
Version of May 21,1992

Companion Forms and Kodaira-Spencer Theory

Robert F. Coleman and José Felipe Voloch *

0. Introduction.

Let p be a rational prime and N a positive integer relatively prime to p. Suppose

f =
∑
anq

n is a normalized eigenform on X1(N) modulo p of weight k. Then

there is a representation ρf of the absolute Galois group of the rationals to GL2(E)

attached to f , where E is a finite field of characteristic p (see [D]). When ap 6= 0

and k > 1, Deligne has shown that the restriction ρf,p of the representation to a

decomposition group at p stabilizes a line.

Suppose f has nebentypus ε. Then, if 2 ≤ k ≤ p, and ap 6= 0, Serre conjectured

[S2] that ρf is tamely ramified above p if and only if there exists an eigenform

g =
∑
bnq

n modulo p of weight k′ =: p + 1 − k on X1(N) such that nan = nkbn.

If g exists it is called a companion form of f . Gross [G] proved this conjecture in

most cases. More precisely, he proved it under the additional assumption that the

semi-simplification of ρf,p is the sum of two distinct one dimensional representations

which is true if and only if k < p or a2
p 6= ε(p). This will be called the exceptional

case. The main result of this paper is:

Theorem 0.1. Suppose f is an ordinary cuspidal eigenform on X1(N) of weight

k where 2 < k ≤ p. Then the representation ρf is tamely ramified above p if and

only if f has a companion form.

We also use Kodaira-Spencer theory to shed some light on the essence of a compan-

ion form. In contrast to [G], the results proven here do not depend on any unproven

compatibilities (cf the introduction to [G]). (The case in which k=p=2 and the semi-

simplification is the sum of two copies of a one dimensional representation remains

open.)

This is closely connected to Serre’s conjecture [S1] that asserts that every odd

irreducible representation of the absolute Galois group of the rationals to GL2(E)
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is that attached to a modular form modulo p , as above, whose weight, level and

nebentypus character are described in terms of the representation . Indeed, if f

is as above and ρf is tamely ramified above p, then Serre’s conjecture on Galois

representations (modified for weight p as in the introduction of [E]) predicts that

ρf ⊗ χ = ρg ⊗ χk, where g is an eigenform of weight k′ and χ is the cyclotomic

character. This is implied by the above theorem and [G], for p > 2, since if a

companion form f ′ exists one can take g = f ′. This paper, together with [E],

settles the question of the weight in Serre’s conjecture (when p > 2). (See [R]

for a more detailed discussion of the current status of Serre’s conjecture.) The

implication, if a companion form exists then ρf is tamely ramified above p, proven

when N = 1 in Serre’s letter to Fontaine [S2], does not seem to be a consequence

of this conjecture.

While we use many of the results and ideas of [G] the point of divergence be-

tween our proof and Gross’s is [G, Proposition 13.14 1)]. That is, we interpret the

existence of a companion form to f as the vanishing of a certain class h in the de

Rham cohomology of the Igusa curve. We generalize [G, Proposition 13.14 4)] in

Proposition 6.8 and answer the question at the end of [G, §13]. That is, we give a

formula for the cup product of h with the de Rham class of a global one form on I.

We then use this formula to establish Serre’s conjecture.

As in [G], our proof is based on the p-adic geometry of X1(pN) combined with

one of Katz’s formulas [K2] for the Serre-Tate local moduli for the deformations

of an ordinary Abelian variety in characteristic p in terms of the relative de Rham

cohomology of the universal deformation. What we need is contained in Theorem

1.1 which is a formula for the logarithmic derivative dq/q of the Serre-Tate q-pairing

between the Tate module of the reduction of a family of ordinary p-divisible groups

G over a complete local p-adic ring R and that of its dual tG in terms of the Kodaira-

Spencer pairing between the family of relative invariant differentials on G and tG.

(In this case, the values of dq/q lie in Ω1
R/Zp

.) (This is an important distinction

between our proof and Gross’s. In [G], Gross used Katz’s formula for log q which

does not contain the information about q necessary to handle the exceptional case.)
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In §2 and §3 we obtain a general formula for the Kodaira-Spencer pairing attached

to a semi-stable curve over a one-parameter infinitesimal deformation of a point. In

§4, using [DR] and [G], we apply these results to modular forms regarding X1(pN)

as a family over Spec(Zp[ζp]) with base Spec(Zp).

