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1. Introduction

The purpose of this paper is to construct certain error-correcting codes over

finite rings and estimate their parameters. For this purpose, we need to develop

some tools; notably an estimate for certain exponential sums and some results on

canonical lifts of elliptic curves. These results may be of independent interest.

A code is a subset of An, where A is a finite set (called the alphabet). Usually

A is just the field of two elements and, in this case, one speaks of binary codes.

Such codes are used in applications where one transmits information through noisy

channels. By building redundancy into the code, transmitted messages can be re-

covered at the receiving end. A code has parameters that measure its efficiency

and error-correcting capability. For various reasons one often restricts attention to

linear codes, which are linear subspaces of An when A is a field. However, there are

non-linear binary codes (such as the Nordstrom-Robinson, Kerdock, and Preparata

codes) that outperform linear codes for certain parameters. These codes have

remained somewhat mysterious until recently when Hammons, et al. ([HKCSS])

discovered that one can obtain these codes from linear codes over rings (i.e. sub-

modules of An, A a ring) via the Gray mapping, which we recall below.

In a different vein, over the last decade there has been a lot of interest in linear

codes coming from algebraic curves over finite fields. The construction of such codes

was first proposed by Goppa in [G]; see [St] or [TV] for instance. In [TVZ], it is

proven that for q ≥ 49 a square, there exist sequences of codes over the finite field

with q elements which give asymptotically the best known linear codes over these

fields. The second author has extended Goppa’s construction to curves over local

Artinian rings and shown, for instance, that the Nordstrom-Robinson code can be

obtained from her construction followed the Gray mapping; see [W1] and [W2].

While most of the parameters for these new codes were estimated in the above

papers, the crucial parameter needed to describe the error-correcting capability of
1
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the images of these codes under the Gray mapping was still lacking. In this paper

we consider the second author’s construction in the special case of elliptic curves

which are defined over finite local rings and which are the canonical lifts of their

reductions. (See section 4 for more about canonical lifts.) For these codes, the

missing parameter can be estimated and we do so.

Another application of our construction is to obtain low-correlation sequences

suitable for use in code-division multiple access (CDMA) schemes, which are used

when multiple users need to share a common communication channel, such as in

the case of cellular telephones. We will use our results to obtain such sequences.

In a way, our results are the analogues for elliptic curves of the results of Kumar et

al. ([KHC]), which can be viewed as being for the multiplicative group. Since we

can work with any ordinary elliptic curve over a finite field, our results are more

flexible.

This paper is organized as follows. In section 2 we recall the main results of

[W1] on the construction of codes from curves over rings and review the definitions

pertaining to error-correcting codes. We also set the stage in this section for the

results we need. In section 3 we prove a general estimate for certain exponential

sums along curves. This result extends a number of recent results but, paradoxically,

is based on an old paper of H. L. Schmid. In section 4 we prove a number of results

about canonical lifts of elliptic curves. Finally, in section 5, we put everything

together, obtaining our main results and their applications.

2. Algebraic geometric codes over rings

In [W1], the idea of algebraic geometric codes over rings other than fields is

introduced, and foundational results about these codes are proven. In [W2], the

methods of [W1] are used to explicitly construct the Z/4-version of the Nordstrom-

Robinson code as an algebraic geometric code. In order to construct other codes

over Z/4 with good nonlinear binary shadows, we must first investigate the Lee

and Euclidean weights of these codes. In this section, we recall the definitions and

some results from [W1] and explain how the Lee and Euclidean weights of algebraic

geometric codes over rings are related to exponential sums.
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Let A be a local Artinian ring with maximal ideal m. We assume that the field

A/m is finite; say A/m = Fq. Let X be a curve over A, that is, a connected

irreducible scheme over SpecA which is smooth of relative dimension one. Let

X ×SpecA SpecFq = X ⊂ X be the fiber of X over the closed point of SpecA.

We assume X is absolutely irreducible, so that it is the type of curve on which

algebraic geometric codes over Fq are defined. Let Z = {Z1, . . . , Zn} be a set of

A-points on X with distinct specializations P1, . . . , Pn in X. Let G be a (Cartier)

divisor on X such that no Pi is in the support of G, and let L = OX(G) be the

corresponding line bundle. For each i, Γ(Zi,L|Zi) ' A, and thinking of elements

of Γ(X,L) as rational functions on X, we may think of the composition Γ(X,L)→

Γ(Zi,L|Zi) → A as evaluation of these functions at Zi. Summing over all i, we

have a map γ : Γ(X,L)→
⊕

Γ(Zi,L|Zi)→ An, given by f 7→ (f(Z1), . . . , f(Zn)).

