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Reduction of the Manin map modulo p Alexandru Buium and José Felipe Voloch document

For an abelian variety A over a function field K of characteristic zero equipped with a derivation
δ : K → K Manin defined in [Man1], [Man2] a remarkable additive map A(K) → V , where V is a vector
space over K, which plays an important role in diophantine geometry over function fields. (Cf. [Co] for
a “modern” exposition of Manin’s work. Cf. also [B1], [B2] for a different way of introducing this map.)
In the “generic case” this map is a “second order non linear differential operator” and the dimension of V
is the dimension of A. In [V1] the second author defined an analogue of this map in the case of elliptic
curves over function fields of characteristic p. This analogous map turned out to be of order one. In the
higher dimensional case one also has a “characteristic p analogue of the Manin map”, which is implicit in
[BV] . (Cf. also [H] for a different approach.) We shall give the definition of this map below. In [V1] it was
proved, for ordinary elliptic curves, that the “reduction mod p” of the Manin map in characteristic zero is
the “derivative” of the analogue of the Manin map in characteristic p and that the kernel of the analogue
of the Manin map in characteristic p is the group of points divisible by p. In this paper we will generalise
these results to abelian varieties of arbitrary dimension.

The method used in [V1] to prove the first result mentioned above was based on a computation with
Tate curves hence seems to be hard to extend to the higher dimensional case; instead we use the approach
in [B1], [B2]. Note also that since this result is a statement about algebraic groups (in characteristic p > 0),
it makes sense to consider the statement which it implies at the level of Lie algebras; it turns out that the
corresponding Lie algebra statement is (a dual form of) a basic result of Igusa-Manin-Katz [Man3], [K1]
which says, roughly speaking, that the Hasse-Witt matrix satisfies the Picard-Fuchs equation. But of course
there is no way back, in characteristic p > 0, from Lie algebras to algebraic groups; so there is no way back
from the Igusa-Manin-Katz result to our result.

On the other hand, we shall prove the generalization of the second result by extending the approach of
[V1] by relating the analogue of the Manin map in characteristic p to the p-descent map. Note also that this
result is an analogue in characteristic p of the Manin-Chai “Theorem of the kernel” [Man1] [Man2], [Ch].

To state our main result let us recall first some general definitions from [B1,2] which lead to a general
concise definition of the “Manin maps” in arbitrary characteristic. Let A be a scheme over a scheme S and
assume we are given a derivation δ on the structure sheaf of S. Then one can form a projective system of
S−schemes (An) for n ≥ −1 with affine transition maps πn and derivations δ = δn : OAn → πn∗OAn+1 as
follows. Set A−1 = S, A0 = A; let δ−1 be induced by δ and define inductively An+1 = Spec (S(ΩAn)/In)
where In is the ideal generated by sections of the form d(π∗n−1f) − δn−1f, f ∈ OAn−1 , while δn is induced
by the Kahler differential d in the obvious way. The schemes An are called the schemes of n−jets of A/S
along the direction δ, or simply the canonical prolongations of A/S. This construction commutes, in the
obvious sense, with “horizontal” base change (S′, δ′)→ (S, δ) (here “horizontal” means “compatible with the
derivations”) and has the following universality property: for any An−scheme Z and any derivation ∂ from
OAn to (the direct image of) OZ prolonging the derivation δn−1 there exists a unique An−scheme morphism
Z → An+1 such that ∂ is induced by δn. We refer to [B2] Part I for details.

Assume now in addition that A/S is a smooth group scheme. Then (An) will be a projective system of
smooth group schemes. Denote by Xn(A) the set of all S−group scheme homomorphisms from An to the
additive group Ga over S. This set has actually a structure of O(S)−submodule of the ring O(An). Moreover
the maps O(An) → O(An+1) induced by the πn’s are injective and will be viewed as inclusions; so we get
induced derivations δ : O(An) → O(An+1) which induce maps δ : Xn(A) → Xn+1(A). The space Xn(A)
was called in [B2] the space of δ−polynomial characters of A of order ≤ n (See [B2], Part I, §6 or Part II,

Introduction. There it was denoted by X
[n]
a (A).) Note that each element ψ of Xn(A) defines a homomorphism

ψ̂ : A(S) → O(S) by the formula ψ̂(P ) = ψS(∇n(P )), P ∈ A(S)whereψS : An(S) → Ga(S) = O(S) is
the map induced by ψ and ∇n(P ) ∈ An(S) stands for the “canonical lifting” of P ([B2], Part I, (3.8)).

