Integral points of abelian varieties over function fields of characteristic zero

Alexandru Buium and José Felipe Voloch

This paper studies the question of integral points on affine open subsets of Abelian varieties over function fields of characteristic zero. Siegel [Sie] has shown that an affine algebraic curve of genus at least one defined over a number field, has only finitely many integral points. Lang [L] has proven an analogous result for curves defined over a function field of characteristic zero, not defined over the constant field. For higher dimensions, in the classical case of number fields, Lang has conjectured and Faltings [F] proved that for A an abelian variety over the number field K, if V is an affine open subset of A and S is a finite set of places of K, then the set of S-integral points of V is finite. Faltings has also a quantitative (but non-effective) result. Parshin [P] also obtained a result for function fields of characterisic zero, under the hypothesis that the complement of V does not contain translates of abelian subvarieties of A. In this paper, we remove this hypothesis and also obtain a quantitative result. Our main theorem is a boundedness result for the local height associated to a subvariety of an abelian variety defined over a discrete valuation field with residue characteristic zero; it is a higher dimensional analogue of a result of Manin [M] about elliptic curves. Our method is quite different from those in [M] and [P]; it is based on a differential algebraic argument from [B] plus an argument involving formal groups.

Acknowledgements. The first author wishes to express his gratitude to the Humboldt Foundation for support during 1992-93 and to the University of Essen, Germany, for hospitality.

Assume K is any field and $v: K_a \to (-\infty, \infty]$ is a real valuation on

its algebraic closure. For any projective variety V over K and any closed subscheme $X \subset V$ we dispose of a function $\lambda_v(X,.):V(K_a)\to [0,\infty]$ which satisfies the following property: for any affine open set $U\subset X$ and any system of generators $g_1,...,g_m\in \mathcal{O}(U)$ of the ideal defining $X\cap U$ in U, we may write $\lambda_v(X,P)=\min\{v(g_1(P)),...,v(g_m(P))\}+b(P)$ with b bounded on any bounded subset of $U(K_a)$. The function $\lambda_v(X,.)$ is uniquely determined by the above property up to the addition of a bounded function and is called the local height function associated to X. This notion is developed in detail in [Sil].

Let us fix an algebraically closed ground field k of characteristic zero. All valuations are assumed to be trivial on k. Here are our main results:

Theorem. Assume K is a field extension of k. Let A be an abelian variety over K with K/k trace zero. Let $X \subset A$ be a closed subvariety and let $\Gamma \subset A(K_a)$ be a finite rank subgroup. Let v be a real valuation on K_a which is discrete on K. Then $\lambda_v(X, P)$ is bounded for P in $\Gamma \setminus X$.

Corollary. Assume K is a function field over k. Let A be an abelian variety over K with K/k trace zero. Let $X \subset A$ be an ample divisor. Then for any finite set S of places of K, the set of S-integral points of $A \setminus X$ is finite.

Proof of Corollary: The height h(P), for a S-integral point of $A \setminus X$, is the sum of $\lambda_v(X, P)$ over the elements of S, and it follows that the height is bounded, which proves the corollary.

Remarks. 1) A few comments about terminology. We say that A has K/k trace zero if $A \otimes_K K_a$ contains no abelian subvariety defined over k. We say that Γ is of finite rank if $\Gamma \otimes_{\mathbf{Z}} \mathbf{Q}$ has finite dimension over \mathbf{Q} . So we do not assume that Γ in the Theorem is finitely generated; in particular if we let K in the Theorem be a function field over k, we may take Γ to be the group of division points of A(K) i.e. the group of all points $P \in A(K_a)$ for which there exists a non-zero integer n_P with $n_P P \in A(K)$.

2) What the Theorem says is that there is no sequence in $\Gamma \setminus X$ converging v-adically to X (a sequence P_n in a projective variety is said to converge v-adically to X if $\lambda_v(X, P_n)$ goes to infinity as n goes to infinity.) It is worth recalling here that even if K in the Theorem is v-adically complete, A(K) is not compact and a sequence in A(K) converging v-adically to X may have no subsequence converging to a point of X.