Specifically, let G be the ordinary factor of the Tate module of the jacobian of

X1(pN) cut out by the natural action of (Z/pZ)∗. (This will be made more precise

in §4.) Let R be the ring of integers in the completion of the maximal unramified

extension of Zp[ζp]. Let α be an element of TpG⊗R whose reduction (in two senses,

see §4) corresponds via the Cartier-Serre isomorphism to the the global one-form on

the Igusa curve I1(N) with q expansion f(q)dq/q . We obtain a formula, Theorem

4.4, for the leading term of dqG(α, β)/qG(α, β) where qG is the Serre-Tate pairing

attached to G and β is an element of the Tate-module of the dual of G. This formula

is expressed in terms of the cup product of a global one-form attached to β with

the class h mentioned above. In §5, we show that h lies in the unit root subspace

for the action of Frobenius. This means that it is determined by its cup product

with global one-forms and in particular the vanishing of the above leading terms of

dq/q is equivalent to the vanishing of h. Finally, in §6, we complete the proof of

Theorem 0.1 by observing that the vanishing of these leading terms is equivalent to

the tameness of the ramification of ρf,p.

The above theorem has the following interesting corollary which was established

in [DS] for forms f which can be lifted to characteristic zero. However, Mestre [M]

has found examples of forms of weight one which cannot be lifted.

Corollary 0.2. Suppose p > 2. If g is a cuspidal eigenform on X1(N) mod p of

weight one then ρg is unramified above p.

Conversely, Edixhoven has used our results to show that if rho is an unramified

”modular” representation, then ρ = ρg for some form g of weight one. In the case

a2
p 6= 4ε(p) this is also a consequence of [G, Cor. 13.11].

In [G] it is observed that, in the cases handled, ρf,p is tamely ramified if and

only if it is split. This this not true in the exceptional case and finding a criterion
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for the splitting of ρf,p remains an interesting open problem.

We would like to thank A. Ogus and K. Ribet for several helpful conversations

and S. Edixhoven and B. Gross for useful remarks. The second author would like

to thank U. C. Berkeley for its hospitality during the academic year 1991/92, when

this work was done.

1. Katz’s formula for dq/q.

Suppose T is a scheme, S is a scheme over T and A is an abelian scheme over S.

Let ΩA denote the sheaf on S of invariant relative one-forms on A/S and tA the

dual of A. Then one has the Kodaira-Spencer pairing:

κ: ΩA ⊗ ΩtA → Ω1
S/T .

This is constructed, in several equivalent ways in [I], [FC, III §9] and [K, §1]. In

particular, suppose S = Spec(R) where R is a complete local ring with residue field

F of characteristic p and T = Spec(W (F )) where W (F ) nis the ring of Witt vectors

of F . Let f denote the map tA → S and ΩR/W (F ) = Ω1
S/T . Then the sequence of

sheave on tA

0→ f∗ΩR/W (F ) → Ω1
tA/W (F ) → Ω1

tA/R → 0

is exact. Let Kod denote the composition

ΩtA
∼= f∗Ω

1
tA/R → R1f∗f

∗Ω1
R/W (F )

∼= R1f∗OtA ⊗ ΩR/W (F ),

where the second map is the boundary map. Then, κ(ω,tω) = ω.Kod(tω).

One can also define a pairing between the group of invariant one-forms of a p-

divisible group over R and that of its dual into ΩR/W (F ) using the construction in [I,

Corollaire 4.8 (iii)]. One gets the pairing discussed above when the p-divisible group

is the one attached to an abelian variety, identifying the corresponding modules of

invariant differentials. This pairing is clearly functorial for morphisms of p-divisible

groups over R.

For an object X over R, we let X̄ denote its special fiber. We say a p-divisible

group G is ordinary if the dual of the connected subgroup of Ḡ is étale.
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Suppose the residue field F of R is algebraically closed. If m is the maximal

ideal of R, a construction of Serre and Tate gives a pairing q:TpḠ×T tpḠ→ 1+m for

an ordinary p-divisible group G which in turn gives local parameters on the local

moduli space of p-divisible groups over an Artin local ring of residue characteristic

p (see [K2] and [G,§14]). As is already clear from [G], understanding the Serre-Tate

parameters is fundamental for a proof of Serre’s conjecture on companion forms. In

[K2], Katz gives formulas for the Serre-Tate parameters in terms of the Kodaira-

Spencer pairing. We will need the following theorem which is a corollary of Katz’s

results.

Suppose G and tG are dual p-divisible groups over R. If α ∈ TpG, we let

ωα = α∗(dt/t) ∈ ΩtG, viewing α as a homomorphism from tG to Gm the formal

multiplicative group and where dt/t is the canonical invariant form on Gm. For

a ∈ R∗, let d log(a) = dR/W (F )a/a ∈ ΩR/W (F ).

Theorem 1.1. SupposeR is as above, F is algebraically closed andG is an ordinary

p-divisible group over R. If α ∈ TpḠ and tα ∈ T tpḠ, we have:

d log q(α,tα) = κ(ωtα, ωα) .