These homomorphisms ψ̂ are what we call Manin maps. The components of the classical Manin map in
characteristic zero [Man1] [Man2] as well as the Manin map in characteristic p in [V1] are all of the form ψ̂
above; so studying Manin maps is the same as studying the spaces Xn(A).

Throughout the paper we shall consider the following situation. We start with a discrete valuation ring
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R and we denote by K and K̄ the quotient field and the residue field of R respectively. We assume K has
characteristic zero and K̄ is a function field of one variable over a perfect field of characteristic p > 0. As a
general rule the upper bar will denote the reduction modulo the maximal ideal mR of R; in particular for
any element a ∈ R we denote its image in K̄ by ā. We assume we are given a derivation δ : R → R such
that δ(mR) ⊂ mR (this is automatic if p is tamely ramified in R) and such that δ(R) 6⊂ mR. Then this
derivation will induce a non zero derivation (still denoted by) δ on K̄. (A typical example of this situation
is: R = Z[t](p), δ = ∂/∂t, K = Q(t), K̄ = Fp(t).)

Next we consider an abelian scheme A/R of relative dimension g; let AK/K and Ā/K̄ be the generic and
special fibres respectively and consider the corresponding spaces of δ−polynomial characters Xn(A),Xn(AK),Xn(Ā).
We will make the following two assumptions:

(i) Ā has p−rank g (one also says that Ā is ordinary). Recall that this means that the rank of the
Frobenius endomorphism of H1(Ā,O) equals g (recall that the rank of a p−linear map is the dimension of
the linear span of its image).

(ii) Ā has δ−rank g (cf. [B2], Part I, (6.5)). Recall that this means that the K̄−linear map ρ(δ)∪ :
H0(Ā,Ω1)→ H1(Ā,O) induced by cup product with the Kodaira Spencer class ρ(δ) ∈ H1(Ā, TA) has rank
g, where TA is the tangent bundle of A and ρ : Der K̄ → H1(Ā, TA) is the Kodaira-Spencer map.

Of course (ii) implies that AK itself has δ−rank g (in the analogous sense). So by [B2], Part I, Proposition
(6.6), X1(AK) = 0 and that X2(AK) has dimension g over K. The “classical Manin map in characteristic

zero” in this case is the map (ψ̂1, ..., ψ̂g) : A(K)→ Kg associated to a basis ψ1, ..., ψg of X2(AK).
We have a natural inclusion X2(A) ⊂ X2(AK); elements of X2(AK) which lie in X2(A) will be called

integral. We also have a reduction modulo mR map X2(A) → X2(Ā), ψ 7→ ψ̄sotheintegralelementsψ of
X2(AK) may be reduced modulo mR to get elements ψ̄ ∈ X2(Ā). Finally recall that we have have a map
induced by derivation X1(Ā)→ X2(Ā), φ 7→ δφOurmainresultisthefollowing :

Theorem. There exists an integral basis ψ1, ..., ψg of X2(AK) and elements φ1, ..., φg ∈ X1(Ā) with the
following properties:

Actually, as we shall recall below, there is a natural increasing “filtration by degrees” F dX1(Ā), d ≥ 0
on X1(Ā) (cf. [B2], Part II, Introduction); then we shall prove that F p−1X1(Ā) = 0 and that φ1, ..., φg in
the Theorem may be taken to be a basis of F pX1(Ā).

In what follows we devote ourselves to the proof of the Theorem. In the end of the paper we will
show how to deduce from our Theorem the (dual form of the) Igusa-Manin-Katz theorem by passing to Lie
algebras.

We need a “cocycle description” of the various objects involved; cf. [B3]. Let {Ui} be a finite affine open
cover of A and let θi be derivations of O(Ui) which lift the derivation δ of R. Fix a basis ω1, ..., ωg of the
R−module H0(A,Ω1) and let v1, ..., vg be the dual basis of L(A) =Lie algebra of A/R. We view elements
of L(A) as derivations of OA. Then we may write (1) θj − θi =

∑g
n=1 aijnvnwithaijn ∈ O(Ui ∩ Uj).

