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Let K be a field and G a finite rank subgroup of the multiplicative group K∗ ×K∗.

Recently there has been a lot of attention devoted to the equation ax+ by = 1, for given

a, b ∈ K∗, where the solutions (x, y) are sought among the elements of G; in the case

that K has characteristic zero. In particular, Schlickewei ([S]) proved that the number of

solutions could be bounded solely in terms of the rank of G and the current best bound

is due to Beukers and Schlickewei ([BS]), where they prove that ax + by = 1 has at most

28r+16 solutions (x, y) ∈ G, where r is the rank of G. See also [B].

The purpose of this note is to prove an analogous result in positive characteristic.

We note that the techniques of the aforementioned authors do not work in our situation.

The first thing to notice is that, contrary to the characteristic zero situation, the equation

ax + by = 1 can have infinitely many solutions. We will discuss this below. We will give

a condition for the number of solutions to be finite and give a bound for the number of

solutions in terms of the rank of the group when the condition is satisfied. Part of our

approach is similar to that of [AV], [BV] with the geometry being simpler but, since the

varieties in question are isotrivial, there are many added complications.

We will study a special case first and then reduce the general case to it. Let K be a

field of characteristic p > 0 finitely generated over its prime subfield. By a result of Baer

[Ba], K has a derivation D such that {x ∈ K | Dx = 0} = Kp. Let us fix a subgroup G of

K∗ ×K∗. We define two equations aix+ biy = 1 to be G-equivalent if (a1/a2, b1/b2) ∈ G.

Clearly there is a bijection between the set of solutions in G of two G-equivalent equations.

We will call an equation ax+ by = 1 G-trivial if (a, b)n ∈ G for some integer n, (n, p) = 1.

If ax+ by = 1 is G-trivial then it is G-equivalent to aqx+ bqy = 1, for some power q of the

characteristic p, that is, (aq, bq) = (a, b)(x1, y1), (x1, y1) ∈ G. If (x0, y0) ∈ G is a solution

to ax + by = 1 then so is (xq0x1, y
q
0y1) and, it easy to see that, if (x0, y0) 6= (xq0x1, y

q
0y1)

then this process will lead to infinitely many solutions. Let us call an equation G-bad
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if it is G-equivalent to an equation with a, b ∈ Kp and G-good otherwise. Finally, let

H = {(x, y) ∈ G | Dx = Dy = 0}, which is a subgroup of G containing Gp.

Lemma 1. If #G/H = pr and ax + by = 1 is G-good, then it has at most pr solutions

(x, y) ∈ G.

Proof: If ax+ by = 1 has more than pr solutions, then it has two solutions (xi, yi), i =

1, 2 in the same class modulo H and, passing to a G-equivalent equation, we may assume it

is the class corresponding to H itself, so Dxi = Dyi = 0, i = 1, 2. However, if ax+ by = 1

and Dx = Dy = 0, differentiation yields xDa + yDb = 0 and the system ax + by =

1, xDa + yDb = 0 has at most one solution in K∗ ×K∗, unless Da = Db = 0, in which

case the equation is G-bad, proving the lemma.

We only need to study G-bad equations. Suppose a, b ∈ Kp, we will call the equation

ax+ by = 1 G-awful if it has a solution (x, y) ∈ G \H.

Lemma 2. If #G/H = pr then there are at most (pr − 1)/(p− 1) G-equivalence classes

of G-awful equations and that each such equation has at most (pr − 1)/(p − 1) solutions

(x, y) ∈ G \H.

Proof: Suppose (x, y) ∈ G\H satisfy ax+by = 1, where a, b ∈ Kp. Then aDx+bDy =

0, so a(Dx/x)x + b(Dy/y)y = 0 and, eliminating by we get ax(1 − (Dx/x)/(Dy/y)) =

1. Now we notice that the map (x, y) 7→ (Dx/x,Dy/y) is a homomorphism from G

to K+ × K+, whose kernel is H and therefore has pr elements in its image. Hence

the quantity (Dx/x)/(Dy/y) takes at most (pr − 1)/(p − 1) values as (x, y) varies in

G \ H. But from the equation ax(1 − (Dx/x)/(Dy/y)) = 1 and its counterpart by(1 −

(Dy/y)/(Dx/x)) = 1 we get that ax + by = 1 is G-equivalent to cx + dy = 1 where

(c, d) = ((1− (Dx/x)/(Dy/y))−1, (1− (Dy/y)/(Dx/x))−1), which proves the first part of

the lemma. For the second part, notice that the above calculation shows that (x, y) is

determined by (Dx/x)/(Dy/y).