To prove the Theorem we need some preparation. Let F be any field with a real valuation v.

1. We will need to talk about convergence of sequences of F-points of arbitrary (e.g. infinite dimensional) affine schemes. This is somewhat non-standard so we prefer to "recall" the definitions. Let U = Spec R be an arbitrary affine F-scheme. A sequence $P_n \in U(F)$ will be called bounded (or bounded in U if there is any danger of confusion) if there exists a family (f_i) of F-algebra generators of $R = \mathcal{O}(U)$ such that for each i the sequence of real numbers $v(f_i(P_n))$ is bounded from below. If this holds then it is trivial to check that for any $f \in \mathcal{O}(U)$ the sequence $v(f(P_n))$ is bounded from below.

Let $X \subset U$ be a closed subscheme defined by an ideal I. A sequence $P_n \in U(F)$ is said to converge v-adically to X (in U, if there is any danger of confusion) if it is bounded and there exists a family (g_j) of generators of I with the property that for each j, $v(g_j(P_n))$ goes to infinity as n goes to infinity. If this holds then it is trivial to check that for any $g \in I$, $v(g(P_n))$ goes to infinity as n goes to infinity. It is also trivial to check that if P_n converges v-adically to X then it also converges v-adically to X_{red} .

2. Let U be an affine F-scheme and $X,Y \subset U$ closed subschemes. If a sequence $P_n \in U(F)$ coverges v-adically to both X and Y then it converges v-adically to $X \cap Y$.

Let $\pi: U \to U'$ be a morphism of affine F-schemes and let $X \subset U$ and $X' \subset U'$ be closed subschemes such that $\pi(X) \subset X'$ set-theoretically. Let $P_n \in U(F)$ be a sequence converging v-adically to X. Then $\pi(P_n)$ converges v-adically to X'.

3. Now we recall (and give some complements to) a construction done in [B]. Let δ be any derivation on F. Then for any F-scheme V there exists a pair $(jet_{\infty}(V), \tilde{\delta})$ where $jet_{\infty}(V)$ is a V-scheme and $\tilde{\delta}$ is a derivation on $\mathcal{O}_{jet_{\infty}(V)}$ prolonging δ , having the following universality property: for any pair (W, ∂) consisting of a V-scheme W and of a derivation ∂ of \mathcal{O}_W which prolongs δ there exists a unique horizontal morphism of V-schemes $W \to jet_{\infty}(V)$. Here horizontal means commuting with the corresponding derivations. Note that $jet_{\infty}(V)$ is a "huge" scheme; e.g. it is always infinite dimensional for V an algebraic variety over F, of positive dimension. If $U \subset V$ is an open subscheme then $jet_{\infty}(U)$ naturally identifies with the inverse image of U in

 $jet_{\infty}(V)$. If G is any algebraic F-group then $jet_{\infty}(G)$ has a natural structure of F-group scheme.

4. It is particularly useful to see how $jet_{\infty}(V)$ looks like in case

$$V = Spec \ F[y_1, ..., y_N]/(g_1, ..., g_m)$$

is an affine algebraic scheme. Indeed it follows from the universality property that we have

$$jet_{\infty}(V) = Spec \ F\{y_1, ..., y_N\}/[g_1, ..., g_m]$$

where $F\{y_1, ..., y_N\}$ is the "ring of δ -polynomials" and $[g_1, ..., g_m]$ is the " δ -ideal generated by $g_1, ..., g_m$ ". Recall that by definition the ring of δ -polynomials is the usual ring of polynomials with coefficients in F in the infinite family of variables (y_{ij}) , $1 \le i \le N$, $j \in \mathbb{N}$ equipped with the unique derivation which prolongs δ and sends each y_{ij} into $y_{i,j+1}$ (call this unique derivation $\tilde{\delta}$). We always identify y_{i0} with y_i ; in particular $g_1, ..., g_m$ are viewed as elements in the ring of δ -polynomials. Now the " δ -ideal generated by $g_1, ..., g_m$ " is by definition the ideal generated by the infinite family $(\tilde{\delta}^j g_p)$, $1 \le p \le m$, $j \in \mathbb{N}$.