Definition 2.1. Let A, X, Z, L, and γ be as above. Define CA(X,Z,L) to be the

image of γ. CA(X,Z,L) is called the algebraic geometric code over A associated

to X, Z, and L.

The following theorem summarizes some of the main results of [W1].

Theorem 2.2. Let X, L, and Z = {Z1, . . . , Zn} be as above. Let g denote the

genus of X, and suppose 2g − 2 < degL < n. Set C = C(X,Z,L). Then C is a

linear code of length n over A, and is free as an A-module. The dimension (rank)

of C is k = degL + 1 − g, and the minimum Hamming distance of C is at least

n−degL. Further, under the additional assumption that A is Gorenstein, the class

of algebraic geometric codes is closed under taking duals. In particular, there exists

a line bundle E such that C⊥ = C(X,Z, E).

Remark 2.3. The dimension and minimum Hamming distance computations are

consequences of the Riemann-Roch Theorem, and it is here that the assumption

2g − 2 < degL < n is used. The duality result follows from a generalized version

of the Residue Theorem which holds for Gorenstein rings. See [W1] for details.

The following result will be useful in section 5.

Lemma 2.4. Let A, X, and L be as in Theorem 2.2. Let K be the total quo-

tient ring of rational functions on X, and let L = Γ(X,L). Define p−1L = {g ∈
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K | pg ∈ L}. Then p−1L = L + ker(β), where β is the map K → K given by

multiplication by p.

Proof. Consider the map of the short exact sequence 0 → L → K → K/L → 0 to

itself given by multiplication by p. By the Snake Lemma, the kernels and cokernels

fit into an exact sequence. But it is shown in [W1] that L ⊗A A/m = Γ(X,L′),

where L′ is the pullback of L to X. This means that the cokernels form a short

exact sequence by themselves, so the kernels must also. To set up notation, let γ :

K/L→ K/L be multiplication by p, let π0 be the surjection ker(β)→ ker(γ), and

let π be the surjection K→ K/L. With this notation, p−1L = ker(πβ) = ker(γπ).

Let g ∈ p−1L. Then π(g) ∈ ker(γ). Since π0 is surjective, there is some g′ ∈

ker(β) with π0(g′) = π(g). But then π(g− g′) = 0, so g− g′ ∈ L. In other words,

there is some f ′ ∈ L with g = f ′ + g′, which is precisely what we needed to show.

For applications, one is usually concerned with constructing codes over Z/4,

or more generally, over rings of the form Z/pl, where p is prime and l ≥ 1. We

can use algebraic geometry to construct such codes in two different ways. First,

we can simply set A = Z/pl in the definition of algebraic geometric codes above.

Alternatively, we can construct an algebraic geometric code over GR(pl,m) and

look at the associated trace code over Z/pl. Here, GR(pl,m) denotes the degree

m ≥ 1 Galois extension of Z/pl (see, for example, [KHC] for details). It is easily

seen that such a ring is isomorphic to the ring of length l Witt vectors over the field

Fpm , and this representation is used in sections 3 and 4 below. In particular, there

is a trace map T : GR(pl,m) → Z/pl, and by the trace code of a code, we mean

the code obtained by applying this trace map coordinatewise to the codewords.

The Gray map allows us to construct (non-linear) binary codes from codes over

Z/4 and is defined as follows. Consider the map ϕ : Z/4 → F2
2 defined by ϕ(0) =

(0, 0), ϕ(1) = (0, 1), ϕ(2) = (1, 1), ϕ(3) = (1, 0). Now we define a map, again

denoted by ϕ : Z/4n → F2n
2 , by applying the previous ϕ to each coordinate.

For linear codes over rings of the form Z/pl, it is often either the Euclidean or

Lee weight rather than the Hamming weight which is of interest. In particular,

when pl = 4, the Euclidean and Lee weights are closely related, and the Lee weight
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gives the Hamming weight of the associated nonlinear binary code.

We begin by defining Euclidean weights. We identify an element x of the cyclic

group Z/pl with the corresponding plth root of unity via the map

x→ epl(x) := e2πix/pl .

