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This paper studies the question of integral points on affine open subsets
of Abelian varieties over function fields of characteristic zero. Siegel [Sie]
has shown that an affine algebraic curve of genus at least one defined over a
number field, has only finitely many integral points. Lang [L] has proven an
analogous result for curves defined over a function field of characteristic zero,
not defined over the constant field. For higher dimensions, in the classical
case of number fields, Lang has conjectured and Faltings [F] proved that for
A an abelian variety over the number field K, if V is an affine open subset of
A and S is a finite set of places of K, then the set of S-integral points of V
is finite. Faltings has also a quantitative (but non-effective) result. Parshin
[P] also obtained a result for function fields of characterisic zero, under the
hypothesis that the complement of V does not contain translates of abelian
subvarieties of A. In this paper, we remove this hypothesis and also obtain a
quantitative result. Our main theorem is a boundedness result for the local
height associated to a subvariety of an abelian variety defined over a discrete
valuation field with residue characteristic zero; it is a higher dimensional
analogue of a result of Manin [M] about elliptic curves. Our method is quite
different from those in [M] and [P]; it is based on a differential algebraic
argument from [B] plus an argument involving formal groups.
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Assume K is any field and v : Ka → (−∞,∞] is a real valuation on
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its algebraic closure. For any projective variety V over K and any closed
subscheme X ⊂ V we dispose of a function λv(X, .) : V (Ka)→ [0,∞] which
satisfies the following property: for any affine open set U ⊂ X and any
system of generators g1, ..., gm ∈ O(U) of the ideal defining X ∩ U in U , we
may write λv(X,P ) = min{v(g1(P )), ..., v(gm(P ))}+b(P ) with b bounded on
any bounded subset of U(Ka). The function λv(X, .) is uniquely determined
by the above property up to the addition of a bounded function and is called
the local height function associated to X. This notion is developed in detail
in [Sil].

Let us fix an algebraically closed ground field k of characteristic zero. All
valuations are assumed to be trivial on k. Here are our main results:

Theorem. Assume K is a field extension of k. Let A be an abelian variety
over K with K/k trace zero. Let X ⊂ A be a closed subvariety and let
Γ ⊂ A(Ka) be a finite rank subgroup. Let v be a real valuation on Ka which
is discrete on K. Then λv(X,P ) is bounded for P in Γ \X.

Corollary. Assume K is a function field over k. Let A be an abelian variety
over K with K/k trace zero. Let X ⊂ A be an ample divisor. Then for any
finite set S of places of K, the set of S-integral points of A \X is finite.

Proof of Corollary: The height h(P ), for a S-integral point of A\X, is
the sum of λv(X,P ) over the elements of S, and it follows that the height is
bounded, which proves the corollary.

Remarks. 1) A few comments about terminology. We say that A has K/k
trace zero if A⊗K Ka contains no abelian subvariety defined over k. We say
that Γ is of finite rank if Γ⊗Z Q has finite dimension over Q. So we do not
assume that Γ in the Theorem is finitely generated; in particular if we let K
in the Theorem be a function field over k, we may take Γ to be the group
of division points of A(K) i.e. the group of all points P ∈ A(Ka) for which
there exists a non-zero integer nP with nPP ∈ A(K).

2) What the Theorem says is that there is no sequence in Γ\X converging
v−adically to X (a sequence Pn in a projective variety is said to converge
v−adically to X if λv(X,Pn) goes to infinity as n goes to infinity.) It is worth
recalling here that even if K in the Theorem is v−adically complete, A(K) is
not compact and a sequence in A(K) converging v−adically to X may have
no subsequence converging to a point of X.
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To prove the Theorem we need some preparation. Let F be any field with
a real valuation v.

