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Abstract. We construct certain error-correcting codes over finite rings and
estimate their parameters. These codes are constructed using plane curves and

the estimates for their parameters rely on constructing “lifts” of these curves
and then estimating the size of certain exponential sums.

1. Introduction

The purpose of this paper is to construct certain error-correcting codes over finite
rings and estimate their parameters. For this purpose, we need to develop some
tools; notably an estimate for the dimension of trace codes over rings (generalizing
work of van der Vlugt over fields) and some results on lifts of affine curves from
fields of characteristic p to Witt vectors of length two. This work partly generalizes
our previous work on elliptic curves, although there are some differences which we
will point out below.

A code is a subset of An, where A is a finite set (called the alphabet). Usually
A is just the field of two elements and, in this case, one speaks of binary codes.
For various reasons one often restricts attention to linear codes, which are linear
subspaces of An when A is a field. However, there are non-linear binary codes (such
as the Nordstrom-Robinson, Kerdock, and Preparata codes) that outperform linear
codes for certain parameters. These codes have remained somewhat mysterious
until recently when Hammons, et al. ([3]) discovered that one can obtain these
codes from linear codes over rings (i.e. submodules of An, A a ring) via the Gray
mapping, which we recall below.

In a different vein, over the last decade there has been a lot of interest in linear
codes coming from algebraic curves over finite fields. The construction of such codes
was first proposed by Goppa in [2]; see [10] or [11] for instance. In [12], it is proven
that for q ≥ 49 a square, there exist sequences of codes over the finite field with q
elements which give asymptotically the best known linear codes over these fields.
The second author has extended Goppa’s construction to curves over finite rings
and shown, for instance, that the Nordstrom-Robinson code can be obtained from
her construction followed by the Gray mapping; see [17] and [18]. While most of
the parameters for these new codes were estimated in the above papers, the crucial
parameter needed to describe the error-correcting capability of the images of these
codes under the Gray mapping was still lacking.

In our previous work ([14], [15]) we used elliptic curves which were canonical
lifts of their reductions and we were able to estimate the minimum distance in that
case. Curves of higher genus unfortunately do not have canonical lifts so we need to
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proceed differently. We find that on an open set there are lifts which are sufficiently
good so we use those. For these codes, the missing parameter can be estimated and
we do so. We also obtain finer estimates on the dimension of the trace codes.

The work of Mochizuki [7], indicates that there might be a general framework
for working with lifts for curves of higher genus, with the proviso that the lift of
points is only on certain open subsets of the curve. Mochizuki defines an analogue
of ordinary curves and of canonical liftings for such. It remains to be seen if the
corresponding lift of points is of small degree, which is essential for applications.

2. Codes over Witt rings

In this section we recall the definition of the ring of Witt vectors over a finite
field and prove some general results about such rings and codes over them. The
two theorems in this section are both generalizations of results which are known in
the finite field case. We believe that Theorem 2.3 is known, but we include it for
lack of a good reference. In contrast, Theorem 2.2 is new, having only appeared
previously in the second author’s thesis ([16]).

Recall the definitions of the Frobenius and trace maps for finite fields: Let p be
prime and consider the field extension Fpm/Fp. Then the Frobenius automorphism
σ : Fpm → Fpm is the element of Gal(Fpm/Fp) given by σ(x) = xp, and the trace
map tr : Fpm → Fp is given by tr(x) = x + σ(x) + σ2(x) + · · · + σm−1(x) =

x+ xp + xp
2

+ · · ·+ xp
m−1

.
We will be working mostly with rings of Witt vectors or Witt rings, for short.

See, e.g., [9] for an introduction to Witt rings. Let us just point that the Witt ring
Wl(Fpm) is, as a set, Flpm , and the operations are defined by

(x0, x1, . . . , xl−1) + (y0, y1, . . . , yl−1) = (S0, S1, . . . , Sl−1),

(x0, x1, . . . , xl−1)(y0, y1, . . . , yl−1) = (P0, P1, . . . , Pl−1),

where the Si’s and Pi’s are certain polynomials with integer coefficients in x0,
x1, . . . , xl−1, y0, y1, . . . , yl−1. In particular, we have

(x0, x1) + (y0, y1) = (x0 + y0, x1 + y1 +
1

p
((x0 + y0)p − xp0 − y

p
0))

(x0, x1)(y0, y1) = (x0y0, x
p
0y1 + yp0x1)

The ring Wl(Fpm) is a local ring with maximal ideal generated by p, satisfying
pl = 0 and having residue field Fpm . It is easy to check that the Galois Ring
GR(pl,m) of degree m over Z/plZ is isomorphic to the ring Wl(Fpm) of length l
Witt vectors over the field with pm elements. In particular, Wl(Fp) ∼= Z/plZ.

One can now define the Frobenius and trace maps for a Witt ring Wl(Fpm).
Let x = (x0, x1, . . . , xl−1) ∈ Wl(Fpm). The Frobenius F : Wl(Fpm) → Wl(Fpm)
is given by F (x) = F ((x0, x1, . . . , xl−1)) = (xp0, x

p
1, . . . , x

p
l−1). The trace map T :

Wl(Fpm)→Wl(Fp) ∼= Z/plZ is given by T (x) = x + F (x) + · · ·+ Fm−1(x).
It is a standard fact that for any x = (x0, x1, . . . , xl−1) ∈ Wl(Fpm), we have

px = (0, xp0, x
p
1, . . . , x

p
l−2) and x·(y0, 0, . . . , 0) = (x0y0, x1y

p
0 , . . . , xl−1y

pl−1

0 ) for every
y0 ∈ Fpm .

We would like to prove a version of Delsarte’s Theorem for Witt rings. The usual
statement of this theorem goes as follows: Let C be a linear code over Fqm . Denote
by tr(C) the linear code over Fq obtained by applying the trace map tr : Fqm → Fq
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coordinatewise to the codewords of C. Denote by C|Fq the subcode of C consisting
of all codewords whose coordinates all lie in Fq. Then

(C|Fq )⊥ = tr(C⊥).

In order prove our version of this theorem, we must check that several of the
standard properties of σ and tr still hold for F and T . This checking is done in the
following technical lemma.

