod-

ules

Throughout this section, K is a field. A and B are abelian varieties of positive
dimension over K. Recall that End0(A) = End(A) ⊗ Q. If ` is a positive
integer then we write Z(`) for the subring in Q that consists of all the rational
numbers, whose denominators are powers of `. We have

Z ⊂ Z(`) = Z`
⋂

Q ⊂ Z`.

In this section we discuss the structure of the right End(A)-module Hom(A,B)
when the Z`-Tate modules of A and B are isomorphic as Galois modules
for all ` and K is finitely generated over Q. If ` 6= char(K) and X is
an abelian variety over K then we write X[`] for the kernel of multiplica-
tion by ` in X(K̄). It is well known that X[`] is a finite GK-submodule in
X(K̄) of order `2dim (X) and there is a natural homomorphism of GK-modules
X[`] ∼= T`(X)/`T`(X).

Lemma 4.1 Let A and B be abelian varieties of positive dimension over K.

(a) If A and B are isogenous over K then the right End(A)⊗Q-module Hom(A,B)⊗
Q is free of rank 1. In addition, one may choose as a generator of Hom(A,B)⊗
Q any isogeny φ : A→ B.

(b) The following conditions are equivalent.

(i) The right End(A)⊗Q-module Hom(A,B)⊗Q is free of rank 1.
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(ii) dim (A) ≤ dim (B) and there exists a dim (A)-dimensional abelian K-
subvariety B0 ⊂ B such that A and B0 are isogenous over K and

Hom(A,B) = Hom(A,B0).

In particular, the image of every homomorphism of abelian varieties
A→ B lies in B0.

(c) If the equivalent conditions (i) and (ii) hold and dim (B) ≤ dim (A) then
dim (A) = dim (B), B = B0, and A and B are isogenous over K.

Proof. (a) is obvious.
Suppose (bii) is true. Let us pick an isogeny φ : A → B0. It follows

that Hom(A,B0)⊗Q = φEnd0(A) is a free right End0(A)-module of rank 1
generated by φ. Now (bi) follows from the equality

Hom(A,B)⊗Q = Hom(A,B0)⊗Q.

Suppose that (bi) is true. We may choose a homomorphism of abelian
varieties φ : A → B as a generator (basis) of the free right End(A) ⊗ Q-
module Hom(A,B)⊗Q. In other words, for every homomorphism of abelian
varieties ψ : A→ B there are u ∈ End(A) and a nonzero integer n such that

nψ = φu.

In addition, for each nonzero u ∈ End(A) the composition φu is a nonzero
element of Hom(A,B). Clearly, B0 := φ(A) ⊂ B is an abelian K-subvariety
of B with dim (B0) ≤ dim (A). We have

nψ(A) = φu(A) ⊂ ψ(A) ⊂ B0.

It follows that the identity component of ψ(A) lies in B0. Since ψ(A) is a
(connected) abelian K-subvariety of B, we have ψ(A) ⊂ B0. This proves
that

Hom(A,B) = Hom(A,B0).

On the other hand, If dim (B0) = dim (A) then φ : A → B0 is an isogeny
and we get (bii) under our additional assumption. If dim (B0) < dim (A)
then ker(φ) has positive dimension that is strictly less than dim (A). By
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Poincaré reducibility theorem there is u0 ∈ End(A) such that the image
u0(A) coincides with the identity component of ker(φ); in particular,

u0 6= 0, u0(A) ⊂ ker(φ).

This implies that
φu0 = 0 ∈ Hom(A,B)

and we get a contradiction, which proves (bii).
(c) follows readily from (bii).
.

Lemma 4.2 Suppose that A,B,C are abelian varieties over K of positive
dimension that are mutually isogenous over K. We view Hom(A,B) and
Hom(A,C) as right End0(A) = End(A)⊗Q-modules. Then the natural map

mB,C : Hom(B,C)⊗Q→ HomEnd0(A)(Hom(A,B)⊗Q,Hom(A,C)⊗Q)

that associates to τ : B → C a homomorphism of right End(A)⊗Q-modules

mB,C(τ) : Hom(A,B)⊗Q→ Hom(B,C)⊗Q, ψ 7→ τψ

is a group isomorphism.