Theorem 1. If K is a field of characteristic p > 0, finitely generated over its prime field,

and G is a finitely generated subgroup of K∗ ×K∗ of rank r such that #G/H = pr, then

2



an equation ax + by = 1 has at most pr(pr + p− 2)/(p− 1) solutions (x, y) ∈ G unless it

is G-trivial.

Proof: Note that the hypotheses imply that H = Gp. If ax+ by = 1 is G-good, then

lemma 1 gives the result. If the equation is G-bad but not G-awful then we may assume

a, b ∈ Kp and the equation has as many solutions as a1/px+ b1/py = 1, by extracting p-th

roots. If the new equation is G-good, again we are done. If it is not G awful, we repeat.

So either we will eventually reach a G-awful equation or we will continue indefinitely. If

we reach a G-awful equation, lemma 2 bounds the number of solutions in G \Gp and for

the solutions in Gp, we again extract p-th roots and move on to another equation. We

keep repeating this process. If G-awful equations are encountered in pr + 1 steps, then

by Lemma 2, two of these equations are G-equivalent and this implies (a, b) equivalent

to (aq, bq) for some power q of p, which means it is G-trivial. If G-awful equations are

encountered in at most pr steps and a G-good equation is then reached, we get at most

pr(pr − 1)/(p− 1) + pr = pr(pr + p− 2)/(p− 1) solutions by lemmas 1 and 2.

The remaining possibility is that for all n ≥ 1, the equation ax + by = 1 is G-

equivalent to an equation ap
n

n x + bp
n

n y = 1. By the above (a, b) = (ap
n

n , bp
n

n )(xn, yn), for

some (xn, yn) ∈ G. Lemma 3 below implies that (a, b)n belongs to G for some n ≥ 1. If

p|n, then (a, b)n is in H hence in Gp, since our hypotheses imply H = Gp. So (a, b)n/p

also belongs to G. Proceeding in this fashion we may assume that (n, p) = 1 and then the

equation is G-trivial, completing the proof of the theorem.

Lemma 3. Let K be a field of characteristic p, finitely generated over a finite field, and

G is a finitely generated subgroup of K∗. If a ∈ (K∗)p
n

G for all n ≥ 1 then there exists

m ≥ 1, am ∈ G.

Proof: We proceed by induction on the absolute transcendence degree of K, with the

case of transcendence degree zero being trivial. There exists a subfield F of K such that

K/F is a function field in one variable. Also, we can find a finite set of places S of K/F ,

for which a and the elements of G are in US , the group of S-units of K. Now, US/F
∗ is
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finitely generated, therefore so is B = US/(F
∗G). The image of a in B is, by hypothesis,

in Bpn

for all n ≥ 1 and therefore is in the torsion of B, so there exists m ≥ 1, am ∈ F ∗G.

Writing a = ap
n

n xn, an ∈ K,xn ∈ G, we see that an ∈ US and that the image of an in B is

torsion so, replacing m by a larger integer if necessary, we may assume that amn maps to

zero in B, that is, amn ∈ F ∗G. Since G is finitely generated, it has a subgroup G1 such that

F ∗ ∩ G1 is finite and F ∗G = F ∗G1. Let us write am = bc, amn = bncn, xn = ynzn, where

b, bn, yn ∈ F ∗, c, cn, zn ∈ G1. If d is the order of F ∗∩G1 we can conclude that bd = (bdn)p
n

ydn.

Therefore bd ∈ (F ∗)p
n

(F ∗ ∩G) for all n ≥ 1, so by the induction hypothesis applied to F

we conclude that some power of bd belongs to F ∗ ∩G, hence to G. On the other hand we

have am = bc and c ∈ G, so we conclude that some power of a belongs to G, as desired.

Remark: The lemma still holds for a field of arbitrary characteristic, finitely generated

over its prime field and with pn replaced by any unbounded sequence pn of positive integers.

The proof is essentially the same.

Theorem 2. If K is a field of characteristic p > 0, and G is a subgroup of K∗ ×K∗ with

dimQG ⊗Q = r finite, then an equation ax + by = 1 has at most pr(pr + p − 2)/(p − 1)

solutions (x, y) ∈ G unless (a, b)n ∈ G for some n ≥ 1.

Proof: Suppose that ax + by = 1 has more than pr(pr + p − 2)/(p − 1) solutions

(x, y) ∈ G, then we can replace G by a finitely generated subgroup of G with the same

property. We can also replace K by a subfield, finitely generated over its prime field,

containing the coordinates of the new G and a, b. Finally, at the cost of replacing G by

a group containing G as a subgroup of finite, p-power index, we can assume that the

condition Gp = H is satisfied and we can apply Theorem 1 to get that ax + by = 1 is G-

trivial for the new G, which implies the theorem. (Because of the last step of the reduction

to theorem 1 we cannot guarantee (n, p) = 1).