Lemma 2.1. Let π : Wl(Fpm) → Fpm be the natural projection, and let σ, tr, F ,
and T be as above. Then

(1) π ◦ F = σ ◦ π and π ◦ T = tr ◦ π.
(2) The map T : Wl(Fpm)→Wl(Fp) = Z/plZ is onto.
(3) There is some x0 ∈ Fpm with T ((x0, 0, . . . , 0)) 6≡ 0 (mod p).
(4) Let x be a nonzero element of Wl(Fpm). Then there is some y ∈ Wl(Fpm)

with T (xy) 6= 0.

Proof. Part (1) is straight forward calculation. Consider an arbitrary element x =
(x0, x1, . . . , xl−1) ∈ Wl(Fpm). We have π ◦ F (x) = π((xp0, x

p
1, . . . , x

p
l−1)) = xp0 =

σ ◦ π(x) and π ◦ T (x) = π(x + F (x) + · · · + Fm−1(x)) = x0 + xp0 + · · · + xp
m−1

0 =
tr(x0) = tr ◦ π(x).

For (2), first note that it is well known that tr : Fpm → Fp is onto (see, for
example, [10]). Since π is onto, we see that π ◦ T = tr ◦ π is onto. If T is not
onto, then its image is contained in a Z/plZ-submodule of Z/plZ, i.e., an ideal.
Since Z/plZ is local with maximal ideal (p), we have T (Wl(Fpm)) ⊂ pZ/plZ, which
implies π ◦ T = 0, contradicting (1).

Now suppose that (3) fails, and let x be any element of Wl(Fpm). We can write
x = (x0, 0, . . . , 0) + py for some y ∈ Wl(Fpm). Then T (x) = T ((x0, 0, . . . , 0)) +
pT (y) ∈ pZ/plZ. Since x was arbitrary, this contradicts (2) above.

Finally, to see why (4) is true, write x = (x0, x1, . . . , xl−1) and let i be minimal
with xi 6= 0. Then x = pi((σ−i(xi), 0, . . . , 0) + px′) for some x′ ∈Wl(Fpm). By (3),
there is some y0 ∈ Fpm such that π(T ((σ−i(xi)y0, 0, . . . , 0))) 6= 0. But then

T (x · (y0, 0, . . . , 0)) = T (pi((σ−i(xi)yi, 0, . . . , 0) + px′ · (y0, . . . , 0)))

= piT (σ−i(xi)y0, 0, . . . , 0) + pi+1T (x′ · (y0, 0, . . . , 0)).

Since this is nonzero modulo pi+1, it is nonzero. �

We are now equipped to prove a version of Delsarte’s theorem for codes over
Witt rings.

Theorem 2.2. Let C be any linear code over Wl(Fpm) and let C⊥ be the dual code
of C. Write C|Z/plZ for the subcode C ∩ (Z/plZ)n of C. Then

(C|Z/plZ)⊥ = T (C⊥).

Proof. (following [10]) First we show T (C⊥) ⊂ (C|Z/plZ)⊥. For this, it is enough to
show that c · T (a) = 0 for every c = (c1, . . . , cn) ∈ C|Z/plZ and a = (a1, . . . , an) ∈
C⊥. But

c · T (a) =

n∑
i=1

ciT (ai) = T (
∑

ciai) = T (c · a) = T (0) = 0.
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To see that (C|Z/plZ)⊥ ⊂ T (C⊥), it is enough to show that (T (C⊥))⊥ ⊂ C|Z/plZ.

Suppose not. Then for some u ∈ (T (C⊥))⊥, u 6∈ C. Hence there is some v ∈ C⊥
with u · v 6= 0. By Lemma 2.1(4), there is some x ∈ Wl(Fpm) with T (xu · v) 6= 0.
So we have

0 6= T (xu · v) = T (u · xv) = u · T (xv).

However, xv ∈ C⊥ and so T (xv) ∈ T (C⊥), which means that u · T (xv) = 0, a
contradiction. �

Finally, we would like to point out that the proof of the additive form of Hilbert’s
Theorem 90 as given in [5] goes through for Witt vectors. It is given here for
reference.

Theorem 2.3. (Hilbert’s Theorem 90 for Witt vectors) Let F : Wl(Fpm)→Wl(Fpm)
be the map (a0, . . . , al−1) 7→ (ap0, . . . , a

p
l−1) and let T : Wl(Fpm) → Wl(Fp) be the

trace mapping, so that T (a) = a+F (a)+· · ·+Fm−1(a). Then for any a ∈Wl(Fpm),
we have T (a) = 0 if and only if a = b− F (b) for some b ∈Wl(Fpm).

Proof. Clearly T (b−F (b)) = 0, so assume a ∈Wl(Fpm) is arbitary with T (a) = 0.
Since the map T is onto by Lemma 2.1(2) above, there is some c ∈ Wl(Fpm) with
T (c) = 1Wl(Fp). Setting

b =

m−2∑
r=0

r∑
i=0

F i(a)F r(c),

it is straightforward to check that a = b− F (b). �

3. Algebraic geometric codes over rings

In [17], the idea of algebraic geometric codes over rings other than fields is
introduced, and foundational results about these codes are proven. In [18], the
methods of [17] are used to explicitly construct the Z/4Z-version of the Nordstrom-
Robinson code as an algebraic geometric code. In order to construct other codes
over Z/4Z with good nonlinear binary shadows, we must first investigate the Lee
and Euclidean weights of these codes. In this section, we recall the definitions and
some results from [17] and explain how the Lee and Euclidean weights of algebraic
geometric codes over rings are related to exponential sums.

Let A be a local Artinian ring with maximal ideal m. We assume that the field
A/m is finite; say A/m = Fq. For example, we could take A = Wl(Fpm), and
then m = (p) and A/m = Fpm . Let X be a curve over A, that is, a connected
irreducible scheme over SpecA which is smooth of relative dimension one. Let
X×SpecA SpecFq = X ⊂ X be the fiber of X over the closed point of SpecA. We
assume X is absolutely irreducible, so that it is the type of curve on which algebraic
geometric codes over Fq are defined. Let Z = {Z1, . . . , Zn} be a set of A-points on
X with distinct specializations P1, . . . , Pn in X.