Proof. Clearly, mB,C is injective. In order to check the surjectiveness,
recall that Hom(A,B)⊗Q is a free right End0(A)-module of rank 1 and one
may choose as its generator an isogeny φ : A → B. Then every homomor-
phism δ : Hom(A,B)⊗Q→ Hom(A,C)⊗Q is uniquely determined by the
image δ(φ) ∈ Hom(A,C) ⊗Q. We have φ−1 ∈ Hom(B,A) ⊗Q. Now if we
put

τ := δ(φ)φ−1 ∈ Hom(B,C)⊗Q

then
mB,C(τ)(φ) = δ(φ)φ−1φ = δ(φ)

and therefore δ = mB,C(τ).

Now till the end of this section we assume that K is a field of characteristic
zero that is finitely generated over Q, and A and B are abelian varieties of
positive dimension over K. By a theorem of Faltings [4, 5],

HomGK (T`(A), T`(B)) = Hom(A,B)⊗ Z`. (∗)
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Lemma 4.3 Let ` be a prime. Then the following conditions are equivalent.

(i) There is an isogeny φ` : A→ B, whose degree is prime to `.

(ii) The Tate modules T`(A) and T`(B) are isomorphic as Z`[GK ]-Galois modules.

If the equivalent conditions (i) and (ii) hold then the right End(A) ⊗ Z(`)-
module Hom(A,B)⊗Z(`) is free of rank 1 and the right End(A)⊗Z`-module
Hom(A,B)⊗ Z` is free of rank 1

Proof. (i) implies (ii). Indeed, let φ` : A→ B be an isogeny such that its
degree d := deg(φ`) is prime to `. Then there exists an isogeny ϕ` : B → A
such that φ`ϕ` is multiplication by d in B and ϕ`φ` is multiplication by d
in A. This implies that φ` induces an GK-equivariant isomorphism of the
Z`-Tate modules of A and B.

Suppose that (ii) holds. Since the rank of the free Z`-module T`(A) (resp.
T`(B)) is 2dim (A) (resp. 2dim (B)), we conclude that 2dim (A) = 2dim (B),
i.e.

dim (A) = dim (B).

By the theorem of Faltings (*), there is an isomorphism of the Z`-Tate mod-
ules of A and B that lies in Hom(A,B) ⊗ Z`. Since Hom(A,B) is dense
in Hom(A,B) ⊗ Z` in the `-adic topology, and the set of isomorphisms
T`(A) ∼= T`(B) is open in Hom(A,B) ⊗ Z`, there is φ` ∈ Hom(A,B) that
induces an isomorphism T`(A) ∼= T`(B). Clearly, ker(φ`) does not contain
points of order ` and therefore is finite. This implies that φ` is an isogeny,
whose degree is prime to `. This proves (i).

In order to prove the last assertion of Lemma 4.3, one has only to observe
that

φ` ∈ Hom(A,B) ⊂ Hom(A,B)⊗ Z(`) ⊂ Hom(A,B)⊗ Z`

is a generator of the (obviously) free right Z(`)-module Hom(A,B)⊗Z(`) and
of the free right Z`-module Hom(A,B)⊗ Z`.

We say that A and B are almost isomorphic if for all primes ` the equiv-
alent conditions (i) and (ii) of Lemma 4.3 hold. Clearly, if A and B are
isomorphic over K then they are almost isomorphic. It is also clear that if
A and B are almost isomorphic then they are isogenous over K. Obviously,
the property of being almost isomorphic is an equivalence relation on the set
of (nonzero) abelian varieties over K.
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Corollary 4.4 Suppose that A and B are almost isomorphic. Then A and
B are isomorphic over K if and only if Hom(A,B) is a free End(A)-modules
of rank 1.

