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1. Introduction

Let PG(2, q) be the projéctive plane over the field GF(q) of q elements.

A k-arc K ¢ PG(2, g) is a set of k points, no three of which are collinear.
A k-arc is called complete if it is not contained in a (k + 1)-arc. It was
first shown by Bose (see Hirschfeld (1979) Theorem 8.13) that a k-arc
satisfies k < q + 2 if q is even and k<qg+1ifqis odd. Both bounds are
sharp and arcs attaining these bounds are called ovals. A celebrated
theorem of Segre (see Hirschfeld (1979) Theorem 8.24) states that, for 4
odd, an oval is a conic.

A fundamental quantity in the geometry of projective spaces over
finite fields is the cardinality of the second largest complete arc in
PG(2, q) denoted by m', 9)- Equivalently one can define m'(2, q) as
being the smallest ko such that, if k > ko, ak-arc is contained in an
oval. The value of m'(2, q) is not only important in the geometry of
the plane, but also is a basic quantity in bounds for the sizes of arcs and
caps in higher dimensional spaces (see Hirschfeld (1983, 1985);
Hirschfeld and Thas (1987, 1991); Thas (1968)).

The basic result on m'(2, g) is the following bounds, due to Segre:

m@2, 9 <9 - V) +1, g even; n
m(2,q) <q -V@/4+7/4 4 odd. )

(See Hirschfeld (1979), Theorem 10.3.3 for (1) and Theorem 10.4.4 for
(2)). Segre's method of proof of these inequalities consists of
associating to an arc an algebraic curve over GF(g) with many rational
points and then using Weil's Theorem (1948) to get an upper bound
on the number of points of the algebraic curve. Thas (1983, 1987) has
given an alternative approach to (1) and (2), bounding the points on
the algebraic curve by using Bézout's theorem only, for q even, and
the Pliicker formulz, for 4 odd. Thas sometimes obtains improve-
ments to (1) or (2) but his bounds differ from (1) or (2) at most by two.
In the opposite direction, when g is a square, there exist complete
k-arcs for k=4 - J(g) + 1, Fisher et. al. (1986). Thus (1) is sharp when g
is a square.  When ¢ is not a square, the situation is completely
different. The author has shown (1990) that, for 4 an odd prime,
m@2,q) < 44q/45 + 2. It is the purpose of this paper to substantially
improve the bounds (1) and (2) for an arbitrary non-square 4, in
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Theorems 1and 2 below. Note that, for g not a square, the best lower

bound for m'(2, ), is at present (7 + 1)/2 + (g), which follows from
the results of Voloch (1987).

The author would like to thank Jafes Hirschfeld for his interest in
this work. )

2. Bounds for the number of rational points on curves

To bound the number of rational points of algebraic curves defined
over finite fields we will use the following result of Stohr and Voloch
(1986).

Theorem 1. If X ¢ PG(n, g) is an irreducible curve of degreed, genus
g, not contained in any hyperplane and with Frobenius orders Vo, ---
Vy.1, then the number N of GF(g)-rational points of X satisfies

N < [(vo+... +Vn1)(2g-2) +d (g + ml/n.

The Frobenius orders 0 = Vo< ... <Vn is a certain well defined subset

of the order sequence 0 = €< ...< €n of X, defined as the possible

intersection multiplicities of X with hyperplanes at a generic point of
X; see Stohr and Voloch (1986) for more details.
Let us consider a plane curve X of degree d. Then

N < [v(2g -2 +d (g +21/2. (3)

Note also that v,=€ =1 or vi=¢82. We have that € is the order of
contact of X with its tangent at a generic point and so €2 < d. Also,
£, = 2 or a power of the characteristic p (as follows from Garcia and

Voloch (1987) Proposition 2). When p = 2 we conclude that v, is a

power of 2 and v, < d. This will be used in § 3.
The plane curve X of degree d can be embedded in PG(5, g) as a
curve of degree 2d not contained in a hyperplane by the Veronese

embedding PG(2, 4) = PG5, q), given by

(xg: X1: X2) 1 (XoXy: XoXat X1X2* X2 X2t XA
It follows that

N < [(vy +Va+ v+ V) (28 -2) +2d(@ +3)1/5. 4)

Suppose that X, as a plane curve, is classical (that is, has order
sequence 0, 1, 2). Then the orders of X in 5-space are 0, 1,2,3,4,€sfor
some € < 2d (see Garcia and Voloch (1987) p.464). Ifp#2,3 then, by
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Garcia and Voloch (1987), Proposition 2, € =5 or € is a power of p.

When p =2, 3 then € =6 is the only other possibility. Suppose now
that X has a rational point P so that X meets its tangent at P with
multiplicity exactly 2 at P. Then the orders at P of X in 5-space begin
with 0,1, 2, 3,4 and it follows from Stdhr and Voloch (1986) Corollary

2.6 thatv;=i, 1 £ 3. Thusv,=4or &
3. g even

Let g be even.