Definition 2.5. The Euclidean distance between x and y is the distance dE(x, y)

in the complex plane between the points epl(x) and epl(y), and the Euclidean weight

of x is the distance wE(x) between epl(x) and epl(0) = 1.

We have

wE(x) =

√
sin2

(
2πx

pl

)
+ (1− cos

(
2πx

pl

)
)2 =

√
2− 2 cos

(
2πx

pl

)
.

In fact, it is usually the square of the Euclidean weight in which one is interested.

This is given by w2
E(x) = 2 − 2 cos( 2πx

pl
). For vectors x = (x1, . . . , xn) and y =

(y1, . . . , yn) over Z/pl, we define

d2
E(x,y) =

n∑
j=1

d2
E(xj , yj)

and

w2
E(x) =

n∑
j=1

w2
E(xj)

For example, the squared Euclidean weight of the all-one vector in (Z/pl)n is

2n(1 − cos(2π/pl)). Using the Taylor expansion of cosine, we get that this is at

least 4n π
2

p2l (1 + π2

3p2l ). Further, any other nonzero constant vector in (Z/pl)n has

squared Euclidean weight at least this.

For general vectors, since cos( 2πx
pl

) = Re
(
epl(x)

)
, we have

w2
E(x) =

n∑
j=1

(
2− 2 Re

(
epl(xj)

))
= 2n− 2 Re

n∑
j=1

epl(xj)

≥ 2n− 2

∣∣∣∣∣∣
n∑
j=1

epl(xj)

∣∣∣∣∣∣ .
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Hence, to find a lower bound on the minimum Euclidean weight of a linear code

over Z/pl, it is enough to find an upper bound on the modulus of the exponential

sum
n∑
j=1

epl(xj).

Now consider the case pl = 4. Then e4(0) = 1, e4(1) = i, e4(2) = −1, and

e4(3) = −i. Hence w2
E(0) = 0, w2

E(1) = w2
E(3) = 2, and w2

E(2) = 4. Since the Lee

weight is defined by wL(0) = 0, wL(1) = wL(3) = 1, and wL(2) = 2, we have

wL(x) =
1

2
w2
E(x)

for any x ∈ Z/4. From this we see that the Euclidean weight of a codeword over

Z/4 is twice the Hamming weight of the binary codeword obtained by applying the

Gray map. Notice that the Lee weight of a constant vector in (Z/4)n is either 0, n,

or 2n.

Finally, let C be an algebraic geometric code over GR(pl,m), and let T :

GR(pl,m) → Z/pl denote the trace map as before. We are interested in the min-

imum Euclidean weight of T (C), the trace code of C, which is a linear code over

Z/pl. Codewords in T (C) are of the form (T (f(Z1)), . . . , T (f(Zn))), where f is

a rational function on some curve X defined over GR(pl,m) and Z1, . . . , Zn are

GR(pl,m)-points on X. From the argument above, to find a lower bound for the

minimum Euclidean weight of T (C) it suffices to find an upper bound on the mod-

ulus of
n∑
j=1

epl(T (f(Zj))) =
n∑
j=1

e2πiT (f(Zj))/p
l

.

We investigate this sum in sections 3 and 4 below.

3. Exponential sums

In this section we will give estimates for some kinds of exponential sums along

curves. The approach follows the classical method of relating the exponential sum

to the sum of the reciprocals of the zeros of an L-function and applying the Riemann

hypothesis. Of course the abstract set-up is well-known in even greater generality
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(see, for example, [D]), but it is the calculation of the degree of the L-function that

requires working out. We will be dealing with characters of order pl, where p is the

characteristic. In this case, the degree of the L-function was computed by Schmid

[S1], [S2].

Let X be a curve over the finite field Fq, where q = pm with p prime. Denote

by K = Fq(X) the function field of X. Let f0, . . . , fl−1 ∈ K and consider the

Witt vector f = (f0, . . . , fl−1) ∈ Wl(K). Let X0 be the maximal affine open

subvariety of X where f0, . . . , fl−1 do not have poles and let P ∈ X0(Fq). We

can then consider the Witt vector f(P ) = (f0(P ), . . . , fl−1(P )) ∈ Wl(Fq). Letting

T : Wl(Fq)→Wl(Fp) ∼= Z/plZ denote the trace map as in section 2, we can consider

the exponential sum

Sf ,Fq =
∑

P∈X0(Fq)

e2πiT (f(P ))/pl .