Then the aijn are cocycles; let en ∈ H1(A,O) be the classes of these cocycles. Since the reduction modulo
mR of the cocycle θj − θi represents the Kodaira Spencer class ρ(δ) ∈ H1(Ā, T ) it follows that the images
ē1, ..., ēg ∈ H1(Ā,O) of the ei’s are a basis of H1(Ā,O) (image of ω̄1, ..., ω̄g ∈ H0(Ā,Ω1) via the map
ρ(δ) : H0(Ā,Ω1)→ H1(Ā,O)) hence e1, ..., eg form a basis of H1(A,O).

Now our choice of a basis for the tangent bundle of Ui and of the lifting θi provides an Ui−isomorphism
σi : U1

i → Ui × Spec R[x1, ..., xg]suchthatthederivationδ : O(Ui) → O(U1
i ) corresponds to the derivation

(2) δi : O(Ui) → O(Ui)[x1, ..., xg], δi = θi +
∑g
n=1 xnvnItfollowsfrom[B2], PartI, (2.4)thatA1 is the

universal vectorial extension of A by Gg
a (actually in [B2] one assumes a ground field rather than a ground

discrete valuation ring, but all arguments go through). Then the isomorphisms σi are Gg
a−equivariant where

Gg
a acts on the affine space Spec R[x1, ..., xg] by translations on the affine coordinates. Setting xin := σ∗i xn
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we get from (1) and (2) that (3) aijn = xin − xjnintheringO(U1
ij), Uij := Ui ∩ Uj . Applying δ we get

(4) δaijn = δxin − δxjnintheringO(U2
ij).

Reducing the isomorphisms σi modulomR we get isomorphisms σ̄i : Ū1
i → Ūi×Spec K̄[x̄1, ..., x̄g]Thepullbacksofx̄1, ..., x̄g

via σ̄i restricted to L(Ā) = ker(Ā1 → Ā) will be affine maps whose associated linear maps are ω̄1, ..., ω̄g.
Now the rings O(Ūi)[x̄1, ..., x̄g] have a natural filtration by degrees (the d−piece of the filtration being the
space of all polynomials of degree ≤ d). These filtrations induce via σ̄i filtrations on O(Ū1

i ) (the d−th piece
of this filtration is the space of all K̄−linear combinations of e−fold products of elements x̄i1, ..., x̄ig with
e ≤ d.) Clearly these filtrations glue together to give a filtration F dO(Ā1) on O(Ā1) and hence an induced
filtration F dX1(Ā) on X1(Ā). We could introduce similar filtrations on X1(A),X1(AK) but we won’t need
them in what follows. Here are two basic facts about the above introduced filtration.

Lemma 1. F p−1X1(Ā) = 0.

Proof. Let φ ∈ F p−1X1(Ā). Then the restrictions of φ to Ū1
i have the form σ̄∗iHi where Hi = Hi(x̄1, ..., x̄g)

are polynomials of degree ≤ p−1 with coefficients in O(Ūi). By the Gg
a−equivariance of σi, Hi must have the

form Hi = hi+
∑
m≥0

∑g
n=1 hinmx̄

pm

n wherehi, hinm ∈ O(Ūi). Since we are looking at the F p−1−piece of the

filtration we must have hinm = 0 for m ≥ 1. The conditions (σ̄∗j )−1σ̄∗iHi = Hj give (5) hi+
∑g
n=1 hin0(x̄n+

āijn) = hj+
∑g
n=1 hjn0x̄nThisimpliesthat(hin0)i glue together to give an element kn ∈ O(Ā) = K̄. Then (5)

further implies that
∑g
n=1 knāijn = hj−hiPassingtocohomologyclassesonegets

∑g
n=1 knēn = 0 in H1(Ā,O)

so we get kn = 0 for all n. So Hi = hi for all i. Again the hi glue together to give an element in K̄ which
must be 0 hence φ = 0 and we are done.

Lemma 2. dimF pX1(Ā) = g.