To prove his result on m'(2, q), Segre showed that, with t =
g +2 -k the kt unisecants to a k-arc K ¢ PG(2, g) lie, in the dual
projective plane, on an algebraic curve C of degree t. (See Hirschfeld
(1979) Theorem 10.3.1). Note that, given P in K, the line PVin the dual
plane will intersect C in the ¢ unisecants of K through P. It follows
readily from this that the unisecants of K are simple points of C and
that an irreducible component X of C of degree d contains at least kd
unisecants to K.  Segre then applied Weil's Theorem (1948) to X to
conclude that m'(2, ) <q-V(g) + 1.  To improve on Segre's result
when g is not a square we will apply instead the results of §2.

Theorem 2. If g # 2 is even and not a square, then

m'2, q) <q-V(2q) + 2.

Proof. As above, we obtain for a k-arc K, an irreducible algebraic
curve X of degree d <t =4 + 2 - k containing kd unisecants to K. If
k=m'(2, q) and K is complete, then d 22 (as in the proof of Theorem
10.3.3 of Hirschfeld (1979)). If X is not defined over GF(g), then by
Hirschfeld (1979) Lemma 10.1.1, kd <d2. Sok <d <t =q +2-k; that

is, k<(g+2)/2<q-V(2q) +2.

If X is of degree d >2 and is defined over GF(q), then (3) of §2 is
valid. Therefore

kd < [(vi(2g-2) +d(g +21/2 < d[v,(d-3) +4 +2]/2.
Hence

2k S vid-3)+g+2 S w(t-3)+g+2

and, since k=g +2-t,
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t>5+2+3v,
S w42

Ifv,< \(3/2), then, forg#8,

2q+2)+3 V(29 [2(17 +2)+3 «J(zg)] ~
t2 = Jon+a L Jep+s =@p-1.

Therefore,
k=gq+2-t< q+3-Qqr

As V(29) is an integer, we get the theorem in this case.

Recall that, as remarked in §2, v; < d <t and is a power of 2. Thus if
v, > V(g/2) then N(2q) S Vi S, whence k< g +2-(2q), as was to be
proved.

For g = 8, the bound in the theorem is sharp, as the only complete
arcs other than ovals are 6-arcs (Hirschfeld (1979), Theorem 9.2.5).

4. q odd

In this section q is odd.

Similarly to the case g even, 2 k-arc K in PG(2, ¢), 4 odd, has its kt
unisecants (t = g +2 - k) lying, in the dual plane, on an algebraic curve
C. Differently from the case g evern, this time C has degree 2t and for
each P in K, the line PV meets C with a multiplicity two at each of the t
unisecants of K through P (Hirschfeld (1979), Theorem 10.4.1).
Again we will use the results of Stohr and Voloch (1986) presented in
§2, instead of Weil's results, to improve on Segre's bound. When ¢
is prime, this was already done in Voloch (1990).

Theorem 3. Let q be odd, not a square or a prime.  Then, if qis a
power of the prime p,

m' @, q)<q-Npp/4+29p/16 + 1.
Proof. Let K be a complete k-arc in PG(2, §), g 0odd, not a squareé,
k=m'@, q). LetXDbe an irreducible component of the curve C

constructed above. It follows from the argument in Voloch (1990)
that

k< 44q/45+2 < q-N(pg)/4 +29p/16 + 1,



ARCS IN GALOIS PLANES 405

unless X is degree d 2 3 defined over GF(g) and with the Veronese

embedding of X in PG(5, q) having v, > 4. Suppose that we are in this
last case. If the kd/2 unisecants of K which are in X are double points
of X, then

kd/2 < d-1)d-2)/2 < d¥/2;

so k <d <2¢, and hence k < 2(g + 2)/3 < 449/45 + 2, as desired.
Otherwise, X has a point, corresponding to a unisecant { to K through
P in K, which is simple, and therefore, PVmeets X at [ with

multiplicity two. It follows from the discussion in §2 that X ¢ PG(5, ¢q)
has order sequence 0, 1, 2, 3, 4, €< 24 and Frobenius orders 0, 1, 2, 3, €.

Finally €; is a power of p unless p =3 and € = 6. From (4) and the
argument in Voloch (1990) it follows that

. kd/2 < [(es+6)d(d-3) +2d(g +5)]/5.
Hence
k < 2/5[(€s +6)(d - 3) + 2(q + 5)] < 2/5[(€5 + 6)(2¢ - 3) + 2(g + 5)].
Ask=q+2-t, it follows that
. q . 6€5 + 26 > q
465 +29  46,+29 48+ 29

Write g = p?+1,h 2 1. If € 52 ph*1 then, as € < 2d < 44, it follows that
k<q+2-p"1/4 and the theorem is proved. = Suppose now that

+1. 5)

€ < ph+1. If p # 3 then €; is a power of p; so €s < p*and, from (5),
t 2q/(4pk + 29) + 1, which proves the theorem. If p =3, the same

argument gives the result unless € = 6, which also satisfies & < p*
unless h = 1, that is, g = 27. However, the result is trivially true for
q=27.
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