Theorem 3.1. With notation as above, assume X \X0 consists of the points above

the valuations v1, . . . , vs of K. Let g be the genus of X, nij = −vj(fi), i = 0, . . . , l−

1, j = 1, . . . , s, and assume that f is not of the form f = F (g) − g + c for any

g ∈Wl(K) and c ∈Wl(Fq), where F denotes the additive endomorphism on Wl(K)

given by F (g0, g1, . . . , gl−1) = (gp0 , g
p
1 , . . . , g

p
l−1). Then |Sf ,Fq | ≤ Bq1/2, where

B ≤ 2g − 1 +

s∑
j=1

max{pl−1−inij | 0 ≤ i ≤ l − 1} deg vj .

Proof. As mentioned above, the essential steps are done in [S1], [S2], but we will

repeat them here for the reader’s convenience. Consider the Artin-Schreier-Witt

extension Y : F (y)−y = f of X, which is a cover of X with Galois group contained

in Z/plZ. Assume first it is a geometric cover, i.e., that there is no constant field

extension, and that it has positive degree. If χ is a character of the Galois group

then we can form the (Artin) L-function L(X,χ, t). As long as χ 6= 1, L(X,χ, t) is

a polynomial in t of a certain degree Bχ satisfying

Bχ ≤ 2g − 1 +
s∑
j=1

max{pl−1−inij | 0 ≤ i ≤ l − 1} deg vj ,

with equality holding if χ is injective (see [S1], [S2], and especially [S2], Satz 8).

When χ = 1, L(X,χ, t) is the zeta function of X. Taking the product over all
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characters χ of the Galois group of Y/X,
∏
L(X,χ, t) is the zeta function of Y .

From this our bound will follow since, by the general theory (e.g. [S2](2.7)), Sf ,Fq =∑
P∈X0(Fq) χ(P ) for a character χ, where χ(P ) means χ evaluated at the Frobenius

substitution of P . Also,
∑
P∈X0(Fq) χ(P ) equals the negative of the sum of the

reciprocals of the roots of L(X,χ, t) and these roots have absolute value q−1/2 by

the Riemann hypothesis.

We now treat the case where Y is not necessarily a geometric cover of X. Let

L = K(y) so L/K is cyclic. Now if Fq is not algebraically closed in L, then L

contains k = Fqp . Set M = Kk ⊂ L, so that [M : K] = [k : Fq] = p. Since

L is cyclic, the intermediate field extension of degree p over K is unique, so we

have M = K(y0). Thus K(y0)/K is a constant field extension, which implies that

f0 = gp − g+ a for some g ∈ K and a ∈ Fq. Letting g = (g, 0, . . . , 0) ∈Wl(K) and

a = (a, 0, . . . , 0) ∈Wl(Fq), we can find h ∈Wl−1(K) such that f = F (g)−g+a+ph.

Then

Sf ,Fq = e2πiT (a)
∑

P∈X0(Fq)

e2πiT (h(P ))/pl−1

.

Notice that if h = F (k) − k + d with k ∈ Wl−1(K) and d ∈ Wl−1(Fq), then

f = F (g) − g + a + p(F (k) − k + d) = F (g + pk) − (g + pk) + (a + d), which

contradicts the hypothesis of the theorem. Therefore, we can assume by induction

on l that |Sf ,Fq | ≤ Cq1/2, with

C ≤ 2g − 1 +
s∑
j=1

max{pl−2−imij | 0 ≤ i ≤ l − 2} deg vj ,

where mij = −vj(hi). Further, a computation gives mi ≤ max{pi−jnj | 0 ≤ j ≤

i+ 1}, so in fact

C ≤ 2g − 1 +
s∑
j=1

max{pl−2−inij | 0 ≤ i ≤ l − 1}deg vj ,

and from this the theorem follows.

Remark 3.2. There has been some recent interest on exponential sums of the kind

considered in the above theorem, in the case of P1, see Kumar et al. ([KHC]) and

Li ([L]). These authors use elements of Wl(Fq)[x] instead of Wl(Fq[x]), to form
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their exponential sums. The latter is a bigger ring but, for exponential sums, it

doesn’t matter. W. Li has informed us that their results can be deduced from the

above theorem. In any rate, we can recover directly the applications in [KHC] to

low-correlation sequences by following the same procedure of section 5, replacing

the elliptic curve by the multiplicative group.