Proof. Suppose A is an ordinary abelian variety over F and R is the coordinate

ring of the moduli space of the universal deformation A of A/F . Then, if G is

the p-divisible group of A, this is [K2, Theorem 3.7.1]. It then follows for an

abelian scheme over arbitrary R with ordinary reduction by functoriality. The full

result follows from this and functoriality since we can embed an arbitrary ordinary

p-divisible group in the Tate-module of an abelian scheme over R with ordinary

reduction. Indeed, by the theorem of Serre-Tate [K2, Theorem 1.2.1] it suffices

to embed the special fibre of G into the p-divisible group of an ordinary abelian

variety. By adding the appropriate number of copies of Qp/Zp or µp∞ to G we can

assume that the étale and connected parts of G have same dimension. Its reduction

is then the p-divisible group of an ordinary abelian variety since there is only one

p-divisible group with étale and connected parts of the same given dimension over
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the residue field of R as F is algebraically closed and it is the p-divisible group of

an ordinary abelian variety.

Note. Suppose R = Zp[ζp] where ζp is a primitive p-th root of unity. Then

W (F ) = Zp and ΩR/W (F )
∼= R/(1 − ζp)

p−2R and is generated by dζp. For

a ∈ 1 + (1− ζp)R, d log(a) does not necessarily equal d(log(a)). (Note thatlog(a) is

the the maximal ideal of R in this case as e < p− 1). For example, d(log(ζp)) = 0

while d log(ζp) = −dπ where π ∈ R such that πp−1 = −p and (1− ζp)/π ≡ 1 modπ.

(This point is crucial for us and perhaps explains why Gross’s proof did not handle

the exceptional case. ) Actually, the above equality is a consequence of the stronger

congruence:

(1− ζp) +
(1− ζp)2

2
+ . . .+

(1− ζp)p−1

p− 1
≡ π modπp+1

which the reader may work out as a pleasant exercise.

Now let R denote the ring of integers in the completion of a maximal unramified

extension of Qp(µp). We will apply the above result whenG is a p-divisible subgroup

with ordinary reduction over R of the p-divisible group of the jacobian of X1(pN).

The Kodaira-Spencer map can be calculated on the curve and this will be done in

§3 extending some work of Friedman-Smith [FS] and Fay [F].

2. de Rham cohomology of curves.

Suppose X is a smooth irreducible complete curve over S = Spec(F ) and D is a

non-trivial reduced effective divisor on X. Let U = X−D. Let η denote the generic

point of X. Consider the complex of groups

DX,D : OX(U)→ Ω1
X/S(U)⊕OX,η/OX,D → Ω1

X,η/Ω
1
X/S(logD)D (2.1)

where the first arrow takes a section h to (dh, h) and the second takes a pair (ω, g)

to ω − dg. This complex computes the cohomology of the de Rham complex with

log poles on D (i .e. the hypercohomology of the complex Ω
.

X/S(logD)). We can

prove this as follows:
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Consider the bi-complex S defined by

Si,j =

{
ΩiX/S(U), if j = 0

ΩiX/S,η/Ω
i
X/S(logD)D, if j = 1.

Then clearly the associated simple complex is DX,D. Now if V is an affine neigh-

borhood of D, the bi-complex TV

T i,jV =

{
ΩiX/S(U)⊕ ΩiX/S(logD)(V ), if j = 0

ΩiX/S(U ∩ V ), if j = 1

computes de Rham cohomology. Now lim
⇀
V

TV is the bi-complex T where

T i,j =

{
ΩiX/S(U)⊕ ΩiX/S(logD)D, if j = 0

ΩiX/S,η, if j = 1.

As this is clearly quasi-isomorphic to S we get what we want.

Suppose ω is an element of Ω1
X/S(nD)(X) and (n−1)! is invertible. Then, there

exists a section h of OX((n− 1)D)D such that ω− dh has at worst simple poles on

D. Moreover, h is well defined modOX,D. Hence, associated to such an ω we have

a well defined class [ω] in the H1(X,Ω
.

X/S(logD)). If ω has zero residues, this class

lies in the image of H1(X,Ω
.

X/S).

3. Kodaira-Spencer for semi-stable curves.

Let R = F [t]/(tb+1) where b ≥ 0, F is a field of characteristic p and b < p if p 6= 0.

Let X be a semi-stable curve over R and let s:X → Spec(R) denote the structural

morphism.

Let R× denote the log-scheme associated to the pre-log-structure N→ R, 1 7→ t.