Proof. Suppose Hom(A,B) is a free End(A)-module, i.e., there is a homo-
morphism of abelian varieties φ : A→ B such that Hom(A,B) = φEnd(A).
We know that for any prime ` there is an isogeny φ` : A→ B of degree prime
to `. (In particular, dim (A) = dim (B).) Therefore there is u` ∈ End(A) with
φ` = φu`. In particular, φ`(A) ⊂ φ(A) and deg(φ`) is divisible by deg(φ).
Since φ`(A) = B and deg(φ`) is prime to `, we conclude that φ(A) = B (i.e.,
φ is an isogeny) and deg(φ) is prime to `. Since the latter is true for all
primes `, we conclude that deg(φ) = 1, i.e., φ is an isomorphism.

Conversely, if A ∼= B then Hom(A,B) is obviously a free End(A)-module
generated by an isomorphism between A and B.

The next statement is a generalization of Corollary 4.4.

Corollary 4.5 Suppose that A,B,C are abelian varieties of positive dimen-
sion over K that are almost isomorphic to each other.

Then B and C are isomorphic over K if and only if the right End(A)-
modules Hom(A,B) and Hom(A,C) are isomorphic.

Proof. We know that all A,B,C are mutually isogenous over K. Let us
choose an isogeny φ : B → C. We are given an isomorphism δ : Hom(A,B) ∼=
Hom(A,C) of right End(A)-modules that obviously extends by Q-linearity
to the isomorphism Hom(A,B)⊗Q→ Hom(A,C)⊗Q of right End(A)⊗Q-
modules, which we continue to denote by δ. By Lemma 4.2, there exists
τ0 ∈ Hom(B,C)⊗Q such that δ = mB,C(τ0), i.e.,

δ(ψ) = τ0ψ ∀ψ ∈ Hom(A,B)⊗Q.

There exists a positive integer n such that τ = nτ0 ∈ Hom(B,C) and τ is
not divisible in Hom(B,C). This implies that

n · Hom(A,C) = nδ(Hom(A,B)) = nτ0Hom(A,B) = τHom(A,B).

Since B and C are almost isomorphic, for each ` there is an isogeny φ` : B →
C of degree prime to `. Since nφ` ∈ τHom(A,B), we conclude that τ is an
isogeny and deg(τ) is prime to ` if ` does not divide n. We need to prove that
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τ is an isomorphism. Suppose it is not, then there is a prime ` that divides
deg(τ) and therefore divides n. We need to arrive to a contradiction. Since
A and B are almost isomorphic, there is an isogeny ψ` : A → B of degree
prime to `. We have

τψ` ∈ n · Hom(A,C) ⊂ ` · Hom(A,C).

This implies that τ kills all points of order ` on B and therefore is divisible by
` in Hom(B,C), which is not the case. This gives us the desired contradiction.

Theorem 4.6 (Theorem-Construction) Let Λ be a a ring with 1 that,
viewed as an additive group, is a free Z-module of finite positive rank. Let M
be an arbitrary free commutative group of finite positive rank that is provided
with a structure of a right Λ-module. Suppose that M enjoys the following
properties.

(i) The right Λ⊗Q-module M ⊗Q is free of rank 1;

(ii) For all primes ` the right Λ⊗ Z`-module M ⊗ Z` is free of rank 1.

Then M also enjoys the following properties.

(iii) Let n be a positive integer. Then there is a positive integer m that is relatively
prime to n and such that the right Λ⊗Z[1/m]-module M ⊗Z[1/m] is free of
rank 1.