The description above shows that if $X \subset V$ is a closed subscheme of an F-variety then $jet_{\infty}(X)$ identifies with a closed horizontal subscheme of $jet_{\infty}(V)$; here horizontal means "whose ideal sheaf is preserved by $\tilde{\delta}$ ".

- 5. Let V be any F-scheme. Then by the universality property, any F-point P of V lifts to an F-point $jet_{\infty}(P)$ of $jet_{\infty}(V)$. Explicitly, if V is as in (4) and P is defined by $y_i \mapsto \alpha_i \in F$ then $jet_{\infty}(P)$ is defined by $y_{ij} \mapsto \delta^j \alpha_i \in F$. Assume U is an affine F-variety and let $f \in \mathcal{O}(U)$ be a regular function. Denote the image of f in $\mathcal{O}(jet_{\infty}(U))$ by the same letter f. We may consider the element $\tilde{\delta}^j f \in \mathcal{O}(jet_{\infty}(U))$ and evaluate it at the F-point $jet_{\infty}(P)$. On the other hand we may evaluate f at P and then take the j-th derivative in F. The description in (4) and the explicit form of $jet_{\infty}(P)$ given above show that what we obtain in both cases is the same: $(\tilde{\delta}^j f)(jet_{\infty}(P)) = \delta^j(f(P))$.
- 6. Assume now δ is a bounded derivation on F, by which we mean that $v(\delta x) \geq v(x)$ for all $x \in F$. Let U be an affine F-variety and $P_n \in U(F)$ a sequence of points.

We claim that if P_n is bounded in U then $jet_{\infty}(P_n)$ is bounded in $jet_{\infty}(U)$. Indeed by the description in (4), $\mathcal{O}(jet_{\infty}(U))$ is generated by elements of the form $\phi_{ij} := \tilde{\delta}^j f_i$ with $f_i \in \mathcal{O}(U)$ and $j \in \mathbb{N}$. By the formula at the end of (5) we get for each i and j:

$$v(\phi_{ij}(jet_{\infty}(P_n))) = v(\delta^j(f_i(P_n))) \ge v(f_i(P_n))$$

and our claim is proved.

We also claim that if $X \subset U$ is a closed subscheme and if P_n converges v-adically to X then $jet_{\infty}(P_n)$ converges v-adically to $jet_{\infty}(X)$. Indeed, by (4) again, the ideal defining $jet_{\infty}(X)$ in $jet_{\infty}(U)$ is generated by elements of the form $\psi_{ij} := \tilde{\delta}^j g_i$ with g_i in the ideal defining X and we conclude exactly as above.

The next result is an "approximation analogue" of Lang's conjecture on intersections of subvarieties of abelian varieties with finite rank subgroups. A similar result was also obtained by E. Hrushovski, (personal communication) using different methods.

Proposition 7. Let F be an algebraically closed extension of k, v a real valuation on F, and δ a bounded derivation on F whose field of constants is k (i.e. $Ker \delta = k$). Let A be an abelian variety over F with F/k trace zero, let $X \subset A$ be a closed subvariety and $\Gamma \subset A(F)$ a finite rank subgroup. Then there exists in X a finite union Y of translates of abelian subvarieties with the property that any sequence P_n in Γ converging v-adically to X also converges v-adically to Y.