(See [Ko] for the foundations of log-schemes.) Let MR denote the corresponding

monoid. The reduction of R× to F , the “punctured point,” we denote by F×. We

put the trivial log-structure on F and denote this log-scheme by F as well. It follows

that there is an element T ∈ MR which maps to t and Ω1
R×/F is a free R module

generated by d log T .
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We will put a log-structure on X which is smooth over R×, in the following way:

We suppose X̃ a lifting of X to a semi-stable curve over R̃ where R̃ is a discrete

valuation ring such that the generic fiber of X̃ is smooth over the generic point of R̃.

On X̃ and R̃ we have a natural log-structure which is the subsheaf of the structure

sheaf whose sections become invertible upon the removal of the special fiber. We

take X× to be the reduction of this log-scheme to R. This actually only depends

on X̃ modmb+2 where m is the maximal ideal of R̃. We let α:MX → OX be the

corresponding log-structure. Denote the corresponding log-scheme X×.

We may view MR as a submonoid of MX(X). Moreover, H1(X,Ω1
X×/R×) ∼= R.

(Probably the results in this section will remain valid for any smooth log-structure

on X over R× with this property.) We also have an exact sequence of sheaves (see

[Ko, Proposition 3.12])

0→ s∗Ω1
R×/F → Ω1

X×/F → Ω1
X×/R× → 0 . (3.1)

Let Kod:H0(X,Ω1
X×/R×) → H1(X, s∗Ω1

R×/F ) ∼= H1(X,OX) ⊗ Ω1
R×/F denote the

boundary map in the long exact sequence obtained by taking cohomology of the

above exact sequence. This sequence and Kod are functorial in maps of smooth

log-structures. We let d denote the boundary map for the complex Ω
.

X×/R× and d′

the boundary map for the complex Ω
.

X×/F . Moreover, when X is smooth over R,

Ω1
X×/R×

∼= Ω1
X/R, the sequence (3.2) below is exact and this Kod is the composition

of the obvious generalization of the map Kod discussed in §1 and the natural map

from H1(X,OX) ⊗ Ω1
R/F into H1(X,OX) ⊗ Ω1

R×/F (which is an injection when

p = 0 or b < p− 1).

Now suppose X is a semi-stable curve over R (i.e. locally isomorphic to xy = t

in the étale topology)whose reduction mod t is X̄ =:C1 ∪ C2 where C1 and C2 are

smooth irreducible curves. Let ιi be the inclusion map Ci → X and D = C1 ∩ C2.

Let U1 = X − C2 and U2 = X − C1.

Theorem 3.1. Suppose ω is in the image of the natural map from H0(X,Ω1
X/R)

to H0(X,Ω1
X×/R×) and ω|U2

= tbη for η ∈ Ω1
X/R(U2). Then

η̄: = η|C2
∈ H0(C2,Ω

1
C2/F

((b+ 1)D)) .
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In particular, we obtain a cohomology class [η̄] ∈ H1(C2,Ω
.

C2/F
(logD)) by the

methods of §2. If ν is in the image of H0(X,Ω1
X/R) in H0(X,Ω1

X×/R×) and

ν|U1
∈ tbΩ1

X×/R×(U1) then

ν.Kod(ω) = ([ν|C2
], [η|C2

])C2
b tbd log T ,

where ( , )C2
is the cup product pairing between H1(C2, ID → Ω1

C2/F
) and

H1(C2,Ω
.

C2/F
(logD)).

As we shall see, the hypothesis that ω is in the image of H0(X,Ω1
X/R) follows

from the other hypotheses if b > 0.

Proof. We may suppose F is algebraically closed. We will first compute Kod(ω).

For each Q ∈ D, let UQ be an affine open neighborhood of Q.

Using the exactness of (3.1), we can lift ω|Ui
to ωi ∈ Ω1

X×/F (Ui) for

i ∈ {1, 2} ∪ D. Then ωi − ωj = fi,jd
′ log T for some fi,j ∈ OX(Ui,j) where

Ui,j = Ui ∩ Uj . It follows that the class Kod(ω) is represented by the one-cocycle

Ui,j 7→ fi,jd
′ log T .

Now we will be a little more careful about our choices. First, we may assume

that there are elements xQ, yQ ∈ MX(UQ) such that xQyQ = T , α(xQ) and α(yQ)

are local parameters at Q and α(xQ) vanishes on C2 ∩ UQ. We also suppose that

Q′ 6∈ UQ for Q′ different from Q in D. By the exactness of the sequence of sheaves:

s∗Ω1
R/F → Ω1

X/F → Ω1
X/R → 0 . (3.2)

there exists an η̃ ∈ Ω1
X/F (U2) lifting η. The image of the form tbη̃ in Ω1

X×/F (U2) lifts

ω|U2
and is independent of choices. We take this to be ω2. We may also suppose ω1

is in the image of Ω1
X/F (U2). Now fix Q and set x = α(xQ). We will write d log xQ

as d log x and d log yQ as d log y (and similarly with d′ in place of d). Note that

d log x+ d log y = 0 and d′ log x+ d′ log y = d′ log T .