(iv) Let r > 1 be a positive integer that is relatively prime to m and such that the
right Λ⊗Z[1/r]-module M ⊗Z[1/r] is free of rank 1. (The existence of such
an r follows from (iii).) Let us choose a generator (basis)

em ∈M = M ⊗ 1 ⊂M ⊗ Z[1/m]

of the free Z[1/m]-module M ⊗ Z[1/m] and a generator (basis)

er ∈M = M ⊗ 1 ⊂M ⊗ Z[1/r]

of the free Z[1/r]-module M ⊗ Z[1/r]. Let

F2 = Λ⊕ Λ = f1Λ⊕ f2Λ

be a rank 2 free right Λ-module with basis {f1, f2}. Then the homomorphism
of right Λ-modules

β : F2 →M, f1a1 + f2a2 7→ e1a1 + e2a2

is surjective.
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(v) There exists a homomorphism of right Λ-modules

α : M → F2

that is a section of β. In particular, M is (isomorphic to) a direct summand
M ′ = α(M) of F2 and therefore is a projective Λ-module. In addition,

γ = αβ ∈ EndΛ(F2)

is an idempotent with γ(F2) = M ′ ∼= M .

Proof. Let us prove (iii). If n = 1 then we pick an element φ ∈M that is
a generator of M ⊗Q. Then φΛ̇ ⊂M is a Z-lattice in the finite-dimensional
Q-vector space M ⊗ Q. This implies that the ranks of (free) commutative
groups φΛ̇ and M do coincide and therefore φΛ̇ is a subgroup of finite index
in M . Now one has take as m this index.

If n > 1 then for each prime ` dividing n choose a generator φ` of M⊗Z`.
Since the group of units in Λ ⊗ Z` is open in `-adic topology, the set of
generators in M ⊗ Z` is also open in `-adic topology. Since M is dense in∏

`|nM ⊗Z` with respect to the product topology (the `th factor is provided
by `-adic topology, there exists φ ∈M that is a generator of M ⊗Z` for all `
dividing n. Let φ0 ⊂M ⊗Q be a generator of M ⊗Q. Multiplying φ0 by a
sufficiently divisible nonzero integer, we may and will assume that φ0 ∈ M .
Then there is a ∈ Λ⊗Q such that φ = φ0a. If ` is a prime dividing n then
we know that for all nonzero b ∈ Λ⊗ Z`

0 6= φb = (φ0a)b = φ0(ab) ∈M ⊗ Z`,

because φ is a generator of the free right Λ ⊗ Z`-module M ⊗ Z` of rank 1.
This means that ab 6= 0. It follows that for each nonzero b ∈ Λ the product
ab 6= 0; obviously, the inequality remains true for all nonzero b ∈ Λ ⊗ Q.
Since Λ⊗Q is a finite-dimensional Q-algebra, the Q-subspace [Λ⊗Q] ·a has
the same Q-dimension as Λ⊗Q and therefore coincides with Λ⊗Q. Since
Λ (and therefore Λ⊗Q) contains 1, there is b ∈ Λ⊗Q such that ba = 1 and
therefore a is invertible in Λ⊗Q, which implies that φ is also a generator of
the Λ ⊗Q-module M ⊗Q. As above, this implies that φ · Λ is a subgroup
of finite index in M and we take as m this index. If d is the rank of the
free Z-module M , there is a basis {y1, . . . , yd} of M and positive integers
{m1, . . . ,md} such that

φ · Λ = ⊕di=1miZ · yi ⊂ ⊕di=1Z · yi = M.
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The index m coincides with the product
∏d

i=1mi. The completion of φ · Λ
(with respect to `-adic topology) in

M ⊗ Z` = ⊕di=1Z` · yi

is ⊕di=1miZ` · yi, which coincides with M ⊗ Z` if and only if all mi are not
divisible by `, i.e., if and only if m is not divisible by `. However, since φ is
a generator of M ⊗ Z` (when ` | n) and Λ is dense in Λ ⊗ Z` (with respect
to `-adic topology) the subgroup φ · Λ is dense in

φ · [Λ⊗ Z`] = M ⊗ Z`.

This implies that m is not divisible by ` for all ` dividing n. This means that
n and m are relatively prime. This ends the proof of (iii).