1. We will need to talk about convergence of sequences of F−points of
arbitrary (e.g. infinite dimensional) affine schemes. This is somewhat non-
standard so we prefer to “recall” the definitions. Let U = Spec R be an
arbitrary affine F−scheme. A sequence Pn ∈ U(F ) will be called bounded
(or bounded in U if there is any danger of confusion) if there exists a family
(fi) of F−algebra generators of R = O(U) such that for each i the sequence
of real numbers v(fi(Pn)) is bounded from below. If this holds then it is
trivial to check that for any f ∈ O(U) the sequence v(f(Pn)) is bounded
from below.

Let X ⊂ U be a closed subscheme defined by an ideal I. A sequence
Pn ∈ U(F ) is said to converge v−adically to X (in U , if there is any danger
of confusion) if it is bounded and there exists a family (gj) of generators of
I with the property that for each j, v(gj(Pn)) goes to infinity as n goes to
infinity. If this holds then it is trivial to check that for any g ∈ I, v(g(Pn))
goes to infinity as n goes to infinity. It is also trivial to check that if Pn
converges v−adically to X then it also converges v−adically to Xred.

2. Let U be an affine F−scheme and X, Y ⊂ U closed subschemes. If a
sequence Pn ∈ U(F ) coverges v−adically to both X and Y then it converges
v−adically to X ∩ Y .

Let π : U → U ′ be a morphism of affine F−schemes and let X ⊂ U and
X ′ ⊂ U ′ be closed subschemes such that π(X) ⊂ X ′ set-theoretically. Let
Pn ∈ U(F ) be a sequence converging v−adically to X. Then π(Pn) converges
v−adically to X ′.

3. Now we recall (and give some complements to) a construction done in [B].
Let δ be any derivation on F . Then for any F−scheme V there exists a pair
(jet∞(V ), δ̃) where jet∞(V ) is a V−scheme and δ̃ is a derivation on Ojet∞(V )

prolonging δ, having the following universality property: for any pair (W,∂)
consisting of a V−scheme W and of a derivation ∂ of OW which prolongs
δ there exists a unique horizontal morphism of V−schemes W → jet∞(V ).
Here horizontal means commuting with the corresponding derivations. Note
that jet∞(V ) is a “huge” scheme; e.g. it is always infinite dimensional for
V an algebraic variety over F , of positive dimension. If U ⊂ V is an open
subscheme then jet∞(U) naturally identifies with the inverse image of U in
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jet∞(V ). If G is any algebraic F−group then jet∞(G) has a natural structure
of F−group scheme.

4. It is particularly useful to see how jet∞(V ) looks like in case

V = Spec F [y1, ..., yN ]/(g1, ..., gm)

is an affine algebraic scheme. Indeed it follows from the universality property
that we have

jet∞(V ) = Spec F{y1, ..., yN}/[g1, ..., gm]

where F{y1, ..., yN} is the “ring of δ−polynomials” and [g1, ..., gm] is the
“δ−ideal generated by g1, ..., gm”. Recall that by definition the ring of
δ−polynomials is the usual ring of polynomials with coefficients in F in the
infinite family of variables (yij), 1 ≤ i ≤ N, j ∈ N equipped with the
unique derivation which prolongs δ and sends each yij into yi,j+1 (call this
unique derivation δ̃). We always identify yi0 with yi; in particular g1, ..., gm
are viewed as elements in the ring of δ−polynomials. Now the “δ−ideal gen-
erated by g1, ..., gm” is by definition the ideal generated by the infinite family
(δ̃jgp), 1 ≤ p ≤ m, j ∈ N.

The description above shows that if X ⊂ V is a closed subscheme of
an F−variety then jet∞(X) identifies with a closed horizontal subscheme of
jet∞(V ); here horizontal means “whose ideal sheaf is preserved by δ̃”.