We may expand ω in x and y at Q and write

ω = f(x)d log x+ g(y)d log y
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at Q, where f(x) and g(y) are power series in x and y , respectively, over R and

f(0) = 0. Using the fact that ω|U2 ≡ 0 mod tb we see that f(x)−g(y) ≡ 0 mod (x, t)b

and this in turn implies f(x) ∈ (x, t)bF [[x]] and g(y) ∈ tbF [[y]]. Suppose

f(x) =
∑∞
n=1 anx

n. Let r(x) =
∑b
n=1 anx

n/n. Then

t r′(t/y) ≡ 0 mod tb .

Write

ω − dr(x) = xb+1kd log x+ tbhd log y

where h and k are elements of OX(UQ) and tbh ∈ yOX(UQ). (This is where

we use the hypothesis that ω is in the image of H0(X,Ω1
X/R) and as we re-

marked above it is only needed when b = 0.) This implies that ω2 equals

−xr′(x)d′ log y+ tbhd′ log y on U2,Q since xr′(x) is divisible by tb on U2,Q, xb+1 = 0

on U2,Q and d′ log y ∈ Ω1
X/F (U2,Q). Set ωQ = d′r(x) + xb+1kd′ log x + tbhd′ log y.

Then ωQ lies in the image of Ω1
X/F (UQ).

Then,

ωQ − ω2 = d′r(x) + xr′(x)d′ log y

= xr′(x)d′ log T + r(d′)(x)d′t .

(Here, r(d′) is the polynomial obtained from r by applying d′/d′t to its coefficients.)

Now

fQ,2 = xr′(x) + tr(d′)(x)

= t/y · r′(t/y) + tr(d′)(t/y)

= tbu(y−1)

where u =: uQ is a polynomial of degree at most b. Moreover, computing each side

of the relation

d′ωQ − d′ω2 = d′(tbu(y−1)d′ log T )

independently, yields

η̄ − 1

b
dū(y−1) = vd log y
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where v =: h̄|U2 ∈ OC2(U2,Q ∩ C2). (Here we used that xb+1 = 0 and

tbd′h ∧ d′ log y = 0 on U2.) This yields the the first part of the theorem In fact,

this means ({η̄, vQd log y}, b−1{uQ(y−1
Q )}) is a hypercocycle representing the class

[η̄]. We don’t have to worry about UQ,Q′ because it is contained in U1 ∪ U2.

Now we finish the proof of the theorem. The class ν.Kod(ω) is represented by

the cocycle Ui,j 7→ ri,j =: fi,jν⊗d′ log T . Since, f1,Q ∈ tOX(U1,Q) by the exactness

of (3.2) it follows that r1,Q = 0. In fact, it follows that ν.Kod(ω) = tbγ ⊗ d′ log T

where γ ∈ H1(X,Ω1
X×/R×). Moreover, γ̄ is the image of b(ι∗2ν.[η̄]) under the homo-

morphism

H1(C2,Ω
1
C2/F

)→ H1(X̄,Ω1
X̄×/F×)

coming from the natural map ι2∗Ω
1
C2/F

→ Ω1
X×/F× . The theorem follows from the

naturality of the trace map.

There is an exact sequence of complexes

0→ s∗Ω1
R×/F ⊗ Ω

.

X×/R× [−1]→ Ω
.

X×/F → Ω
.

X×/R× → 0 .

Taking cohomology, we get a log-connection

∇ : H1(X,Ω
.

X×/R×)→ H1(X,Ω
.

X×/R×)⊗ Ω1
R×/F .

The log-structure induced on C2 from the map C2 → X is the log-structure

associated to the divisor D on C2. We denote the corresponding log-scheme by

C×2 . Now fix a divided power structure on R so that (T ) is a divided power ideal

(this determines it when b < p − 1). Then H1(X,Ω
.

X×/R×) is canonically isomor-

phic to H1
Cris(X̄

×/R×) and hence we have a natural map from H1(X,Ω
.

X×/R×) to

H1
Cris(C

×
2 /R

×). Let Ui = X − Ci. The following underlies the above theorem:

Theorem 3.2. Suppose p > 0, ω ∈ H0(X,Ω1
X//R) and ω|U2

= tbη for

η ∈ Ω1
X/R(U2). Then η̄: = η|C2 ∈ H0(C2,Ω

1
C2/F

((b + 1)D)) and if b + 1 ≤ p

the image of ∇[ω] in H1
Cris(C

×
2 /F

×)⊗ Ω1
R×/F is btb[η̄]d log T .