Recall that in the case of a curve C over a field k, given a (Weil) divisor D on
a curve C, there is a corresponding line bundle OC(D), and we have the k-vector
space of global sections of OC(D).

L(D) = Γ(C,OC(D)) = {f ∈ k(C) | div(f) +D ≥ 0} ∪ {0}.
A similar thing holds in the case of the curve X over A and a Cartier divisor. Thus,
for a Cartier divisor D on X, we define

L(D) = Γ(X,OX(D))
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to be the A-module of global sections of OX(D) on X.
In particular, let G be a (Cartier) divisor on X such that no Pi is in the support of

G, and let L = OX(G) be the corresponding line bundle. For each i, Γ(Zi,L|Zi) '
A, and thinking of elements of L(G) as rational functions on X, we may think of
the composition L(G) → Γ(Zi,L|Zi) → A as evaluation of these functions at Zi.
Summing over all i, we have a map γ : L(G) →

⊕
Γ(Zi,L|Zi) → An, given by

f 7→ (f(Z1), . . . , f(Zn)).

Definition 3.1. Let A, X, Z, L, and γ be as above. Define CA(X,Z,L) to be the
image of γ. CA(X,Z,L) is called the algebraic geometric code over A associated
to X, Z, and L.

The following theorem summarizes some of the main results of [17].

Theorem 3.2. Let X, L, and Z = {Z1, . . . , Zn} be as above. Let g denote the
genus of X, and suppose 2g − 2 < degL < n. Set C = C(X,Z,L). Then C is a
linear code of length n over A, and is free as an A-module. The dimension (rank)
of C is k = degL + 1 − g, and the minimum Hamming distance of C is at least
n− degL.

Remark 3.3. The minimum Hamming distance is obtained by comparing zeros
and poles and the dimension computation is a consequence of the Riemann-Roch
Theorem. These estimates require the assumption 2g−2 < degL < n. The duality
result follows from a generalized version of the Residue Theorem which holds for
Gorenstein rings. See [17] for details.

For applications, one is usually concerned with constructing codes over Z/4Z,
or more generally, over rings of the form Z/plZ, where p is prime and l ≥ 1. We
can use algebraic geometry to construct such codes in two different ways. First,
we can simply set A = Z/plZ in the definition of algebraic geometric codes above.
Alternatively, we can construct an algebraic geometric code over Wl(Fpm) and look
at the associated trace code over Wl(Fp) = Z/plZ.

The Gray map allows us to construct (non-linear) binary codes from codes over
Z/4Z and is defined as follows. Consider the map φ : Z/4Z → F2

2 defined by
φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1), φ(3) = (1, 0). Now we define a map, again
denoted by φ : (Z/4Z)n → F2n

2 , by applying the previous φ to each coordinate.
For linear codes over rings of the form Z/plZ, it is often either the Euclidean

or Lee weight rather than the Hamming weight which is of interest. In particular,
when pl = 4, the Euclidean and Lee weights are closely related, and the Lee weight
gives the Hamming weight of the associated nonlinear binary code.

We begin by defining Euclidean weights. We identify an element x of the cyclic
group Z/plZ with the corresponding plth root of unity via the map

x→ epl(x) := e2πix/pl .

Definition 3.4. The Euclidean distance between x and y is the distance dE(x, y) in
the complex plane between the points epl(x) and epl(y), and the Euclidean weight
of x is the distance wE(x) between epl(x) and epl(0) = 1.
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We have

wE(x) =

√
sin2

(
2πx

pl

)
+ (1− cos

(
2πx

pl

)
)2

=

√
2− 2 cos

(
2πx

pl

)
.

In fact, it is usually the square of the Euclidean weight in which one is interested.
This is given by w2

E(x) = 2 − 2 cos( 2πx
pl

). For vectors x = (x1, . . . , xn) and y =

(y1, . . . , yn) over Z/plZ, we define

d2
E(x,y) =

n∑
j=1

d2
E(xj , yj)

and

w2
E(x) =

n∑
j=1

w2
E(xj)

For example, the squared Euclidean weight of the all-one vector in (Z/plZ)n is
2n(1 − cos(2π/pl)). Using the Taylor expansion of cosine, we get that this is at

least 4n π
2

p2l
(1 + π2

3p2l
). Further, any other nonzero constant vector in (Z/plZ)n has

squared Euclidean weight at least this.
For general vectors, since cos( 2πx

pl
) = Re

(
epl(x)

)
, we have

w2
E(x) =

n∑
j=1

(
2− 2 Re

(
epl(xj)

))
= 2n− 2 Re

n∑
j=1

epl(xj)

≥ 2n− 2

∣∣∣∣∣∣
n∑
j=1

epl(xj)

∣∣∣∣∣∣ .
Hence, to find a lower bound on the minimum Euclidean weight of a linear code

over Z/plZ, it is enough to find an upper bound on the modulus of the exponential
sum

n∑
j=1

epl(xj).

Now consider the case pl = 4. Then e4(0) = 1, e4(1) = i, e4(2) = −1, and
e4(3) = −i. Hence w2

E(0) = 0, w2
E(1) = w2

E(3) = 2, and w2
E(2) = 4. Since the Lee

weight is defined by wL(0) = 0, wL(1) = wL(3) = 1, and wL(2) = 2, we have

wL(x) =
1

2
w2
E(x)

for any x ∈ Z/4Z. From this we see that the Euclidean weight of a codeword over
Z/4Z is twice the Hamming weight of the binary codeword obtained by applying
the Gray map. Notice that the Lee weight of a constant vector in (Z/4Z)n is either
0, n, or 2n.
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Finally, let C be an algebraic geometric code overWl(Fpm), and let T : Wl(Fpm)→
Z/plZ denote the trace map as before. We are interested in the minimum Euclidean
weight of T (C), the trace code of C, which is a linear code over Z/plZ. Codewords
in T (C) are of the form (T (f(Z1)), . . . , T (f(Zn))), where f is a rational function
on some curve X defined over Wl(Fpm) and Z1, . . . , Zn are Wl(Fpm)-points on X.
From the argument above, to find a lower bound for the minimum Euclidean weight
of T (C) it suffices to find an upper bound on the modulus of

n∑
j=1

epl(T (f(Zj))) =

n∑
j=1

e2πiT (f(Zj))/p
l

.