5. Let V be any F−scheme. Then by the universality property, any F−point
P of V lifts to an F−point jet∞(P ) of jet∞(V ). Explicitly, if V is as in (4)
and P is defined by yi 7→ αi ∈ F then jet∞(P ) is defined by yij 7→ δjαi ∈ F .
Assume U is an affine F−variety and let f ∈ O(U) be a regular function.
Denote the image of f in O(jet∞(U)) by the same letter f . We may consider
the element δ̃jf ∈ O(jet∞(U)) and evaluate it at the F−point jet∞(P ). On
the other hand we may evaluate f at P and then take the j−th derivative in
F . The description in (4) and the explicit form of jet∞(P ) given above show
that what we obtain in both cases is the same: (δ̃jf)(jet∞(P )) = δj(f(P )).

6. Assume now δ is a bounded derivation on F , by which we mean that
v(δx) ≥ v(x) for all x ∈ F . Let U be an affine F−variety and Pn ∈ U(F ) a
sequence of points.

We claim that if Pn is bounded in U then jet∞(Pn) is bounded in jet∞(U).
Indeed by the description in (4), O(jet∞(U)) is generated by elements of the
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form φij := δ̃jfi with fi ∈ O(U) and j ∈ N. By the formula at the end of
(5) we get for each i and j:

v(φij(jet∞(Pn))) = v(δj(fi(Pn))) ≥ v(fi(Pn))

and our claim is proved.
We also claim that if X ⊂ U is a closed subscheme and if Pn converges

v−adically to X then jet∞(Pn) converges v−adically to jet∞(X). Indeed, by
(4) again, the ideal defining jet∞(X) in jet∞(U) is generated by elements of
the form ψij := δ̃jgi with gi in the ideal defining X and we conclude exactly
as above.

The next result is an “approximation analogue” of Lang’s conjecture on
intersections of subvarieties of abelian varieties with finite rank subgroups. A
similar result was also obtained by E. Hrushovski, (personal communication)
using different methods.

Proposition 7. Let F be an algebraically closed extension of k, v a real
valuation on F , and δ a bounded derivation on F whose field of constants
is k (i.e. Ker δ = k). Let A be an abelian variety over F with F/k trace
zero, let X ⊂ A be a closed subvariety and Γ ⊂ A(F ) a finite rank subgroup.
Then there exists in X a finite union Y of translates of abelian subvarieties
with the property that any sequence Pn in Γ converging v-adically to X also
converges v−adically to Y .

Proof. Consider the scheme jet∞(A), cf. (3) and let π : jet∞(A) → A
be the canonical projection. Theorem 2 in [B] says that there is a horizon-
tal, irreducible, closed F−subgroup scheme H ⊂ jet∞(A) which is of finite
type over F such that for any P ∈ Γ we have jet∞(P ) ∈ H(F ). So we
dispose of two closed subschemes H and jet∞(X) in jet∞(A). Let Z be
their scheme-theoretic intersection and let Y be the Zariski closure of π(Z)
in A. Then Theorem 1 in [B] says that any variety of general type domi-
nated by a component of Y must have its Albanese variety descending to k.
This plus our trace hypothesis easily implies (see the last page of [B] for the
argument) that Y is a union of translates of abelian subvarieties. Now A
can be covered by finitely many affine open sets Ui such that the sequence
Pn is a union of subsequences Pin, each contained in the corresponding Ui
and bounded in Ui. So to prove the Proposition we may assume there is an
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open affine subset U ⊂ A such that Pn ∈ Γ ∩ U(F ) converges v−adically to
X ∩U in U (in the sense of (1)) and we have to check that Pn also converges
v−adically to Y ∩ U in U . Now by (6), jet∞(Pn) converges v−adically to
jet∞(X ∩U) = jet∞(X)∩ jet∞(U) in jet∞(U). On the other hand jet∞(Pn)
converges v−adically to H ∩ jet∞(U) (because it is bounded and contained
in it). By (2), jet∞(Pn) converges v−adically to Z ∩ jet∞(U). By (2) again,
π(jet∞(Pn)) = Pn converges v−adically to Y ∩ U and we are done.