This may be proved by first observing that ι2 is an exact closed immersion and

X is log-smooth. This means one can compute the crystalline cohomology of C×2
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over R× by considering the divided power log-de Rham complex on the log-divided

power neighborhood of C×2 in X×. Making this explicit and using the arguments

in the proof of the above theorem yields this theorem.

4. Applications to modular forms.

Suppose N is a positive integer and p > 2 is a prime not dividing N . In this section

we will apply the results of the preceeding sections to modular forms of weights

2 < k ≤ p on X1(N) mod p.

We will follow the notation of [G]. In particular, suppose P and M are relatively

prime positve integers. Then we have automorphisms 〈d〉P and wξ of X1(PM),

where d ∈ (Z/PZ)∗ and ξ is a P -th root of unity, described on points as follows:

Suppose E is an elliptic curve and α:µPM → E is an embedding . Write α = β · γ

where β:µM → E and γ:µP → E are embeddings and let φ be the natural isogeny

E → E/Im(γ). Let Q be the point of order P on E such that under the Weil pairing

(γ(ξ), Q) = ξ. Then, 〈d〉P (E,α) = (E, β ·dγ) and wξ(E,α) = (E′, (φ◦β) ·γ′) where

E′ = E/Im(β) and γ′:µP → E′ is the embedding which takes ξ to φ(Q). (See [G,

Proposition 6.7] for relations among these automorphisms.) We will let 〈 〉 denote

〈 〉PM . When we speak of the q-expansion of a form on X1(PM), we mean the

q-expansion at the cusp corresponding to the inclusion µPM → Gm.

Fix a primitive p-th root of unity ζ =: ζp ∈ Q̄p and let π be the (p−1)-st root π

of −p in Qp(ζ) such that (1− ζ)/π ≡ 1 modπ. By R we will henceforth mean the

ring of integers in the completion of a maximal unramified extension K of Qp(ζ)

and F will denote the residue field of R.

Let X denote the base change to R of canonical model for X1(pN) over Zp[ζp]

described by Deligne-Rapoport [DR, V §2] (see also [G, §7]). It is semi-stable in the

sense of §3 if N ≥ 4. As discussed in [G, Proposition 7.1], the reduction X̄ of X

consists of two components I and I ′ crossing normally at a finite set of points. The

curve I is canonically isomorphic to the Igusa curve I1(N) and the singular points

of X̄ are the supersingular points SS on I1(N). If ξ is a primitive p-th or pN -th

root of unity the reduction of wξ is an automorphism of X̄ which interchanges I
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and I ′. Let w =: wζ . If ξ is a primitive N -th root of unity or d ∈ (Z/pNZ)∗ then

the reductions of wξ and 〈d〉 are automorphisms of X̄ which preserve I and I ′.

Let θ be the operator on mod p modular forms on X1(N) which acts on

q−expansion as qd/dq. If k is a weight, we let k′ = p + 1 − k. If f is a cusp

form of weight 2 < k ≤ p on X1(N) we let f ′ = θk
′
f . This is a cusp form of

filtration 2(p + 1) − k by [G, Propostion 4.10]. By pullback, we identify forms of

weight k on X1(N) with forms of weight k on I. If N > 2, let a be the weight

one modular form on I whose q-expansion is 1. Otherwise, let a2 denote the weight

2 modular form whose q expansion is 1. Then ap−1 = (a2)(p−1)/2 is the Hasse

invariant regarded as a weight p − 1 modular form on I. For a modular form f of

weight k on X1(N), we let ωf denote the differential form on I whose q-expansion
¯

is (f/ak−2)dq/q. (We note that k must be even if N ≤ 2.) It follows, by [G, Thm.

5.8], if 2 < k ≤ p, ωf ′ has poles only at the supersingular points of order at most

k′ + 1 ≤ p if N > 2 and (k′ + 1)/2 ≤ p if N ≤ 2. (This will also follow from the

next proposition and Lemma 3.3.) Now ωf ′ |〈d〉p = dk
′
ωf ′ so it follows from [G,

Propositon 5.2] that it is of the second kind if k 6= 2. Thus, by the discussion in

Section 2, it defines a de Rham cohomology class [f ′] =: [ωf ′ ] on I.

Let t: (Z/pZ)∗ → Z∗p be the Teichmüller character. We call a cusp form F of

weight 2 on X1(pN) such that the Fourier coefficients of F and F |w lie in R regular.

If f is a form of weight k on X1(N) mod p we say that F is a lifting of f if F is regular

F̄ (q) = f(q) and F |〈d〉p = t(d)−k
′
. This implies that the reduction of the regular

differential form on X ωF =: F (q)dq/q restricted to I equals ωf =: (f/ak−2)dq/q.

Let Tl, Us and U ′p where l and s are primes, l 6 | pN and s | pN , be the Hecke

operators on X1(pN) defined in [G]. We set Tl = Ul. We let H denote the subalgebra

of End(J1(pN)) generated by the Tl and 〈d〉 for d ∈ (Z/pNZ)∗.