4. Canonical liftings

Let E be an ordinary elliptic curve defined over a finite field Fq. Then E has a

canonical lifting to an elliptic curve over W (Fq) for which the Frobenius of E also

lifts. This is a special case of the Serre-Tate theory (see [LST] or [K]). If E denotes

the lift of E to W (Fq), there is also an injective homomorphism τ : E(F̄q) →

E(W (F̄q)) (analogous to the Teichmüller lift for Gm), compatible with the action

of Frobenius, which we will call the elliptic Teichmüller lift (see [Bu2]). In fact, a

characterization of the canonical lift is the existence of such a homomorphism. We

will recall its construction below.

On the other hand E has a Greenberg transform G(E) which is an infinite-

dimensional scheme over Fq, together with a map γ : E(W (F̄q))→ G(E)(F̄q). Our

purpose is to compute the degrees of the Witt coordinate functions of γ◦τ . By [Bu2]

we know that γ ◦ τ actually corresponds to a section of the canonical morphism of

Fq-schemes G(E) → E. By abuse of language, we will often identify E and G(E)

in what follows.

Theorem 4.1. Let E be an ordinary elliptic curve defined over a finite field Fq

and E the canonical lift of E to W (Fq). Let G be an effective Cartier divisor

on E and G its restriction to E. Let f be a global section of OE(G). Then for

P ∈ E,P /∈ supp G, f(τ(P )) = (f0(P ), f1(P ), . . . ) as a Witt vector, where fi is a

global section of OE((2p)iG) for i = 0, 1, . . . .

Proof. A procedure for computing the fi’s is given in [Bu1], Lemmas 2.6 and

2.7. First one computes the p-jet coordinates, gi say, which are reduction mod-

ulo p of δif , where δu = (u ◦ φ − up)/p is a p-derivation on the structure sheaf

of E/W (Fq) and φ is the lift of Frobenius on E/W (Fq), as follows from Lemma
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2.7 of [Bu1] together with [Bu2]. As φ is an isogeny of degree p, it follows that

deg δu is at most 2pdeg u and therefore, by induction deg gi ≤ (2p)i degG. Now,

from Lemma 2.6 of [Bu1], fi + Pi(f0, . . . , fi−1) = gi, for universal polynomials

Pi computed in the proof there. On the other hand, it is clear that the fi are

regular away from suppG and thus so are the gi. Using the proof of Lemma 2.6

of [Bu1], one can show that Pn(zf0, z
pf1, . . . , z

pn−1

fn−1) = zp
n

Pn(f0, f1, . . . , fn−1)

for z ∈ K, so that monomials of Pn(f0, f1, . . . , fn−1) are of the form f i00 f
i1
1 . . . f

in−1

n−1 ,

with i0 + pi1 + . . . pn−1in−1 = pn. This implies that deg(Pn(f0, f1, . . . , fn−1)) ≤

max{pn−i deg fi|0 ≤ i ≤ n − 1}. A straightforward induction argument now gives

deg fi ≤ (2p)i degG and the theorem then follows.

Suppose that x,y are coordinates of a Weierstrass equation for E. The above

proof then produces functions x0, x1, . . . , y0, y1, . . . on E such that x0, y0 are the

coordinates of the reduced Weierstrass equation for E and

τ((x0, y0)) = ((x0, x1, . . . ), (y0, y1, . . . )).

By reducing modulo pl, we can consider the canonical lift of E to Wl(Fq). The

following proposition gives us tools to help explicitly calculate this in the important

case l = 2.

Proposition 4.2. Let k be a perfect field of characteristic p > 0 and E/k an

ordinary elliptic curve. If E is the canonical lift of E to W2(k), then deg x1 <

3p, deg y1 < 4p. Conversely, let E be any elliptic curve defined over W2(k) with

reduction E. Assume that the projection given by reduction from G(E) to E admits

a section τ in the category of k-schemes over E \ {O} (where O is the origin for

the group law on E) given by (x0, y0) 7→ (x,y) = ((x0, x1), (y0, y1)) where x1, y1 are

regular away from O and satisfy deg x1 < 3p, deg y1 < 4p. Then τ is regular at O,

E is the the canonical lift of E and τ is the elliptic Teichmüller lift.