To estimate these kinds of sums, Theorem 3.5 below, which we proved in [14], is
very useful. Let X be a curve over the finite field Fq, where q = pm with p prime.
Denote by K = Fq(X) the function field of X. Let f0, . . . , fl−1 ∈ K and consider
the Witt vector f = (f0, . . . , fl−1) ∈ Wl(K). Let X0 be the maximal affine open
subvariety of X where f0, . . . , fl−1 do not have poles and let P ∈ X0(Fq). We can
then consider the Witt vector f(P ) = (f0(P ), . . . , fl−1(P )) ∈ Wl(Fq). Letting T :
Wl(Fq)→Wl(Fp) ∼= Z/plZ denote the trace map, we can consider the exponential
sum

Sf ,Fq =
∑

P∈X0(Fq)

e2πiT (f(P ))/pl .

Theorem 3.5. With notation as above, assume X \ X0 consists of the points
above the valuations v1, . . . , vs of K. Let g be the genus of X, nij = −vj(fi),
i = 0, . . . , l− 1, j = 1, . . . , s, and assume that f is not of the form f = F (g)−g + c
for any g ∈ Wl(K) and c ∈ Wl(Fq), where F denotes the additive endomorphism

on Wl(K) given by F (g0, g1, . . . , gl−1) = (gp0 , g
p
1 , . . . , g

p
l−1). Then |Sf ,Fq | ≤ Bq1/2,

where

B ≤ 2g − 1 +

s∑
j=1

max{pl−1−inij | 0 ≤ i ≤ l − 1}deg vj .

4. Liftings

In what follows, we consider an affine curve U overW2(k) defined by a polynomial
equation H(x,y) = 0. Assume that H(x,y) has the form

∑
di+ej≤de aijx

iyj where

d and e are relatively prime integers, ae0 6≡ 0 (mod p), and a0d 6≡ 0 (mod p).
Assume further that the affine curve U defined over k by H(x0, y0) = 0, where H
is the reduction of H modulo p, is smooth. Letting X be the projective closure
of U, we have that X = X ×SpecW2(k) Spec k is the projective closure of U , and
we see that X \ U consists of a single point, which we call the point at infinity.
Moreover, the genus g of X can be computed to be (d− 1)(e− 1)/2 by the Plücker
formula. Let R = k[x0, y0]/H(x0, y0) be the coordinate ring of U . For f ∈ R, let
deg f denote the order of the pole at infinity of f .

Lemma 4.1. Let a, b, c ∈ R with (a, b) = 1, deg(a) = n, deg(b) = m, and deg(c) =
r. Then there exist u, v ∈ R satisfying au + bv = c with deg(u) ≤ m + s and
deg(v) ≤ n+ s, where s = max{2g, r − n−m}.

Proof. Let P∞ be the point at infinity of X. Then a ∈ L(nP∞), b ∈ L(mP∞),
and c ∈ L(rP∞). For any positive integer s, consider the map L((m + s)P∞) ⊕
L((n + s)P∞) → L((n + m + s)P∞) given by (u, v) 7→ au + bv. We wish first to
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describe the kernel of this map. If au + bv = 0, then since (a, b) = 1, we have
u = bz and v = −az for some z ∈ R, which is then in L(sP∞). Thus the kernel is
isomorphic to L(sP∞). Now we examine the image. If s > 2g, Riemann-Roch gives
the dimensions of L(sP∞), L((m+ s)P∞)⊕ L((n+ s)P∞), and L((n+m+ s)P∞)
as s − g + 1, (m + s + n + s) − 2g + 2, (n + m + s) − g + 1, respectively. Thus,
since the dimension of our domain is equal to sum of the dimension of our range
with the dimension of our kernel, our map must be surjective. Since we want c in
the image we take n+m+ s ≥ r and s ≥ 2g. �

The next theorem uses explicit computations with Witt vectors to show that
there is a “lift of points” from U to U. Notice that part (2) of the theorem, giving
the lower bound on what the degrees of the coordinates of the “lift” must be, is
primarily of theoretical interest and is not used in the remainder of the paper.

Theorem 4.2. Assume that the equation H(x,y) = 0 satisfies the conditions above.
Let P∞ be the unique point of X at infinity. Then there is a “lift of points” λ :
X(k) \ {P∞} → X(W2(k)) given by λ((x0, y0)) = ((x0, x1), (y0, y1)), where x1 and
y1 are polynomials in x0 and y0 satisfying

(1) x1 and y1 have poles of order at most (d−1)(pe+e−1) and (e−1)(pd+d−1)
respectively at P∞, and

(2) If the genus of X is at least two, then either x1 has a pole at P∞ of order
at least p(e− 1), or y1 has a pole at P∞ of order at least p(d− 1).

(3) For any f ∈ L(rZ∞), we have f ◦ λ = (f0, f1), a Witt vector of rational
functions on X. Further, deg f0 ≤ r and deg f1 ≤ γ(r), where γ(r) is a
linear polynomial in r, independent of f and satisfying γ(r) ≤ p(r − 1) +
(d− 1)(e− 1)(p+ 1) = p(r − 1) + 2g(p+ 1).

Proof. Notice first that x0 has a pole at P∞ of order d and y0 has a pole at P∞ of
order e.

By calculations in the Witt ring, we see that if x1 and y1 are polynomials in x0

and y0 such that H((x0, x1), (y0, y1)) = 0 whenever H(x0, y0) = 0, then x1 and y1

must satisfy
(∂H/∂x0)

p
x1 + (∂H/∂y0)

p
y1 + J(x0, y0) = 0

where J(x0, y0) is a polynomial in x0 and y0, having a pole of order at most pde at
P∞.