Proposition 4.1. Suppose f is a cusp form of weight k, 2 < k ≤ p on X1(N) of

nebentypus ε. Let F be a form of weight 2 on X1(pN) lifting f . Then,

(
F |Upw

)
(q) ≡ −ε(p)f ′(q)(k′ − 1)!πk

′
modπk

′+1.

13



Proof. First, F |Upw = G|U ′p where G = F |w. Next, by [G, Props. 6.7 and 6.10],

G|U ′p(q) ≡
∑
d∈F∗p

G|wζd(ζdq)

≡
∑
d∈F∗p

F |〈p〉
N
〈−d〉p(ζdq)

≡
∑
d∈F∗p

t(−d)−k
′
F |〈p〉

N
(ζdq) modπk

′+1 mod p,

and p ≡ 0 modπk
′+1. Now, if F |〈p〉

N
(q) =

∑
n≥1Anq

n,

∑
d∈F∗p

t(−d)−k
′
F |〈p〉

N
(ζdq) =

∑
n≥1

∑
d∈F∗p

t(−d)−k
′
ζdnAnq

n

=

( ∑
d∈F∗p

t(−d)−k
′
ζd
)( ∑

n 6≡0 mod p

t(n)k
′
Anq

n

)
.

By Stickelberger’s Theorem,
∑
d∈F∗p

t(−d)−k
′
ζd ≡ −(k′ − 1)!πk

′
modπk

′+1. (In

fact, this congruence is true modulo pπk
′
.) Also F |〈p〉

N
(q) ≡ ε(p)f modπ so∑

n 6≡0 mod p t(n)k
′
Anq

n ≡ ε(p)θk
′
f modπ . Putting all this together we obtain the

result.

Let ωX/R denote the sheaf of regular differentials on X over R. In particular,

if F is a weight two cusp form then F is regular if and only if ωF is a regular

diferential ([G, Prop. 8.4]). Let Z denote the correspondence
∑
d∈F∗p
〈d〉p ∈ H. Let

W ord =
⋂
m

Ump H
0(X,ωX/R)Z and

W anti−ord = wW ord =
⋂
m

U ′mp H0(X,ωX/R)Z .

We call the elements of W ord ordinary forms.

Corollary 4.2. Suppose ω = ωF |Up
where F is a regular form of weight 2 and

ω|〈d〉p = t(d)−bω, 0 < b < p− 1 then ω|X1(pN)−I ≡ 0 modπb.

Let TJ1(pN) denote the p-adic Tate module of J1(pN). Then, there exists dual

ordinary p-divisible groups G and G′ over R such that

14



TG =
⋂
n

Unp (T (J1(pN)Z) and TG′ =
⋂
n

U ′np (T (J1(pN)Z).

Moreover, wξTG = TG′ if ξ is any primitive p-th or pN -th root of unity. In fact, if

ξ is a primitive pN -th root of unity and α ∈ H, wξ ◦ α = ros(α) ◦ wξ where ros is

the Rosati involution. In particular, H acts on G and H ′ = ros(H) acts on G′.

Lemma 4.3. There are natural isomorphisms

TḠ′ ⊗Zp
R→W ord → ΩG and TḠ⊗Zp

R→W anti−ord → ΩG′ .

Proof. The isomorphism TḠ′ ⊗Zp
R ∼= ΩG was described in §1 (see also [K2 §3.3]).

Let J× denote a semi-stable model of the Jacobian of X1(pN) with the log-structure

over R× coming from the singular divisor. Let R×p denote the ring of integers in the

completion Cp of an algebraic closure of K with the log-structure extending that on

R. By Hodge-Tate theory, we have a natural map h:T (J)⊗Zp
Rp → H0(J,Ω1

J×/R×p
)

whose cokernel is torsion and whose kernel is spanned over Rp by the elements on

whichGalcont(Cp/K) acts via the cyclotomic character. Also, the following diagram

commutes
TG′ → T (J)
↓ ↓

ΩG ⊗Rp ← H0(J,Ω1
J×/R×p

)

where TG′ → ΩG is the natural map which factors through TḠ′ → ΩG. As the

kernel of TG′ ⊗Rp → ΩG′ ⊗Rp is also spanned by the elements on which galois

acts via the cyclotomic character, the image of TG′ ⊗Rp in H0(J,Ω1
J×/R×p

) maps

isomorphically onto ΩG ⊗Rp.

Now by functoriality

h(e(α)) = ros(e)h(α), (4.1)

where α ∈ T (J) and e is an endomorphism of J . It follows the image of TG′ ⊗Rp

is contained in W ord ⊗Rp with a torsion quotient. As this module is torsion free,

above assertion about implies that W ord ⊗Rp is naturally isomorphic to ΩG ⊗Rp.