Proof. Theorem 4.1 gives that deg x1 ≤ 4p but since both x ◦ φ and xp have a

pole at the origin of E, we actually get deg x1 < 4p. Here again, φ denotes the

lift of Frobenius on E. Consider the differential φ∗(dx/y)/p. As shown by Mazur

[M], this is a well-defined, holomorphic differential on E and its reduction modulo



11

p, ω say, depends only on dx/y. Moreover C(ω) = dx/y, where C is the Cartier

operator. Hence ω = A−1dx/y, where A is the Hasse invariant of E. On the other

hand, from the proof of Theorem 4.1,

1

p
φ∗(

dx

y
) =

1

p

d(xp + px1)

yp + py1
=
xp−1

0 dx0 + dx1

yp0
.

This gives dx1/dx0 = A−1yp−1
0 − xp−1

0 , which is a polynomial in x0 of degree

3(p − 1)/2. Since deg x1 < 4p, this determines x1 up to a linear combination of 1

and xp0 and thus x1 is a polynomial in x0 of degree (3p− 1)/2, hence deg x1 < 3p.

Examining the Weierstrass equation for E gives the bound for y1.

To show the converse, first we need to show that τ is regular at O and τ(O) = O,

where O is the origin for the group law on E. It is enough to show that x/y is regular

at O and that x/y(O) = 0. A computation gives x/y = (x0/y0, x1/y
p
0 − y1x

p
0/y

2p
0 )

and both x1/y
p
0 and y1x

p
0/y

2p
0 vanish at O, since deg x1 < 3p, deg y1 < 4p.

Fix P0 ∈ E,P0 6= O and consider f(P ) = τ(P + P0) − τ(P ) − τ(P0). So f is a

morphism from E to ker(G(E)→ E). However E is projective and ker(G(E)→ E)

is affine, so f is constant. But f(O) = O so f = O and τ is a homomorphism.

From the definition of the canonical lift, this forces E to be the canonical lift of

E. Finally if τ ′ is the elliptic Teichmüller lift then τ − τ ′ is a morphism from E to

ker(G(E)→ E). And (τ − τ ′)(O) = O, so by the same argument as above, τ = τ ′.

Remark 4.3. Applying Proposition 4.2 we can check the following examples of

canonical lifts. If E is given by y2 + xy = x3 − x2 − 2x − 1 over W (F̄2), then

it is the canonical lift of its reduction modulo two. A computation gives x1 =

1, y1 = x2
0(1+y0). More generally, if k is a field of characteristic 2 and a ∈ k, a 6= 0,

consider the elliptic curve E/k given by y2
0 + x0y0 = x3

0 + a. Its canonical lift

to W2(k) is y2 + xy = x3 + (a, a2) and the elliptic Teichmüller lift is given by

x = (x0, a),y = (y0, (x
2
0 + x0)y0 + x3

0 + ax2
0 + a). The canonical lift to W2(k) of

y2
0 = x3

0 + x2
0 + a over a field k of characteristic three is y2 = x3 + x2 + (a, 0) and

the elliptic Teichmüller lift is x = (x0, x
4
0 + (1 − a)x3

0 + ax0 − a2),y = (y0, x
2
0y0).

For another example, y2 = x3 + x is the canonical lift of its special fiber in charac-

teristic five and the elliptic Teichmüller lift to W2 is given by (x0, y0) 7→ (x,y) =

((x0, x1), (y0, y1)) where x1 = 4x7
0 + x3

0, y1 = y0(x8
0 + 2x6

0 + 2x4
0 + x2

0 + 3). These
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examples show that the bounds in Proposition 4.2 on deg x1 and deg y1 cannot be

any smaller.

Corollary 4.4. Notation as in the theorem. If f ◦ τ 6= F (g) − g + c, for any

g ∈Wl(K), c ∈Wl(Fq), then

|
∑

P∈E0(Fq)

e2πiT (f(τ(P )))/pl | ≤ ((2p)l−1 degG+ 1)q1/2.

Proof. Combine Theorem 3.1 with Theorem 4.1.