Proof of (iv). Clearly, M/(em · Λ) is a commutative periodic group, all
whose elements have orders dividing a power of m and M/(er · Λ) is a com-
mutative periodic group, all whose elements have orders dividing a power
of r. Since M is a finitely generated Z-module, both quotients are finite
commutative groups, whose orders divide certain powers of m and r respec-
tively. This implies that M/(em ·Λem + er ·Λ) is a finite commutative group,
whose order divides a certain power of m and a certain power of r. Since
m and r are relatively prime, the order of M/(em · Λem + er · Λ) is 1, i.e.,
M = em · Λ + er · Λ. Now β : F2 → M is surjective, because by the very
definition of β,

em · Λ + er · Λ = β(F2).

Proof of (v). Since M ⊗ Z[1/m] and M ⊗ Z[1/r] are free modules over
Λ[1/m] and Λ[1/r] respectively, there exist sections

um : M ⊗ Z[1/m] ↪→ F2 ⊗ Z[1/m], um : M ⊗ Z[1/r] ↪→ F2 ⊗ Z[1/r]

of
β ⊗ Z[1/m] : F2 →M ⊗ Z[1/m]

and
β ⊗ Z[1/r] : F2 →M ⊗ Z[1/r]

respectively. Since M is finitely generated Z-module, there exist nonnegative
integers i and j such that

mium(M) ⊂ F2, r
jur(M) ⊂M.
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We have
β(mium(z)) = miz, β(rjur(z)) = rjz ∀z ∈M.

Since m and r are relatively prime, there exist integers c and d such that
cmi + drj = 1. This implies that the homomorphism of right Λ-modules

α := c ·mium + d · rjur : M → F2

is a section of β. In particular, M is (isomorphic to) a direct summand
M ′ = α(M) of F2 and therefore is a projective Λ-module. In addition,

γ = αβ ∈ EndΛ(F2)

is an idempotent with γ(F2) = M ′ ∼= M .

Remark Actually, the property (i) in the statement of Theorem 4.6 follows
from (ii). Indeed, suppose that there is a prime ` such that M ⊗Z` is a free
right Λ ⊗ Z`-module of rank 1. This implies that the free commutative
(additive) groups M and Λ have the same rank say, d, which also coincides
with the dimension of the Q-vector space M ⊗Q. Let us choose a generator
x ∈ M of the free module M ⊗ Z`. Then for each nonzero a ∈ Λ ⊂ Λ ⊗ Z`
the product

x · a ∈M ⊂M ⊗ Z`

is not zero in M ⊗ Z` and therefore is not zero in M . This implies that
x · Λ ⊂ M is a free commutative subgroup of rank d, i.e., of the same rank
as M. It follows that x · Λ is a subgroup of finite index in M and therefore
x · [Λ⊗Q] = M ⊗Q. This means that the homomorphism of right Λ⊗Q-
modules

Λ⊗Q→M ⊗Q, a 7→ x · a

is surjective and therefore is also injective, because both modules have the
same (finite) Q-dimension d. This implies that the right Λ⊗Q-module M⊗Q
is free of rank one.

Now we are going to use Theorem 4.6, in order to construct abelian
varieties over K that are almost isomorphic to a given A. Suppose we are
given a a free commutative group M of finite (positive) rank that is provided
with a structure of a right Λ = End(A)-module in such a way that the
conditions (i) and (ii) hold of Theorem 4.6. It follows from this Theorem
that the conditions (iii)-(v) also hold. In particular, there is an idempotent
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γ : F2 → F2, whose image M ′ = γ(F2) is isomorphic to M . Notice that
EndΛ(F2) is the matrix algebra M2(Λ) of size 2 over Λ. So, the idempotent

γ ∈ EndΛ(F2) = M2(Λ) = M2(End(A)) = End(A2)

where A2 = A× A. Let us define the K-abelian (sub)variety

B = A⊗M := γ(A2) ⊂ A2.