Remarks: (i) If K is a field complete with respect to a discrete valuation, then the

principal units of K form a Zp-module and there is an analogue of Theorem 2 for subgroups

of finite Zp-rank (or even finite Qp-dimension in the appropriate sense).
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(ii) Theorem 2 is a very special case of the Mordell-Lang conjecture (see, e.g. [AV],[H]).

It is the first instance in which the full division hull of a finitely generated group in

characteristic p > 0 is handled, as opposed to the prime-to-p division hull. The key point

is that the estimate for the number of points on Theorem 1 depends on the rank only. If,

for instance, the estimate of [BV] could be proved for all non-isotrivial curves, instead of

just the ones not defined over Kp, the Mordell-Lang conjecture for curves would follow.

(iii) Of course, if G in Theorem 2 is a divisible group then (a, b)n ∈ G for some n ≥ 1

is the same as (a, b) ∈ G.

We wish to consider a couple of special cases, where more can be said.

First suppose G = {(tn, tm) | n,m ∈ Z}, for some t ∈ K∗, t not a root of unity.

So G is a group of rank two and C. Kang (personal communication) has shown that an

equation ax + by = 1 has at most p2 solutions (x, y) ∈ G, unless it is G-trivial. This

follows from the above and the simple observation that a G-awful equation is G-trivial in

this case. However, much more can be said and we proceed to show that in fact the number

of solutions is at most two. Indeed, if (1, 1), (tn, tm), (tr, ts) are solutions of ax + by = 1

then ∣∣∣∣∣∣∣∣
1 1 1

1 tn tm

1 tr ts

∣∣∣∣∣∣∣∣ = 0.

Therefore tn+s + tm + tr − tm+r − tn − ts = 0. As t is transcendental over Fp we conclude

that the equation in t is identically zero. This can only happen in a finite number of ways.

More precisely, six ways, if p 6= 2 and twelve ways for p = 2. A case-by-case analysis leads

to a contradiction each time. For example, if n+ s = n,m = s, r = m+ r, then s = m = 0

and the only equation having three solutions (1, 1), (tn, 1), (tr, 1) has a = 0, which is not

being considered.

Now let us analyse the case of rank one, i.e., G = {(un, vn) | n ∈ Z}. From lemma

2 we know that there is at most one G-awful equation and this equation has one solution

in G \H, if it exists. So we need only study G-good equations and may assume H = Gp,

so a G-good equation will have at most p solutions, one in each coset of H in G. We can
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actually show that a G-good equation will have at most three solutions, so an equation

ax+ by = 1 with (a, b)n /∈ G for any n ≥ 1, will have at most four solutions. Let us sketch

the argument. Denote by Fnm(X,Y ), for 0 < n < m integers, the determinant∣∣∣∣∣∣∣∣
1 1 1

1 Xn Y n

1 Xm Y m

∣∣∣∣∣∣∣∣ .
Suppose ax+ by = 1 has solutions (1, 1), (un, vn), (um, vm), (ur, vr), where 0 < n < m < r,

and 0, n,m, r are distinct modulo p, then u, v satisfy Fnm(u, v) = Fnr(u, v) = 0. Since G

has rank one, Fp(u, v) is transcendental over Fp, but if the above equations are satisfied,

the transcendence degree of Fp(u, v) over Fp is one. hence it enough to show that the

plane curves given by Fnm(X,Y ) = 0, Fnr(X,Y ) = 0 cannot have a component in common

besides X = Y,X = 1, Y = 1. The reader will verify easily that the curve Fnm(X,Y ) = 0

has n+m− 3 branches at infinity, besides X = Y,X = 1, Y = 1, with expansions

Y = αX + βX−(n−1) + · · · , αm−n = 1, α 6= 1, β = (1− αn)α1−n/(m− n),

Y = α+ βX−(m−n) + · · · , αn = 1, α 6= 1, β = α(αm − 1)/n,

X = α+ βY −(m−n) + · · · , αn = 1, α 6= 1, β = α(αm − 1)/n.

If Fnm(X,Y ) = 0, Fnr(X,Y ) = 0 have a component of the first kind above in common, then

α and β will be the same and, looking at β we get m−n ≡ r−n( mod p), contradicting the

hypothesis. If the component is of the other two kinds, then looking at the exponent of the

second term of the expansion gives m−n = r−n, again a contradiction. The cases where

the exponent in (u, v) of a solution is negative can be handled similarly. Alternatively, the

reader may notice that, if the equation has at least six solutions, then replacing (u, v) by

(u−1, v−1) if necessary, it can be assumed that three of the exponents are positive. Be as it

may, we get a small absolute bound for the number of solutions. It is tempting to ask if a

bound, depending on r but not on p can be given in the general case, like in characteristic

zero.
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