Actually we proved more. Assume we are in the hypotheses of the Propo-
sition. Let Γ∗ ⊂ A(F ) be the δ−closure of Γ (cf. [B], p.560 for the definition
of “δ−closure”.) Then we actually proved that any sequence Pn of points in
Γ∗ which converges v−adically to X also converges v−adically to Y . This
might have some interest in its own because the rank of Γ∗ is generally infi-
nite.

Proposition 8. Let L be a complete real valued field with residue charac-
teristic zero. Let G be a commutative analytic group over L. Let Γ ⊂ G be
a finite rank subgroup. Then Γ is discrete in the v−adic topology of G.

Proof. We refer to [Se], Chapter 4, for background. For any real α ≥ 0 let
Iα be the additive group of all elements of L whose valuation is ≥ α. Since G
contains an open subgroup which is standard (in the sense of [Se], i.e. it is the
group of points of a formal group over the valuation ring of L) we may assume
G itself is standard. Then G has a filtration (Gi)i∈N with open subgroups
such that Gi/Gi+1 is isomorphic to the group (Ii/Ii+1)

g, for all i ∈ N, where
g is the dimension of G, and

⋂
i∈NGi = {0}. Assume there exists a sequence

Pi in Γ\{0} converging to 0. Then we may assume there exists a sequence
of integers 0 < k1 < k2 < ... such that Pi ∈ Gki\Gki+1. Then we claim
that Pi are Z−linearly independent in G; this will be a contradiction, and
will close our proof. To check the claim assume niPi =

∑
j>i njPj, ni 6= 0.

Then niPi ∈ Gki+1
⊂ Gki+1. Since (Iki/Iki+1)

g is torsion free, it follows that
Pi ∈ Gki+1, a contradiction, and we are done.

9. Proof of the Theorem. Embed K into its v−adic completion k1((t)), where
k1 is the residue field, t is some variable and v on K is the restriction of the
valuation vt =“order of series in t”. There exists a K−embedding of valued
fields (Ka, v) ⊂ (k1a((t))a, vt); note that k1a((t))a =

⋃
q∈N k1a((t

1/q)). Now
countably many series in k1a((t))a are enough to define our data A,X,Γ so
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these data are defined over k2((t))a, where k2 is some countably generated
extension of k contained in k1a. We may embed k2 over k into k((s))a =⋃
p∈N k((s1/p)) where s is a new variable. We get an embedding k2((t))a ⊂

F := k((s))a((t))a. Then F is an algebraically closed real valued field (with
valuation vt). Consider on F the bounded derivation δ := s2∂s + t∂t where
∂s := ∂/∂s, ∂t := ∂/∂t. We claim that Ker δ = k. Indeed if δf = 0 for some
series f =

∑
fnt

n/q ∈ F, fn ∈ k((s1/pn)), then for any n such that fn 6= 0
we get s2(f−1n ∂sfn) = −n/q. Let vs : k((s))∗a → Q be the valuation defined
by “order of series in s”. Since vs(f

−1
n ∂sfn) ≥ −1, we must have n = 0. So

we must have f = f0 and ∂f0/∂s = 0, hence f ∈ k and our claim is proved.
Take now any sequence Pn in Γ\X. We claim that Pn cannot converge

v−adically toX, and this will close the proof of the Theorem. Assume it does.
Then the same will hold over k1a((t))a, hence over k2((t))a, hence over F . By
Chow’s rigidity theorem the abelian variety AF over F corresponding to A
will still have F/k trace zero. By Proposition 7, Pn converges vt−adically
to a finite union of translates of abelian subvarieties of AF . Passing to a
subsequence we may assume Pn converges vt−adically to a translate of an
abelian subvariety B ⊂ AF . Let π : AF → C := AF/B be the canonical
projection. Then π(Pn) converges vt−adically to a point of C. Let L be
the completion of F . Then the group C(L) is an analytic group over L and
π(Γ) is not discrete in it, this contradicting Proposition 8. Our Theorem is
proved.
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