Proof. Firstly, we construct g linearly independent elements φ1, ..., φg in F pX1(Ā); this construction

will be used later. By the p−rank condition we may write ē
(p)
n =

∑g
m=1 λ̄nmēm, 1 ≤ n ≤ gλnm ∈

R, det(λ̄nm) 6= 0, where the upper (p) means “image under the Frobenius”. The matrix λ̄ = (λ̄nm)
is classically called the Hasse-Witt matrix (corresponding to the basis ē1, ..., ēg). So we may write (6)
āpijn−

∑g
m=1 λ̄nmāijm = āin− ājn, 1 ≤ n ≤ gwhereain ∈ O(Ui). Define (7) φin := x̄pin−

∑g
m=1 λ̄nmx̄im−

āin ∈ O(Ū1
i )Thendueto(6)the(φin)i glue together to give an element φn ∈ O(Ā1). Subtracting for each n an

element µn ∈ R from all the ain’s we may assume φn(0) = 0 for all n. Clearly φ1, ..., φg are K̄−linearly inde-
pendent. Let us check that they are elements of F pX1(Ā); we only have to check that they are additive charac-
ters on Ā1. Let V be the kernel of Ā1 → Ā. We have (8) φn(u+v) = φn(u)+φn(v), u ∈ Ā1, v ∈ V becauseσ̄i
is Gg

a−equivariant and transforms the right hand side of (7) into an “affine polynomial” (i.e. an additive
polynomial plus a term of degree zero). But property (8) immediately implies that φn is additive; indeed for
any fixed u ∈ Ā1 the regular function on Ā1 defined by u 7→ φn(u+ v)− φn(u)− φn(v) vanishes at 0 and is
constant on the fibres of Ā1 → Ā. Since O(Ā) = K̄ the above function is 0, hence φn is additive.

Now, exactly as in Lemma 1, any element φ ∈ F pX1(Ā) is represented by polynomials Hi of the form
Hi = hi+

∑g
n=1 hin0x̄n+

∑g
n=1 hin1x̄

p
nwherehi, hin0, hin1 ∈ O(Ūi). As in Lemma 1 one gets that (hin1)i glue

together to give an element hn1 ∈ K̄. Hence φ−
∑g
n=1 hn1φn ∈ F 1X1(Ā)sobyLemma1φ−

∑g
n=1 hn1φn = 0

and we conclude that φ1, ..., φg generate F pX1(Ā) which concludes the proof of Lemma 2.

Let us make the remark (to be used later) that the two Lemmas above do not depend on the fact that
our characteristic p situation lifts to characteristic zero. In particular they hold if we replace K̄ by a finite
separable extension E of it. (We do not need to assume that the derivation on E lifts to a situation in
characteristic zero.)

Let us come back to the proof of our Theorem. One of the key steps is the following remark: we know
from [B3], Lemma (2.10), p. 73 that the derivation δ of OA into the direct image of OA1 lifts to a derivation
δ̃ of the whole of OA1 , which, via the isomorphisms σi corresponds to derivations δ̃i : O(Ui)[x1, ..., xg] →
O(Ui)[x1, ..., xg]givenbyformulaeoftheformδ̃i = θi +

∑g
n=1 xnvn +

∑g
n=1 Lin(x1, ..., xg)∂∂xnwhereLin are
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polynomials of degree ≤ 1 in x1, ..., xg with coefficients in O(Ui). This result was proved in [B3] for a ground
field rather than for a ground valuation ring but the same arguments go through in our situation. Note that
the existence of the lifting δ̃ is actually a consequence of the Grothendieck-Messing-Mazur theory [MM]; but
the additional information that deg Lin ≤ 1 provided by [B3] will be crucial below !