Remark 4.5. If E/W2(k) is the lift of an elliptic curve E/k given by a Weierstrass

equation with coordinates x,y, the global sections of OE(rO) are of the form

A + By, where A,B are polynomials in x of degrees at most [r/2], [(r − 3)/2]

respectively. It follows from the examples in remark 4.3 that, in the situation of

Theorem 4.1 in characteristic two, we have deg f1 ≤ 2r+1, which improves slightly

on the bound 4r coming from Theorem 4.1. Correspondingly, we can improve the

bound in the above corollary to (2r + 2)q1/2.

Remark 4.6. It follows from [Bu1], Propositions 1.7 and 1.8, that, if there is a

section of the reduction map from a projective curve X/W (Fq) to its special fibre

X/Fq then X is of genus zero or one. If the genus is zero then the section exists. If

the genus is one and X is ordinary the section exists if and only if X is the canonical

lift of X, hence the restrictions in the above result. It is possible to obtain sections

of reductions of affine curves over Witt vectors of finite length, but the degree of

the sections grow much faster than that given by the above theorem, so the bounds

are correspondingly worse.

5. Applications

We now return to the study of Euclidean weights of algebraic geometric codes

defined using elliptic curves over Galois rings. In order to apply the results of

sections 3 and 4 above, we make a few extra assumptions. Let E be an elliptic

curve defined over the Galois ring A = GR(pl,m) = Wl(Fq), where q = pm. Let E

be the fiber of E over the closed point of SpecA, i.e., the reduction modulo p of E.
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Then E is an elliptic curve over Fq. We now make the additional assumptions that

E is ordinary and that E is the canonical lift of E to A (by which we mean the

reduction modulo pl of the canonical lift of E to W (Fq), as discussed in section 4.)

Let Z0 be an A-point on E and let P0 be the corresponding Fq-rational point

of E. Set E0 = E \ {P0}. Let {P1, . . . , Pn} = E0(Fq), and let Z = {Z1, . . . , Zn},

where Zi = τ(Pi) for i = 1, . . . , n and τ is the canonical lifting of points from

section 4. Let r ≥ 1 and set L = OE(rZ0).

Theorem 5.1. Let A, E, Z, L be as above. Let C = CA(E,Z,L), and let T :

A → Wl(Fp) = Z/pl denote the absolute trace map. Then the minimum squared

Euclidean weight of T (C) satisfies

w2
E(T (C)) ≥ min{2n− ((2p)l−1r + 1)p

m
2 , 4n

π2

p2l
(1 +

π2

3p2l
)}.

Proof. Simply choose the group law for E so that Z0 is the origin and hence P0 is

the origin for E. Then this theorem is a direct consequence of Corollary 4.4. Indeed,

we need only to bound the Euclidean weight of the images of those f of the form

F (g)− g + c, where g ∈Wl(K), c ∈Wl(Fq). In this case, (T (f(P1)), . . . , T (f(Pn)))

is a constant vector so the bound follows from the discussion in section 2.

Corollary 5.2. Use the same notation as above, but now assume that p = l = 2,

so that T (C) is a code over Z/4. Then the minimum Lee weight of T (C), and hence

the minimum Hamming weight of ϕ(T (C)), where ϕ is the Gray map described in

the introduction, satisfies

wL(T (C)) = wH(ϕ(T (C))) ≥ min{n− (2r + 2)2
m−3

2 , n}.

Proof. Immediate from Remark 4.5, since wH(ϕ(T (C))) = wL(T (C)) = 1
2w

2
E(T (C)),

as explained in section 2.

Our methods can also be used to construct low-correlation sequences for use in

CDMA (Code Division Multiple Access) communications systems, which are used

in applications such as cellular telephones. For details on this, the reader is referred

to [KHC] and the references therein. We include here only a very brief overview
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of the basic idea. We consider infinite sequences of period n with symbols in Z/pl.

The idea is to form a large family of such sequences which are pairwise cyclically

distinct (i.e. no sequence is a shift of any other) and which have small correlation.

Here the correlation cst(∆) between sequences s = {s(j)} and t = {t(j)} of period

n for shift ∆ is

cst(∆) =

∣∣∣∣∣∣
n−1∑
j=0

e
2πi(s(j+∆)−t(j))

pl

∣∣∣∣∣∣
One measures whether or not a family of sequences is good by considering the

maximum correlation parameter

Cmax = max{cst(∆) | s, t ∈ F and either s 6= t or ∆ 6= 0}.

In applications, the large family size allows for a large number of users and a small

correlation parameter translates to little interference from one user to another.

