ARCS IN PROJECTIVE PLANES OVER PRIME FIELDS

José Felipe Voloch

Let $p \neq 2$ be a prime number. We will work only over PG(2,p), the projective plane over the field of p elements.

Recall that an arc $A\subseteq PG(2,p)$ is a set for which no three of its elements are collinear. An arc is called complete when it is not a proper subset of another arc. The simplest example of a complete arc is a conic which has p+1 elements. On the other hand, Segre has shown that if A is a complete arc which is not a conic then ([3], [1] Corollary, pg. 238) (*)

$$\#A \le p - \sqrt{p/4} + 7/4 \tag{*}$$

(This result is valid even when p is not a prime number). The purpose of this note is to improve (*) when $p \neq 2$ is a prime number. The proof follows closely Segre's proof of (*), the only novelty being the use of a sharper estimate for the number of rational points of a curve over a finite field which follows from the results of [4].

THEOREM. Let $p \neq 2$ be a prime number and $A \subseteq PG(2,p)$ a complete arc, not a conic. Then

$$\#A \le p - p/45 + 2$$

Proof: We shall follow closely the proof of Theorem 10.4.4 of [1]. There an arc A is considered having #A = k. Define t = p + 2 - k. Hirschfeld shows that the unisecants of A are contained in an envelope \triangle_{2t} and he considers a component Γ_n of \triangle_{2t} . He shows that if t = 1 then A is conic and for $t \ge 2$ there are three cases.

(i) Γ_n is a regular linear component

199 Voloch

- (ii) Γ_n is a regular component of class 2
- (iii) Γ_n is regular of class at least three or Γ_n is irregular.

In case (i) he shows that A is not complete.

In case (ii) he shows that Γ_n is the envelope of a conic C, so by [1] Theorem 10.4.3 $A \subseteq C$ unless $k \le (3p+5)/4 \le 44p/45+2$.

In case (iii) if Γ_n has N simple lines, d double lines and L = N + d, he shows that $L \geq \frac{kn}{2}$.

By [1] Lemma 10.1.1, if Γ_n is irregular then $L \leq n^2$, so $k \leq 2n \leq 4t = 4(p+2-k)$. It follows that $k \leq \frac{4}{5}(p+2) \leq \frac{44}{45}p+2$.

When Γ_n is regular we shall show below (Lemma) that (since $n \geq 3$) $N \leq \frac{1}{5}(10n(n-1))$ $3) + 2n(p+5)) - 4d \text{ if } t \leq p/4. \text{ So when } t \leq p/4 \text{ we have } \tfrac{1}{2}kn \leq \tfrac{1}{5}(10n(n-3) + 2n(p+5))$ so $k \le 4(n-3) + \frac{4}{5}(p+5) \le 4(2t-3) + \frac{4}{5}(p+5) = 8t + \frac{4}{5}p - 8 = 8(p+2-k) + \frac{4}{5}p - 8$, so $k \le \frac{44}{45}p + 2$. If t > p/4 then $k = p + 2 - t < \frac{3}{4}p + 2 \le \frac{44}{45}p + 2$, this completes the proof.

The claim made in the proof follows immediately from the following.

LEMMA. Let X be an absolutely irreducible plane curve of degree $n \geq 3$ over the field of p elements, where $p \neq 2$ is a prime number. If $n \leq p/2$, and the non-singular model of X has N rational points, then

$$N \leq \frac{1}{5}(10n(n-3) + 2n(p+5)) - 4d,$$

where d is the number of double points of X as a plane curve.

Proof: It follows from the results of [4] (more precisely from Theorem 2.13 and Corollary 2.7) that if X is a curve defined over the field of q elements of characteristic pand has N rational points then if X is in projective r-space as a curve of degree $m \leq p$ and is not contained in any hyperplane then:

$$N \leq \frac{1}{r}(r(r-1)(g-1)+(q+r)m)$$

where g is the genus of X.

Voloch 200

In our case we consider X embedded in PG(5,p) by embedding PG(2,p) in PG(5,p)by the Veronese embedding (in projective coordinates $(x:y:z) \rightarrow (xy:xz:yz:x^2:z)$ $y^2:z^2$)). The degree of X will be then $2n\leq p,$ by hypothesis and X will not be contained in any hyperplane since $n \geq 3$. Then we can apply the above inequality with $m=2n,\,r=5,\,q=p.$ The lemma will then follow upon noticing that

$$g \le \frac{(n-1)(n-2)}{2} - d$$
, so $(g-1) \le \frac{n(n-3)}{2} - d$.

Remark: The result of this paper can be used to improve on several results on Finite Geometry in a fairly easy way (see, e.g. [2], [5], [6]).

REFERENCES

- [1] Hirschfeld, J.W.P.: Projective Geometries over finite fields, Clarendon Press, Ox-
- [2] Hirschfeld, J.W.P.: Caps in elliptic quadrics, Ann. of Discrete Math. 18 (1983),
- [3] Segre, B.: Introduction to Galois geometries, Atti Accad. Nac. Lincei Mem. 8,
- [4] Stöhr, K.O. and Voloch, J.F.: Weierstrass points and curves over finite fields, Proc. London Math. Soc. (3) 52 (1985) 1–19.
- [5] Thas, J.A.: Normal rational curves and k-arcs in Galois spaces. Rend. Mat. 1
- [6] Tallini Scafatti, M.: Graphic curves on a Galois plane. Atti del Convegno di Geometria Combinatoria e sua Applicazioni (Univ. de Perugia, 1970) Universita de Perugia (1971), 413-419.

José Felipe Voloch

Instituto de Matemática Pura e Aplicada

Estrada Dona Castorina, 110

Rio de Janeiro - 22.460 - Brazil

(Eingegangen am 16. Juli 1986)