By the universality property of canonical prolongations, δ̃ induces a section s : A1 → A2 of the projection
π2 : A2 → A1 such that the corresponding map s∗ : O(U2

i )→ O(U1
i ) maps δxin into Lin(xi1, ..., xig). Since

the map s∗ : O(U2
ij) → O(U1

ij) is the identity on O(U1
ij) applying this map to (4) we get (9) δaijn =

bin − bjn, bin = Lin(xi1, ..., xig)

In what follows we shall construct an integral basis ψ1, ..., ψg of X2(A). Let (λnm) be the matrix
appearing in the proof of Lemma 2 and define (10) ψin :=

∑g
m=1 λnm(−δxim + bim) ∈ O(U2

i )By(9)(ψin)i
glue together to give an element ψn ∈ O(A2). Subtracting, for each n, an element νn ∈ R from all of the
bin’s we may assume that ψn(0) = 0 for all n. Clearly ψ1, ..., ψg are K−linearly independent. An argument
similar to the one in the proof of Lemma 2 shows that ψn are additive characters (instead of O(Ā) = K̄ one
uses the fact that O(A1

K) = K).

To complete the proof of the first part of the Theorem we will check that, with φ1, ..., φg as in the proof
of Lemma 2 and with ψ1, ..., ψg as in (10) above we have ψ̄n = δφn for all n. Now ψ̄in− δφin =

∑
λ̄nmb̄im +∑

(δλ̄nm)x̄im + δāinBy(9)wehaveb̄im = L̄im(x̄i1, ..., x̄ig)whileontheotherhandby(2)wehaveδāin = θiāin +∑g
m=1(vmāin)ximsoweseethatψ̄n − δφn ∈ F 1X1(Ā)ByLemma1wegetψ̄n − δφn = 0 which completes the

proof of assertion 1).

To prove the second part of the theorem we will relate the Manin map in characteristic p to the p-
descent map, by the following construction, which generalizes that of [V1]. The isogeny of Ā to itself defined
by “multiplication by p” factors as V ◦ F where F : Ā → Ā(p) is the Frobenius and V : Ā(p) → Ā is
the Verschiebung. Since the latter i s etale, the points of kerV are rational over the separable closure
E of K̄. Clearly, {x ∈ E|δx = 0} = Ep. By Cartier duality kerF is E−isomorphic to µgp, hence (11)
H1(E, kerF ) = H1(E,µgp) = (E∗/(E∗)p)g ↪→ Eg, whereH1 stands for the first flat cohomology group of
group schemes and the last map is induced by the logarithmic derivative E∗ → E, x 7→ δx/x.

Now, the coboundary map in flat cohomology Ā(p)(E)→ H1(E, kerF ) = (E∗/(E∗)p)g can be given by
P 7→ (f1(P ), . . . , fg(P )), where the functions f1, . . . , fg have divisors pD1, . . . , pDg, such that D1, . . . , Dg

form a basis for the p-torsion of the Picard variety of Ā(p). Indeed, given such a divisor Di, we get a map
from Z/pZ to the p-torsion of the Picard variety of Ā(p) and, by duality, a map from kerF to µp. Also
fi ◦ [p] = gpi for some function gi and the map H1(E, kerF )→ (E∗/(E∗)p)g is given by associating the torsor
F−1(P ) of kerF to the torsor gi(F

−1(P )) of µp and, clearly, this torsor corresponds to fi(P ).
Therefore the map β : Ā(p)(E)→ Eg, obtained by composing the coboundary map with the logarithmic

derivative (see (11)), is given by δ-polynomial characters of order 1 and degree 1. Also, by construction the
kernel of β is F (Ā(E)). Now, the proof of the proposition in section 4 of [V2] shows that the matrix formed
by the images of an Fp-basis of kerV in (E∗/(E∗)p)g is essentially the matrix of the Serre-Tate parameters of
Ā (modulo p-th powers) at any place of K̄ of good, ordinary, reduction for Ā. Also, a theorem of Katz ([K2])
shows that its image in Eg is the matrix of the cup-product with the Kodaira-Spencer class and therefore,
is of maximal rank. (This argument is given in detail in [V2]). Let ℘ : Eg → Eg be an additive polynomial
map whose kernel is the image of kerV ; then ℘ is clearly of degree p. We now define µ : Ā(E) → Eg by
µ(P ) = ℘(β(Q)), where Q ∈ Ā(p)(E) is such that V (Q) = P . It is clear that the definition is independent of
the choice of Q and is given by δ-polynomial characters of order 1 and degree p on Ā. By Lemma 2 (and the
remark after it) the components of µ are defined by E−linear combinations of φ1, ..., φg. Let us show that
the kernel of µ is pĀ(E). Suppose µ(P ) = 0, then after changing Q by an element of kerV , we get β(Q) = 0,
so Q = F (R), R ∈ Ā(E), hence P = V (F (R)) = pR.