A family of sequences can be constructed as follows. Take E as above and

assume that E(Fq) is cyclic of order n, and let P be its generator. Let G be a

Cartier divisor on E/Wl(Fq) consisting of the Galois orbit of the lift of a point of E

having degree r. In particular, G is a sum of distinct points and so is its reduction

G. We will assume that (r, n) = 1 and the following lemma will be useful in the

proof of Theorem 5.4 below.

Lemma 5.3. Let E/Fq be an elliptic curve with n rational points and let r be an

integer, (r, n) = 1. For any point of E of degree r over Fq and for any σ in the

Galois group of Fq(P )/Fq, we have that Pσ − P /∈ E(Fq) \ {O}.

Proof. Let σ be of order d|r. If Pσ − P = P0 ∈ E(Fq), then

O = Pσ
d

− P =

d∑
i=1

Pσ
i

− Pσ
i−1

=

d∑
i=1

(Pσ − P )σ
i−1

= dP0.

However, since d is coprime to n, this implies P0 = O, proving the lemma.

For each class in Γ(E,OE(G))/Wl(Fq), choose a representative f in Γ(E,OE(G))

and define the sequence sf (j) = T (f(τ(jP1))).

Theorem 5.4. Let F be the family of sequences defined above. Then the maximum

correlation parameter Cmax of (F) satisfies

Cmax ≤ 1 + ((2p)l−12 deg G + 1)p
m
2 .
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Furthermore, if deg G and the above bound for Cmax are both less than n, then

|F| = ql(deg G−1).

Proof. The correlation of sf and sg for shift ∆ is

|
n∑
j=1

e2πiT (f(τ(jP1))−g(τ((j+∆)P1)))/pl |.

Consider the automorphism α of E given by translation by τ(∆P1). Let h = f−g◦α.

The above sum is then the kind of sum considered in Corollary 4.4, say, but with

G replaced by G +α∗G. If h ◦ τ is not of the form F (k)−k + c, where k ∈Wl(K)

and c ∈ Wl(Fq), then the result follows from Corollary 4.4 since the degree of the

divisor G + α∗G is at most 2 deg G.

We now assume that h is of the type excluded by Corollary 4.4, so that h =

F (k) − k + c for some k ∈ Wl(K) and c ∈ Wl(Fq). The first Witt coordinate of

the equation (f − g ◦α) ◦ τ = F (k)−k + c is an equation of the form f0− g0 ◦α =

kp0 − k0 + c0. Now from our hypothesis f0 and g0 have simple poles so f0 − g0 ◦ α

also has simple poles. But kp0−k0 +c0 won’t have simple poles unless it is constant,

so f0 − g0 ◦ α is constant.

If ∆ 6= 0, Lemma 5.3 ensures that G and α∗G have disjoint support and therefore

f0 and g0 ◦ α have disjoint polar divisors unless f0 and g0 are both constants.

Therefore, f0 − g0 ◦α constant implies that f0 and g0 are both constants. We take

the (usual) Teichmüller lifts of these constants and subtract them from f , g, so that

we may assume that f0, g0 are both zero. This implies that f = pf ′ and g = pg′

for some f ′,g′ ∈ K, where K is the total quotient ring of rational functions on E.

Using Lemma 2.4, we can write f = pf ′, g = pg′, where f ′ and g′ are in the space

of global sections of the line bundle associated to G. As in the proof of Theorem

3.1, we may consider f ′ and g′ to be defined over Wl−1(K), so we use induction.

Either we have a bound for the exponential sum formed with f ′ − g′ ◦ α which

is better than the bound in the statement of the theorem, or we can repeat the

process and finally get that f and g are constant, and this possibility is excluded

by the construction of our family.

If ∆ = 0, α is the identity, so f0 − g0 = c0, a constant. In order to compute

correlations, the choice of the representative f is immaterial, so we may subtract
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from f the (usual) Teichmüller lift of c0 and assume that c0 = 0. As above f − g =

ph, for some h in Γ(E,OE(G)) and we can proceed by induction on l as before.

To estimate |F|, we note that sf = sg implies that the correlation of the

two sequences is n, so by the above argument f − g is a constant, hence |F| =

|Γ(E,OE(G))|/|Wl(Fq)|. Finally, Γ(E,OE(G)) is a free Wl(Fq)-module of rank

deg G, by Theorem 2.2.
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