Proof. Consider the scheme $jet_{\infty}(A)$, cf. (3) and let $\pi: jet_{\infty}(A) \to A$ be the canonical projection. Theorem 2 in [B] says that there is a horizontal, irreducible, closed F-subgroup scheme $H \subset jet_{\infty}(A)$ which is of finite type over F such that for any $P \in \Gamma$ we have $jet_{\infty}(P) \in H(F)$. So we dispose of two closed subschemes H and $jet_{\infty}(X)$ in $jet_{\infty}(A)$. Let Z be their scheme-theoretic intersection and let Y be the Zariski closure of $\pi(Z)$ in A. Then Theorem 1 in [B] says that any variety of general type dominated by a component of Y must have its Albanese variety descending to k. This plus our trace hypothesis easily implies (see the last page of [B] for the argument) that Y is a union of translates of abelian subvarieties. Now A can be covered by finitely many affine open sets U_i such that the sequence P_n is a union of subsequences P_{in} , each contained in the corresponding U_i and bounded in U_i . So to prove the Proposition we may assume there is an

open affine subset $U \subset A$ such that $P_n \in \Gamma \cap U(F)$ converges v-adically to $X \cap U$ in U (in the sense of (1)) and we have to check that P_n also converges v-adically to $Y \cap U$ in U. Now by (6), $jet_{\infty}(P_n)$ converges v-adically to $jet_{\infty}(X \cap U) = jet_{\infty}(X) \cap jet_{\infty}(U)$ in $jet_{\infty}(U)$. On the other hand $jet_{\infty}(P_n)$ converges v-adically to $H \cap jet_{\infty}(U)$ (because it is bounded and contained in it). By (2), $jet_{\infty}(P_n)$ converges v-adically to $J \cap jet_{\infty}(U)$. By (2) again, $\pi(jet_{\infty}(P_n)) = P_n$ converges v-adically to $J \cap U$ and we are done.

Actually we proved more. Assume we are in the hypotheses of the Proposition. Let $\Gamma^* \subset A(F)$ be the δ -closure of Γ (cf. [B], p.560 for the definition of " δ -closure".) Then we actually proved that any sequence P_n of points in Γ^* which converges v-adically to X also converges v-adically to Y. This might have some interest in its own because the rank of Γ^* is generally infinite.

Proposition 8. Let L be a complete real valued field with residue characteristic zero. Let G be a commutative analytic group over L. Let $\Gamma \subset G$ be a finite rank subgroup. Then Γ is discrete in the v-adic topology of G.

Proof. We refer to [Se], Chapter 4, for background. For any real $\alpha \geq 0$ let I_{α} be the additive group of all elements of L whose valuation is $\geq \alpha$. Since G contains an open subgroup which is standard (in the sense of [Se], i.e. it is the group of points of a formal group over the valuation ring of L) we may assume G itself is standard. Then G has a filtration $(G_i)_{i\in\mathbb{N}}$ with open subgroups such that G_i/G_{i+1} is isomorphic to the group $(I_i/I_{i+1})^g$, for all $i\in\mathbb{N}$, where g is the dimension of G, and $\bigcap_{i\in\mathbb{N}} G_i = \{0\}$. Assume there exists a sequence of integers $0 < k_1 < k_2 < \ldots$ such that $P_i \in G_{k_i} \setminus G_{k_i+1}$. Then we claim that P_i are \mathbb{Z} -linearly independent in G; this will be a contradiction, and will close our proof. To check the claim assume $n_i P_i = \sum_{j>i} n_j P_j$, $n_i \neq 0$. Then $n_i P_i \in G_{k_{i+1}} \subset G_{k_{i+1}}$. Since $(I_{k_i}/I_{k_i+1})^g$ is torsion free, it follows that $P_i \in G_{k_i+1}$, a contradiction, and we are done.