Clearly, B is a direct factor of A2. More precisely, if we consider the K-
abelian (sub)variety

C = (1− γ)(A2) ⊂ A2

then the natural homomorphism of abelian varieties over K

B × C → A2, (x, y) 7→ x+ y

is an isomorphism, i.e. A2 = B × C. This implies that the right End(A)-
module Hom(A,B) coincides with

γHom(A,A2) ⊂ Hom(A,A2) = End(A)⊕ End(A) = F2

and therefore the right End(A)-module Hom(A,B) is canonically isomorphic
to γ(F2) = M ′ ∼= M . It also follows that

γ(A2[`]) = B[`] (∗∗)

for every prime `.

Theorem 4.7 Let us consider the abelian variety B = A⊗M over K. Then:

(i) A and B are isogenous over K.

(ii) The right End(A)-module Hom(A,B) is isomorphic to M .

(iii) A and B are almost isomorphic.

Proof. We have already seen that Hom(A,B) ∼= M , which proves (ii).
Since the right End(A)⊗Q-module M ⊗Q is free of rank 1, the same is

true for the right End(A)⊗Q-module Hom(A,B). By Lemma 4.1, dim (A) ≤
dim (B) and there exists a dim (A)-dimensional abelian K-subvariety B0 ⊂ B
such that A and B0 are isogenous over K and

Hom(A,B) = Hom(A,B0). (∗ ∗ ∗)
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We claim that B = B0. Indeed, if B0 6= B then, by Poincaré reducibility
theorem, there is an “almost complimentary” abelian K-subvariety B1 ⊂ B
of positive dimension dim (B)− dim (B0) such that the intersection B0

⋂
B1

is finite and B0 + B1 = B. It follows from (***) that Hom(A,B0) = {0}.
However, B0 ⊂ B ⊂ A2 is an abelian K-subvariety of A2 and therefore there
is a surjective homomorphism A2 → B and therefore there exists a nonzero
homomorphism A→ B. This is a contradiction, which proves that B = B0,
the right End(A)-module Hom(A,B) is isomorphic to M , and A and B are
isogenous over K. In particular, dim (A) = dim (B). This proves (i).

Let ` be a prime. Since M ⊗ Z` is a free right End(A) ⊗ Z`-module of
rank 1, Hom(A,B) ⊗ Z` is a free right End(A) ⊗ Z`-module of rank 1. Let
us choose a generator φ ∈ Hom(A,B) of the module Hom(A,B) ⊗ Z`. The
surjection

γ : A2 → B ⊂ A2

is defined by a certain pair of homomorphisms φ1, φ2 : A→ B, i.e.,

γ(x1, x2) = φ1(x1) + φ2(x2) ∀(x1, x2) ∈ A2.

Since φ is the generator, there are u1, u2 ∈ End(A)⊗ Z` such that

φ1 = φu1, φ1 = φu1

in Hom(A,B)⊗ Z`. It follows that

γ(A2[`]) = φ1(A[`]) + φ2(A[`]) = φu1(A[`]) + φu2(A[`]) ⊂ φ(A[`]) ⊂ B[`].

By (**), γ(A2[`]) = B[`]. This implies that φ induces a surjective homomor-
phism A[`] → B[`]. Since finite groups A[`] and B[`] have the same order,
φ induces an isomorphism A[`] → B[`]. This implies that ker(φ) does not
contain points of order ` and therefore is an isogeny of degree prime to `.
This proves (iii).

Corollary 4.8 Suppose that for each i = 1, 2 we are given a commuta-
tive free group Mi of finite positive rank provided with the structure of right
End(A)-module in such a way that Mi ⊗Q is a free End(A) ⊗Q of rank 1
and for all primes ` the right End(A)⊗Z`-module Mi⊗Z` is free of rank 1.

Then abelian varieties B1 = A ⊗M1 and B2 = A ⊗M2 are isomorphic
over K if and only if the End(A)-modules M1 and M2 are isomorphic.
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Proof. By Theorem 4.7(ii), the right End(A)-module Hom(A,Bi) is iso-
morphic to Mi. Now the result follows from Theorem 4.7(iii) combined with
Corollary 4.5.