Now the condition kerµ = pĀ(E) implies that {P ∈ Ā(E)|φ̂1(P ) = . . . = φ̂g(P ) = 0} = pĀ(E).Indeed, sincetheφi’s
are a basis of F pX1(Ā), the left hand side contains kerµ = pĀ(E) and the reverse inclusion is clear since E has

characteristic p. We get that {P ∈ Ā(K̄)|φ̂1(P ) = . . . = φ̂g(P ) = 0} = pĀ(E) ∩ Ā(K̄)WeclaimthatpĀ(E) ∩
Ā(K̄) = pĀ(K̄)whichwillclosetheproof.Tochecktheclaimnotethatthepropositionin[V 2]saysthatĀ(E) has no
point of order p; so if P = pQ ∈ Ā(K̄) for some Q ∈ Ā(E), then for all σ ∈ Gal(E/K̄) we have p(Q−Qσ) = 0
hence Q−Qσ = 0 so Q ∈ Ā(K̄) and we are done.
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Remark. Assume we are in the hypotheses of the Theorem. Let∇δ : H1
DR(A)→ H1

DR(A)betheadditivemapobtainedbyevaluatingtheGauss−
Maninconnectionatδ and view H0(A,Ω1) as embedded into H1

DR(A). Let ω = (ω1, ..., ωg) be an R−basis
of H0(A,Ω1) and write the Picard Fuchs equation: (12) ∇2

δω + α∇δω + βω = 0whereα, β are g × g
matrices with entries in R. Moreover let ē1, ..., ēg be the image of ω̄1, ..., ω̄g ∈ H0(Ā,Ω1) via the isomorphism
ρ(δ) : H0(Ā,Ω1) → H1(Ā,O) given by the cup product with the Kodaira Spencer class ρ(δ) ∈ H1(Ā, T )
and consider the Hasse-Witt matrix λ̄ with respect to the basis ē, in other words write ē(p) = λ̄ē. Then
we claim that λ̄ satisfies the following “dual Picard-Fuchs equation”: (13) δ2λ̄ − (δλ̄)ᾱ + λ̄(β̄ − δᾱ) =
0TheaboveclaimisadualversionoftheIgusa−Manin−Katztheoremreferredtointhebeginningofthepaper.

To check the claim above, let ψ1, ..., ψg be as in the Theorem and let us borrow the notations from the
proof of the Theorem. The ψi’s define an R−group scheme homomorphism ψ : A2 → Gg

a. We have induced
maps H0(A,Ω1) = L(A)◦ ⊂ L(A2)◦ψ∗←L(Gg

a)◦ = Rgwheretheupper◦ means “dual”. Recall from [B2] Part
III that one has natural induced derivations L(A)◦δ→L(A1)◦δ→L(A2)◦δ→...andthatthereexistsabasisz=(z1, ..., zg)
of Rg such that ψ∗z = δ2ω + αδω + βωwhereα, β are the matrices appearing in (11). (Recall that this was
deduced in [B2], Part III, (3.6) as a consequence of the Grothendieck-Messing-Mazur theory [MM], cf. also
[B3], Chapter 2). Moreover ω, δω form a basis of L(A1)◦ while ω, δω, δ2ω form a basis of L(A2)◦.

Now the Theorem implies that the map ψ̄∗ : K̄g → L(Ā2)◦ agrees with the composition K̄gφ∗→L(Ā1)◦δ→L(Ā2)◦onthestandardbasisε =
((1, 0, ..., 0), (0, 1, ..., 0), ...) of K̄g. Write z̄ = ξ̄ε where ξ is an invertible matrix with entries in R and write
φ∗ε = γ̄δω̄ + η̄ω̄ where γ, η are g × g matrices with entries in R. By (7) we have γ̄ = −λ̄. We get arraylll
δ2ω̄ + ᾱδω̄ + β̄ω̄ = ψ∗(ξ̄ε) = ξ̄ψ∗ε = ξ̄δφ∗ε
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