9. Proof of the Theorem. Embed K into its v-adic completion $k_1((t))$, where k_1 is the residue field, t is some variable and v on K is the restriction of the valuation v_t = "order of series in t". There exists a K-embedding of valued fields $(K_a, v) \subset (k_{1a}((t))_a, v_t)$; note that $k_{1a}((t))_a = \bigcup_{q \in \mathbb{N}} k_{1a}((t^{1/q}))$. Now countably many series in $k_{1a}((t))_a$ are enough to define our data A, X, Γ so

these data are defined over $k_2((t))_a$, where k_2 is some countably generated extension of k contained in k_{1a} . We may embed k_2 over k into $k((s))_a = \bigcup_{p \in \mathbb{N}} k((s^{1/p}))$ where s is a new variable. We get an embedding $k_2((t))_a \subset F := k((s))_a((t))_a$. Then F is an algebraically closed real valued field (with valuation v_t). Consider on F the bounded derivation $\delta := s^2 \partial_s + t \partial_t$ where $\partial_s := \partial/\partial s$, $\partial_t := \partial/\partial t$. We claim that $Ker \delta = k$. Indeed if $\delta f = 0$ for some series $f = \sum f_n t^{n/q} \in F$, $f_n \in k((s^{1/p_n}))$, then for any n such that $f_n \neq 0$ we get $s^2(f_n^{-1}\partial_s f_n) = -n/q$. Let $v_s : k((s))_a^* \to \mathbf{Q}$ be the valuation defined by "order of series in s". Since $v_s(f_n^{-1}\partial_s f_n) \geq -1$, we must have n = 0. So we must have $f = f_0$ and $\partial f_0/\partial s = 0$, hence $f \in k$ and our claim is proved.

Take now any sequence P_n in $\Gamma \setminus X$. We claim that P_n cannot converge v-adically to X, and this will close the proof of the Theorem. Assume it does. Then the same will hold over $k_{1a}((t))_a$, hence over $k_2((t))_a$, hence over F. By Chow's rigidity theorem the abelian variety A_F over F corresponding to A will still have F/k trace zero. By Proposition 7, P_n converges v_t -adically to a finite union of translates of abelian subvarieties of A_F . Passing to a subsequence we may assume P_n converges v_t -adically to a translate of an abelian subvariety $B \subset A_F$. Let $\pi: A_F \to C := A_F/B$ be the canonical projection. Then $\pi(P_n)$ converges v_t -adically to a point of C. Let E be the completion of E. Then the group E is an analytic group over E and E and E is not discrete in it, this contradicting Proposition 8. Our Theorem is proved.

References

- [B] A. Buium, Intersections in jet spaces and a conjecture of S.Lang, Ann. Math. 136 (1992), 557-567.
- [F] G. Faltings, Diophantine approximation on abelian varieties, Ann. Math. **133** (1991) 549-576.
- [L] S. Lang, Integral points on curves, Publ. Math. IHES 6 (1960), 27-43.

[M] Yu.I.Manin, Rational points on an algebraic curve over function fields, Transl. A.M.S. II, Ser. 50, (1966), 189-234 (Russian original: Izv. Akad. Nauk. U.S.S.R. 1963) and Letter to the editor Izv. Akad. Nauk. U.S.S.R.34 (1990), 465-466.

[Se] J.P.Serre, Lie Algebras and Lie Groups, W.A.Benjamin, N.Y.1965.

[Sil] J. H. Silverman, Arithmetic distance functions and height functions in Diophantine geometry, Math. Ann. 279 (1987) 193-216.

[Sie] C. L. Siegel, Einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys. Math. Kl. 1 (1929) 41-69.

[P] A. N. Parshin, Finiteness theorems and hyperbolic manifolds, in The Grothendieck festschrift, P. Cartier et al., eds., Birkaüser, Basel, 1990, vol. 3,pp 163-178.

Institute of Math. of the Romanian Academy and Univ. of Essen, Germany, (current address: Max Plank Inst. für Math. Gottfried-Claren-Str. 26, 5300 Bonn 3, Germany)

Dept. of Mathematics, Univ. of Texas, Austin, TX 78712, USA e-mail: voloch@math.utexas.edu