Corollary 4.9 Let A and B be abelian varieties over K of positive dimen-
sion. Suppose that Hom(A,B) ⊗ Q is a free End(A) ⊗ Q-module of rank
1 and for all primes ` the Z`-Tate modules of A and B are isomorphic as
Galois modules. Then the abelian varieties B and C = A ⊗ Hom(A,B) are
isomorphic over K.

Proof. By Theorem 4.7(ii), the right End(A)-module Hom(A,C) is iso-
morphic to Hom(A,B). Now Now the result follows from Theorem 4.7(iii)
combined with Corollary 4.5.

Remark Suppose that A is the product A1 × A2 where A1 and A2 are
abelian varieties of positive dimension over K with Hom(A1, A2) = {0}.
Then End(A) = End(A1) ⊕ End(A2). Suppose that for each i = 1, 2 we are
given a commutative free group Mi of finite positive rank provided with the
structure of right End(Ai)-module such that Mi⊗Q is a free End(Ai)⊗Q of
rank 1 and for all primes ` the right End(Ai)⊗Z`-module Mi ⊗Z` is free of
rank 1. Then M = M1⊕M2 becomes a right End(A1)⊕End(A2) = End(A)-
module such that M ⊗Q is a free End(A)⊗Q of rank 1 and for all primes
` the right End(A) ⊗ Z`-module M ⊗ Z` is free of rank 1. One may easily
check that there is a canonical isomorphism between abelian varieties A⊗M
and (A1 ⊗M1)× (A2 ⊗M2) over K.

5 Moduli of curves

The moduli space of smooth projective curves of genus g is denoted by Mg.
It is also an orbifold and we will consider its fundamental group as such. For
definitions see [10]. It is defined over Q and thus we can consider it over an
arbitrary number field K. As per our earlier conventions, M̄g is the base
change of Mg to an algebraic closure of Q and not a compactification.

Let X be a curve of genus g defined over K. There is a map (an arith-
metic analogue of the Dehn-Nielsen-Baer theorem, see [15]) ρ : π1(Mg) →
Out(π1(X)). This follows by considering the universal curve Cg of genus g
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together with the map Cg →Mg, so X can be viewed as a fiber of this map.
This gives rise to the fibration exact sequence

1→ π1(X)→ π1(Cg)→ π1(Mg)→ 1

and the action of π1(Cg) on π1(X) gives ρ. Now, X, viewed as a point on
Mg(K), gives a map σMg/K(X) : GK → π1(Mg). As pointed out in [15],
ρ ◦ σMg/K(X) induces a map GK → Out(π1(X̄)) which is none other than
the map obtained from the exact sequence (1) by letting π1(X) act on π1(X̄)
by conjugation. Combining this with Mochizuki’s theorem 2.1 gives:

Theorem 5.1 For any field K contained in a finite extension of a p-adic
field, the section map σMg/K is injective.

The following result confirms a conjecture of Stoll [35] if we assume that
σMg/K surjects onto S0(K,Mg).

Theorem 5.2 Assume that σMg/K(Mg(K)) = S0(K,Mg) for all g > 1 and
all number fields K. Then σX/K(X(K)) = S(K,X) for all smooth projective
curves of genus at least two and all number fields K.

Proof. For any algebraic curve X/K there is a non-constant map X →
Mg with image Y , say, for some g, defined over an extension L of K, given
by the Kodaira-Parshin construction. This gives a map, over L γ : π1(X)→
π1(Mg). Let s ∈ S(K,X), then γ(s) ∈ S0(L,Mg) and the assumption of
the theorem yields that γ(s) = σMg/L(P ), P ∈ Mg(L). We can combine
this with the injectivity of σMg/Kv (Mochizuki’s theorem) to deduce that
in fact P ∈ Y (Lv) ∩ Mg(L) = Y (L). We can consider the pullback to
X of the Galois orbit of P , which gives us a zero dimensional scheme in X
having points locally everywhere and, moreover, being unobstructed by every
abelian cover coming from an abelian cover of X. By the work of Stoll [35]
we conclude that X has a rational point corresponding to s.
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