Maps to the symmetric square of an algebraic

curve

Felipe Voloch
Brazilian Algebraic Geometry Seminar

March, 2022

UNIVERSITY OF CANTERBURY

Abstract

For C, D curves and $C^{(2)}$ the symmetric square of C, we give a bound for the number of separable, "non-horizontal" maps
$D \rightarrow C^{(2)}$, under suitable hypotheses.

Joint work with Jen Berg

Setup

- k perfect field, char $k=p>0$.
- C, D curves over k.
- $g=$ genus of C.
- $C^{(2)}$ symmetric square of C.
- J Jacobian of C.
- Look at maps $D \rightarrow C^{(2)}$.

Gauss map

For a non-constant, separable map $f: D \rightarrow J$, we get a map
$D \rightarrow \mathbb{P}^{g-1}$ as follows. Take $P \in D$ and $T_{f(P)} D \subset T_{f(P)} J$.
Translating such subspaces to the tangent space to J at the origin, get $\phi: D \rightarrow \mathbb{P}^{g-1}=\mathbb{P}\left(T_{0} J\right)$.

From $C \subset J$ we recover the canonical embedding $C \subset \mathbb{P}^{g-1}$.

Theorem

Assume that C has no g_{2}^{1}, g_{3}^{1}, nor g_{4}^{1}. The number of maps
$D \rightarrow C^{(2)}$, which are separable but not horizontal, is bounded by
$\left(p^{r}-1\right) /(p-1)$ where F is the Frobenius map $J^{(1 / p)} \rightarrow J$ and

$$
r=\operatorname{dim}_{\mathbb{Z} / p} \operatorname{Mor}(D, J) / F\left(\operatorname{Mor}\left(D, J^{(1 / p)}\right)\right)
$$

(A map $D \rightarrow C^{(2)}$ is called horizontal if it is everywhere tangent to the horizontal curves $P \mapsto P+P_{0}$, with P_{0} fixed.)

Proof I

We recover $f: D \rightarrow C^{(2)}$, as in the theorem from the image of the composition $D \rightarrow C^{(2)} \subset J$ in the set of \mathbb{Z} / p-one-dimensional subspaces of $\operatorname{Mor}(D, J) / F\left(\operatorname{Mor}\left(D, J^{(1 / p)}\right)\right)$. We reconstruct f from the map $\phi: D \rightarrow \mathbb{P}^{g-1}$.
Riemann-Kempf: The image of the tangent plane $T_{P+Q} C^{(2)}$ in \mathbb{P}^{g-1} is the line $\overline{P Q}$.

So $\phi(D)$ is in the secant variety S of the canonical embedding $C \subset \mathbb{P}^{g-1}$.

Proof II

From a point R in $S \backslash C$ we recover uniquely $P, Q \in C$ with $R \in \overline{P Q}$. Namely, if R is in $\overline{P Q}$ and $\overline{P^{\prime} Q^{\prime}}$, these lines are in a plane and $P+Q+P^{\prime}+Q^{\prime}$ is a g_{4}^{1}.
So, if $\phi(D) \not \subset C$, we can recover $f(D) \subset C^{(2)}$ from $\phi(D) \subset S$.
The case $\phi(D) \subset C$ is either the diagonal or a horizontal curve.

Remarks and questions

If C is bielliptic and $\pi: C \rightarrow E$ (E elliptic) is of degree 2 , then fibers of π give $E \rightarrow C^{(2)}$. Composing this map with maps $E \rightarrow E$ (e.g. [n]) gives infinitely many maps $E \rightarrow C^{(2)}$. Note that C has a g_{4}^{1}.
The maps $C \rightarrow C^{(2)}$ given by $P \mapsto P+F^{n}(P), n \geq 1$ give infinitely many horizontal maps, if C / \mathbb{F}_{p}.
Can we prove the finiteness of the set of maps $D \rightarrow C^{(2)}$ as in the theorem in characteristic zero? Can we get an explicit bound?

Muito obrigado! Thank you!

O chope vocês vão ficar devendo.