We can apply Lemma 4.1 with a = (∂H/∂x0)
p
, b = (∂H/∂y0)

p
, and c =

J(x0, y0). Then n = deg a = pd(e − 1), m = deg b = pe(d − 1), and r ≤ pde.
Since g = (d − 1)(e − 1)/2, we have s = max{(d − 1)(e − 1), pde − pd(e − 1) −
pe(d − 1)} = (d − 1)(e − 1). Lemma 4.1 then gives us that x1 and y1 exist
with deg x1 ≤ pe(d − 1) + (d − 1)(e − 1) = (pe + e − 1)(d − 1) and deg y1 ≤
pd(e− 1) + (d− 1)(e− 1) = (pd+ d− 1)(e− 1).

To see why at least one of the two lower bounds mentioned in the theorem
must hold, let λ : X(k) \ {P∞} → X(W2(k)) be any lift of points. Recall that
the Greenberg transform G(X) of X can be thought of as the variety over k
obtained by looking at the coordinate components of the Witt vector equations
which define X. In particular, the coordinate ring of the affine part of G(X) is
k[x0, y0, x1, y1]/(H(x0, y0), H1(x0, y0, x1, y1)), so there is a canonical map G(X)→
X. Then λ is in fact a map from the affine open subset U = X \ {P∞} of X to
the Greenberg transform G(X) which is a partial splitting of the map G(X)→ X.
Since the genus of X is at least 2, a result of Raynaud ([8]) implies that G(X)
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is affine, so that the image of the extension λ : X → G(X) (where G(X) is the
projective closure of G(X)) cannot lie entirely within G(X). In particular, we must

have λ(P∞) ∈ G(X)\G(X). Examining the implications of this condition at a local
parameter for P∞, we get our desired lower bound as follows.

Since gcd(d, e) = 1 by assumption, we can find integers u, v with du + ev = 1.
This means that t = x−u0 y−v0 is a local parameter at P∞. Then we have that

t ◦ λ = (t0, t1), where t0 = x−u0 y−v0 and t1 = −vtp0y
−p
0 y1− utp0x

−p
0 x1. The condition

on λ(P∞) above amounts to a requirement that t1 have a pole at P∞. But the
valuation of t1 at P∞ is at least min{p−ep+vP∞(y1), p−dp+vP∞(x1)}. Requiring
this minimum to be negative proves (2) of the theorem.

Finally, to see why (3) is true, first notice that L(rZ∞) has a basis consisting of
all those monomials xiyj which satisfy the three conditions 0 ≤ j ≤ d − 1, 0 ≤ i,
and di+ ej ≤ r. If (x0, y0) ∈ X(k) \ {P∞}, then we have

xiyj(λ((x0, y0))) = (xi0y
j
0, i(x

i
0y
j
0)px−p0 x1 + j(xi0y

j
0)py−p0 y1).

The first coordinate of the above expression has degree di+ ej ≤ r, and the second
has degree at most

max{p(di+ ej)− pd+ deg x1, p(di+ je)− pe+ deg y1}
which is at most p(r − 1) + (p + 1)(d − 1)(e − 1) = p(r − 1) + 2(p + 1)g. Adding
constant multiples of these monomials together will not increase the degrees of the
coordinate functions. �

Corollary 4.3. Let X, X, and λ : X(k) → X(W2(Fq)) be as above. Let P∞ be
the unique point at infinity on X, and let Z∞ be any W2(Fq)-point of X containing
P∞. For a positive integer r and a rational function f ∈ L(rZ∞), let Sf ,Fq denote
the exponential sum

Sf ,Fq =
∑

P∈X(Fq)\{P∞}

e2πiT (f(λ(P )))/p2 .

Then |Sf ,Fq | ≤ ((2p+ 4)g + p(r − 1)− 1)
√
q.

Proof. Write f(λ(P )) = (f0(P ), f1(P )). By (3) of Theorem 4.2, we know that
f0 ∈ L(rP∞) and f1 ∈ L(p(r − 1) + 2(p + 1)gP∞). Applying Theorem 3.5 above,
we get the desired bound. �

5. A lower bound on the size of the trace code

Let q = pm and, as before, let U denote an affine curve over W2(Fq) defined
by a polynomial equation H(x,y) satisfying the conditions of the previous section.
Let X be the projective closure of U, and U and X the reductions modulo p of U
and X respectively. Let T denote both the trace map Wl(Fq) → Wl(Fp) and the
coordinate-wise trace map (Wl(Fq))n → (Wl(Fp))n.

Let r be a positive integer and denote by ev : L(rZ∞) → (Wl(Fq))n the map
which defines the code.

Corollary 4.3 above can be used to estimate the squared Euclidean weight of the
trace code T (C) of an algebraic geometric code C. In this section and the next,
our aim is to estimate the size of T (C). While it is true that T (C) will be a linear
code over Z/plZ (a Z/plZ-module), it need not be true that T (C) is a free code
(module). Thus, we are forced to discuss the cardinality, rather than the rank, of
T (C). We will do this by considering the size of the kernel of the trace map T .
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In this section, we find an upper bound on the size of this kernel, hence a lower
bound on the size of the trace code. The general structure of our approach follows
the approach taken by van der Vlugt in [13] as he studied trace codes of algebraic
geometric codes over finite fields. In particular, the following result extends to rings
a result of van der Vlugt [13] over fields.

Proposition 5.1. Let f ∈ L(rZ∞) and suppose that f ◦ λ is not of the form
F (h)− h + c for any h ∈Wl(K) and c ∈Wl(k). Write f ◦ λ = (f0, . . . , fl−1) with
each fj ∈ K, and suppose that

(1) max{pl−1−j deg fj | 0 ≤ j ≤ l − 1} < #X(k)− 1
√
q

+ 1− 2g.

Then T (ev(f)) 6= 0.

Remark 5.2. In specific examples, this proposition can be made to involve a general
condition on the divisor rZ∞ rather than a condition on the function f .

Proof. Assume that T (ev(f)) = 0. Then T (f ◦λ(P )) = 0 for all P ∈ X(Fq) \ {P∞}.
Further, f ◦ λ is not constant by assumption, so∣∣∣∣∣∣

∑
P∈X(Fq)\{P∞}

e2πiT (f◦λ(P ))/pl

∣∣∣∣∣∣ = #X(Fq)− 1.

But also, by Theorem 3.5 we have∣∣∣∣∣∣
∑

P∈X(Fq)\{P∞}

e2πiT (f◦λ(P ))/pl

∣∣∣∣∣∣ ≤ (2g − 1 + max{pl−1−j deg fj |0 ≤ j ≤ l − 1})√q.

Putting this together we have

#X(Fq)− 1 ≤ (2g − 1 + max{pl−1−j deg fj |0 ≤ j ≤ l − 1})√q,

which contradicts the assumption of the proposition. �

Theorem 5.3. Let f ∈ L(rZ∞) and assume that condition (1) holds. Then
T (ev(f)) = 0 if and only if f ◦ λ = F (g)− g for some g ∈Wl(K).

Proof. If f◦λ = F (g)−g, then a coordinate of T (ev(f)) is T (f◦λ(P )) = T ((F (g))(P )−
g(P )) = T (F (g(P )))−T (g(P )) = 0. Conversely, suppose that T (ev(f)) = 0. Then
we know that f ◦ λ is of the form F (h) − h + c for some h ∈ Wl(K) and some
c ∈ Wl(Fq) by Proposition 5.1 above. But then we have 0 = T (f ◦ λ(P )) =
T (F (h(P )) − h(P )) + T (c) = T (c) so that T (c) = 0. By Theorem 2.3, c must
be of the form b − F (b) for some b ∈ Wl(Fq). But then we have f ◦ λ =
F (h)− h + b− F (b) = F (h− b)− (h− b) and we are done. �

We see from Theorem 5.3 that finding the size of kerT is equivalent to finding
the size of the set

{g ∈Wl(K) |F (g)− g = f ◦ λ for some f ∈ L(rZ∞)}.

In order to study this set, we restrict to the case l = 2. For f ∈ L(rZ∞), we have
that f ◦ λ = (f0, f1) with fj ∈ L(rjP∞), where r0 = r and r1 = γ(r), for some
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linear polynomial γ which we compute explicitly from the equation for the curve
and the map λ. Condition (1) of Theorem 5.1 can be rewritten as

(2) max{pr, γ(r)} < #X(k)− 1
√
q

+ 1− 2g.

In particular, notice that (2) does not depend at all on a specific choice of rational
function f ∈ L(rZ∞). Assuming (2), we know that if T (ev(f)) = 0, then f ◦ λ =
F (g)− g. If we write g = (g0, g1) we see that

(f0, f1) = F (g0, g1)− (g0, g1) = (gp0 − g0, g
p
1 − g1 −

1

p
((gp0 − g0)p − (gp

2

0 − g
p
0))).

Combining this with our knowledge about f0 and f1, we see that

p deg g0 ≤ r

and

max{p deg g1, (p
2 − p+ 1) deg g0} ≤ γ(r).

This gives three conditions which must be satisfied:

(1) deg g0 ≤ b rpc
(2) deg g0 ≤ b γ(r)

p2−p+1c
(3) deg g1 ≤ bγ(r)

p c
Putting (1) and (2) together, we have proven the following:

Theorem 5.4. In the case where l = 2, if T (ev(f)) = 0 and condition (2) is
satisfied, then f ◦ λ = F (g) − g, where g = (g0, g1) ∈ Wl(K) with gj ∈ L(sjP∞)
where

s0 = min{br
p
c, b γ(r)

p2 − p+ 1
c}

and

s1 = bγ(r)

p
c.

We now set out to bound the size of kerT . We will do this by bounding the
number of pairs (g0, g1) ∈Wl(K) such that, in the notation of the previous theorem,
gj ∈ L(sjP∞) and F ((g0, g1))− (g0, g1) = f ◦ λ for some f ∈ L(rZ∞) satisfying (2)
and such that T (ev(f)) = 0.

Because of the existence of λ, there exists also φ : U→ Uσ lifting Frobenius by
[1]. Let us choose some function x regular on U. Then φ∗(dx)/p ≡ ω (mod p),
where ω is a differential regular on U , as shown by Mazur in [6].

Lemma 5.5. If f ◦ λ = (f0, f1) then df1/dx = (df0/dx)pω/dx− fp−1
0 df0/dx.

Proof. Let φ : U→ Uσ be the lift of Frobenius. Then we have f1 ≡ (f ◦ φ− fp)/p
(mod p). Differentiating this last equation gives

df1 ≡ (φ∗(df)− pfp−1df)/p (mod p).

Also,

φ∗(df) ≡ φ∗(dx)(df/dx) ◦ φ).

Combining these two equations gives

df1 ≡ ω(df/dx) ◦ φ)− fp−1df (mod p),
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which simplifies to (using that g ◦ φ ≡ gp (mod p) for any g)

df1/dx = (df0/dx)pω/dx− fp−1
0 df0/dx

as desired. �

Theorem 5.6. Under the above conditions,

# ker(T ) ≤ #L(br
p
cP∞) ·#L(bγ(r)

p2
cP∞)

≤ qb
γ(r)

p2
c+ r

p+2
.

Proof. Let A(x) = 1
p ((xp−x)p− (xp

2 −xp)) mod p. Then A′(x) = −(xp−x)p−1−
xp−1. Suppose that f ◦λ = F (g)−g, where g = (g0, g1). By computation with Witt
vectors, this translates to the pair of equations f0 = gp0−g0 and f1 = gp1−g1−A(g0).
Differentiating these equations gives df0/dx = −dg0/dx and

−dg1/dx = df1/dx+A′(g0)g′0

= (df0/dx)pω/dx− fp−1
0 df0/dx+A′(g0)g′0

= −(dg0/dx)pω/dx+ (gp0 − g0)p−1dg0/dx+A′(g0)g′0

= −(dg0/dx)pω/dx− gp−1
0 dg0/dx.

Thus, if deg f = r, then deg f0 ≤ r, deg f1 ≤ γ(r). It then follows that deg g0 ≤
r/p and deg g1 ≤ γ(r)/p. Moreover, g1 = Ψ(g0) + up, where Ψ(g0) is a fixed

solution to dΨ(g0)/dx = −(dg0/dx)pω/dx − gp−1
0 dg0/dx, with deg Ψ(g0) ≤ s/p,

provided such solution exists (otherwise we cannot have such a pair (g0, g1)). Then
deg u ≤ γ(r)/p2. Given r, the number of possible (g0, g1) ∈ Wl(Fq) is at most
the number of possible g0 times the number of possible u. This gives the first
estimate in the theorem. The second follows from using the trivial estimate that
dimL(D) ≤ degD + 1 for any effective divisor D on a curve X over a field. �

Theorem 5.7. In the situation above, the cardinality of the trace code satisfies

#T (C) ≥ q2r−2g−b rp c−b
γ(r)

p2
c
.

Proof. Just use the fact that #C = q2(r+1−g) and the estimate on the size of the
kernel of the trace map in Theorem 5.6. �

6. An upper bound on the size of the trace code

After finding a lower bound on the size of the trace code in the previous section,
the aim of this section is to find an upper bound on how large a trace code can be.

Definition 6.1. For B ⊆ (Wl(Fpm))n, define

F (B) := {(F (b1), . . . , F (bn)) | (b1, . . . , bn) ∈ B}

and

B|Wl(Fp) := B ∩ (Wl(Fp))n.

If B is a free Wl(Fpm)-module, we denote by rank(B) its rank.
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Proposition 6.2. (compare [10] Proposition VIII.1.4, p223) Let C be a free code
over the ring Wl(Fpm) and let B ⊆ C be a free subcode such that F (B) ⊆ C. Then

#T (C) ≤ plm(rank(C)−rank(B)) ·#B|Wl(Fp).

Proof. Define ℘ : B → C by ℘(b) = F (b)− b. Then b ∈ ker℘ ⇐⇒ F (b) = b ⇐⇒
b ∈ B|Wl(Fp). But T (a) = T (F (a)) for any a, so im℘ ⊆ kerT . Thus

# kerT ≥ # im℘ = #B/# ker℘ = #B/#B|Wl(Fp)

and the result follows by simply noting that #T (C) = #C/# kerT . �

Because of the existence of λ, we know that the Frobenius lifts to a map Φ :
R → R, where R = Γ(U,OX(U)) is the ring of regular functions on U. Further,
for f ∈ R we have F (f ◦ λ) = (Φ(f)) ◦ λ.

Lemma 6.3. In the situation of Theorem 4.2, assume d < e and set t = b r
e(p+1)c.

Then Φ(g) ∈ L(rZ∞) for every g ∈ L(tZ∞).

Proof. Since g ∈ R, we have Φ(g) ∈ R so we just need to find the order of the
pole at infinity of Φ(g). Recall that L(tZ∞) is generated by monomials of the form
xiyj where i ≥ 0, 0 ≤ j ≤ d − 1, and id + je ≤ t. Writing g = g(x,y), we have
Φ(g(x,y)) = g(Φ(x),Φ(y)) = g(xp + px1,y

p + py1), so deg Φ(g) = deg g(xp +
px1,y

p + py1). For any monomial xiyj appearing in g, we have deg Φ(xiyj) =
deg((x + px1)i(y + py1)j) ≤ (p + 1)et ≤ r, and adding constant multiples of such
monomials together will not increase the degree. �

Theorem 6.4. In the situation of of Theorem 4.2 with d < e, set t = b r
e(p+1)c.

For a positive integer s, define dimX(s) = rank(L(sZ∞)). Let C be the algebraic
geometric code defined on X using the divisor rZ∞. Then

#T (C) ≤ plm(dimX(r)−dimX(s))+l.

Proof. Set B := CWl(Fpm )(X,Z, tZ∞). Then since F ((g ◦ λ)(P )) = (Φ(g) ◦ λ)(P )
and Φ(g) ∈ L(rZ∞) for each g ∈ L(tZ∞), we have F (B) ⊆ C. Therefore, by the
above proposition, we have

#T (C) ≤ plm(dimX(r)−dimX(t)) ·#B|Wl(Fp)

and we only need to find #B|Wl(Fp).
Suppose h ∈ L(tZ∞) is such that h ◦ λ(P ) ∈ Wl(Fp) for each P . Since Φ(h) ∈

L(rZ∞) and h ∈ L(tZ∞) ⊆ L(rZ∞), we have f := Φ(h)− h ∈ L(rZ∞). But since
h ◦ λ(P ) ∈ Wl(Fp), we have f ◦ λ(P ) = 0 for each P , so that f is in the kernel
of the evaluation map which defines the code. Our assumption that r < n forces
this map to be injective, so we have f = 0. Thus Φ(h) = h, but this means that
h ∈Wl(Fp). �

7. Examples

We start by considering curves of genus zero, noting that certain aspects of
this case were previously considered in [4] without using the language of algebraic
geometry. In our language, we see that the curve A1 has a natural lifting of points
given by the Teichmüller lift, λ(x) = (x, 0). The coordinate ring of A1/W2(Fpm)
is W2(Fpm)[x]. Given a polynomial f(x) ∈W2(Fpm)[x], a simple calculation shows
that f ◦λ = (f0, f1), where f1 ≡ (f(x)p−f(xp))/p (mod p). It follows that deg f1 ≤
pdeg f , so we can take γ(r) = pr.
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The case of genus one was studied extensively in our previous work, [14]. An
ordinary elliptic curve defined over a finite field Fq has a canonical lifting to an
elliptic curve E over W2(Fq) for which the Frobenius of E also lifts to an isogeny

φ : E → E(p) of degree p. In addition, there is an injective homomorphism τ :
E(F̄q)→ E(W (F̄q)) (analogous to the Teichmüller lift), compatible with the action
of Frobenius, which we will call the elliptic Teichmüller lift. Analogously to the case
of A1, given a function f on E we have f ◦ τ = (f0, f1), where f1 ≡ (f ◦ φ − fp)/p
(mod p). In Proposition 4.2 of [14] we prove that, if E is given by a Weierstrass
equation in coordinates x,y, then deg x1 ≤ 3p − 1,deg y1 ≤ 4p − 1. In the affine
coordinate ring generated by x,y, every function is a polynomial in x,y of degree
at most 1 in y and it follows from this that deg f1 ≤ p(deg f + 1) − 1 for any f in
this ring. In other words, we can take γ(r) = p(r + 1)− 1.

For a numerical example, consider the curve E given by the equation y2 + y =
x3+t3 over the field F16 := F2[t]/(t4+t+1). This curve is supersingular so we cannot
consider its canonical lift. It is easy to see that the curve E over W2(F16) given
by the equation y2 + y = x3 + (t3, 0) certainly has E as its reduction. Further,
it is easy to check that whenever (x0, y0) is an affine point on E, λ((x0, y0)) :=
((x0, 0), (y0, y

3
0 + x3

0t
3)) satisfies the equation defining E so we get a lift of points

on the affine curve.
The curve E has 24 affine F16-rational points. Let P∞ be the point at infinity

on E. If we use the basis {1,x,y} for the global sections of OE(3P∞) on E, we get
a binary code of length 48 with 218 codewords and minimum distance 8. As the
best linear code of this length with this many codewords has minimum distance
somewhere between 12 and 14, this is not a good code.

However, if we evaluate the rational functions in L(2P∞) (using the basis {1,x})
at the lifts of only half the points, we get a pretty good code. In particular, it
is easy to see that the affine F16-rational points on E occur in pairs sharing the
same x-coordinate. Taking one point from each of these pairs, lifting them and
evaluating the functions 1 and x at these lifts yields a code whose trace code has
generator matrix 

3 3 3 3 3 3 3 3 3 3 3 3
1 3 2 3 2 3 3 1 2 1 2 1
1 0 2 1 3 0 3 2 0 1 3 0
3 1 1 2 0 2 3 3 1 2 2 0
2 0 3 2 3 2 3 1 2 1 0 1


The image under the Gray mapping of this code is a binary code of length 24

with 210 codewords and minimum Hamming distance 8. This matches the best
possible binary linear code with this length and number of codewords.

For another class of examples, let X be the Hermitian curve defined by

yqz + yzq = xq+1

over the ring W2(Fpm), m ≥ 1, where q is a power of the prime p. Its reduction
modulo p is the curve X defined by the equation

yq0z0 + y0z
q
0 = xq+1

0

The equation F (x,y) = yq + y − xq+1 = 0 defines an open affine subset U of X,

and the equation F0(x0, y0) = yq0 + y0 − xq+1
0 defines an open affine subset U of X.
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Notice also that X = U ∪ {P∞}, where P∞ is the unique point at infinity on X.
Fix a W2(Fpm)-point Z∞ of X containing P∞.

Letting n := #X(Fpm)−1, and choosing r with q2−q−2 < r < n, we see by [17]
that we can use X and the divisor rZ∞ to construct a free code C over W2(Fpm)

having length n, rank r+ 1− q(q−1)
2 and minimum Hamming weight at least n− r.

We are interested in the parameters of the trace code T (C) over W2(Fp) = Z/p2Z.
By Theorem 4.2, we know that there is a “lift of points” λ : X(Fpm) \ {P∞} →

X(W2(Fpm)) given by λ((x0, y0)) = ((x0, x1), (y0, y1)) with deg x1 ≤ (q − 1)(pq +

p + q), deg y1 ≤ q(pq + q − 1), and, if g := q(q−1)
2 ≥ 2, either deg x1 ≥ pq or

deg y1 ≥ p(q − 1). In fact, one can check by brute force that the map λ given
by λ((x0, y0)) = ((x0, x1), (y0, y1)), where x1 is any constant c and y1 = cxpq0 +
1
p ((yq0 + y0)p − ypq0 − yp0) is a lift of points satisfying deg x1 = 0 and deg y1 =

max{pq2, (pq − q + 1)(q + 1)} = pq2 + ε, where ε = 0 if p 6= q and ε = 1 if p = q.
Notice that λ is “good”, in the sense that it satisfies the conditions of the conclusion
of Theorem 4.2.

A basis for the global sections of L(rZ∞) is {xiyj | i ≥ 0, 0 ≤ j ≤ q − 1, qi +
(q+ 1)j ≤ r}. Setting x = (x0, x1) and y = (y0, y1) and doing computations in the
Witt ring, we get

xiyj = (xi0y
j
0, jx

pi
0 y

p(j−1)
0 y1 + ix

p(i−1)
0 ypj0 x1).

Writing the above expression as (f0, f1), we see (using the facts that deg x0 = q+ 1
and deg y0 = q) that deg f0 ≤ r and γ(r) := deg f1 ≤ pr + pq2 − pq − p+ ε, where
ε = 0 if p 6= q and ε = 1 if p = q.

Applying Theorem 3.5 and using the fact that γ(r) ≥ pr for all p, we see that if
f ∈ L(rZ∞), then∣∣∣∣∣∣

∑
P∈X(Fpm )\{P∞}

e2πiT (f◦λ(P ))/p2

∣∣∣∣∣∣ ≤ (q2 − q + pr + pq2 − pq − p+ ε)
√
pm.

This means that the minimum squared Euclidean weight of T (C) is at least
2n − 2(q2 − q + pr + pq2 − pq − p + ε)

√
pm. Notice that this is an improvement

upon the general result of Theorem 5.7, which would only yield that the squared
Euclidean weight is at least 2n− ((2p+ 4)(q − 1)q − 2p(r − 1) + 2)

√
pm.

Finally, we know that the number of elements in the kernel of the trace map

T : C →W2(Fp) is at most pm(γ(r)/p2+r/p+2).
Let’s now restrict to the case where p = q. The number of Fpm-rational points on

X is pm+1 if m is odd, pm+1+p(p−1)p
m
2 if m ≡ 2 (mod 4), and pm+1−p(p−1)p

m
2

if 4|m, so we’ll fix m ≡ 2 (mod 4). Choosing r with p(p − 1) < r < n := pm +

p(p− 1)p
m
2 , we construct a free W2(Fpm)-code C of length n, rank r + 1− p(p−1)

2 ,
and minimum Hamming distance at least n − r. The trace code T (C) is a (not
necessarily free) W2(Fp) = Z/p2Z-module of length n with at least

p
m(2r− rp−

γ(r)

p2
−p(p−1))

elements and minimum squared Euclidean weight at least

2n− 2(p3 + pr − 2p+ 1)p
m
2 = 2(pm + 1− (p3 − p2 − p+ pr + 1)p

m
2 )
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