Taking Galcont(Cp/K) invariants yields the first set of isomorphisms. The second

set follows similarly.
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We, henceforth, identify W ord with ΩG and W anti−ord with ΩG′ . If α is in the

Tate module of G or G′ we let ωα denote its image via the respective map discussed

in the lemma.

Moreover, we have the Serre-Tate pairing

q:TḠ× TḠ′ → 1 + πR

described in Section 1. This gives us a pairing

(d log) ◦ q : TḠ× TḠ′ → ΩR/Zunr
p

where Zunrp is the completion of the maximal unramifed extension of Zp in R and

d log: a 7→ da/a. We extend d log q by scalars to obtain a pairing,

(
TḠ(F)⊗Zp

R
)
×
(
TḠ′(F)⊗Zp

R
)
→ ΩR/Zunr

p
.

For an integer j, let Ḡ(j) denote the subgroup on which (Z/pZ)∗ acts via tj .

Theorem 4.4. Suppose f is a cusp form of weight 2 < k ≤ p on X1(N) mod p of

nebentypus ε such that f |Up = apf and ap 6= 0. If α ∈ TḠ(−k′)⊗R, β ∈ TḠ′(k′)⊗R

and ωα|I = ωf , then

d log q(α, β) = (ε(p)/ap)
(
w∗ωβ |I , [f ′]

)
I
k′!πk

′−1dπ + . . .

Proof. First suppose N ≥ 4 so that X is semi-stable. Let F be a weight 2 cusp

form such that ωβ = ωF . Then, F is a lifting of f and ωros(Up)β = ωF |Up
. It follows

from Proposition 4.1 that w∗ωros(Up)β |X−I′ equals

−ε(p)ωf ′(k′ − 1)!πk
′
+ . . .

Now, ros(Up)β ≡ apβ modπTḠ′(k′)⊗R as the map from Ḡ′[p]⊗F to H0(I,Ω1
I/F )

induced from γ 7→ ωγ |I is an injection which commutes with Hecke after it is twisted

by the Rosati involution (see (4.1)). Hence the theorem follows in this case from

Theorem 1.1, Corollary 4.2 and Theorem 3.1.
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Now suppose N ≤ 3. Then, we may lso suppose p > 3 as there are no forms of

odd weight on X1(1) or X1(2). Let l 6= p be a prime and let d denote the degree of

X1(lN) over X1(N). Passing from level N to level Nl multiplies both sides of the

formula by d. Hence, its truth for level N follows from its truth for level Nl as long

as (p, d) = 1. Since, d = (l + 1)(l − 1) if N ≥ 3 and (l + 1)(l − 1)/2 if N is 1 or 2

this concludes the proof.

5. Frobenius.

The results of this section were originally contained in [C1]. Now suppose I := I1(N)

is the complete Igusa curve over Y the the modular curve X1(N) mod p. Let σ

denote the Frobenius automorphism of F̄p. Since I is defined over Fp there is a

natural action of Gal(F̄p/Fp) on sections of OI and of Ω1
I . A reference for the results

on Igusa curves used in this section is [G, §5]. There is a canonical differential with

q-expansion dq/q which has simple poles at all the cusps and zeros of order p at the

supersingular points and we will denote it dq/q. (Note that dq/q = ωA where A is

the Hasse invariant form on X1(N) in the notation of §4). Moreover,

dq

q

∣∣〈b〉N =
dq

q
; (5.1)

dq

q

∣∣〈c〉p = c−2 dq

q
. (5.2)

Define an operator M on differentials by the formula

Mν = d
( ν

dq/q

)
.

Suppose ω is a holomorphic differential such that

ω|〈d〉N = ε(d)ω; (5.3)

ω|〈c〉p = c−jω; (5.4)

σCω = apω, (5.5)

where 1 ≤ j ≤ p − 1, σ is Frobenius and C is the Cartier operator. Let SS denote

the supersingular locus on I.
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Theorem 5.6. For all supersingular points y ordyM
j(ω) ≤ p and

σ−1Frob[M jω] =
ap
ε(p)

[M jω].

where [M jω] is the cohomology class in H1(I,Ω
.

I/F̄p
(logSS)) associated to M jω as

in §2.

The first part follows from [G, Prop. 9.9], identifying ω with a form of weight

p+ 1− j, M with θ and σC with Up. In the case j = 1, it is obvious. Also, we will

only prove the second part for j = 1 (weight p) in this paper, the remaining cases

are dealt with in [C2] using rigid analysis.

We may suppose N ≥ 4 as the map in cohomology resulting from changing

the level from N to Nl where l 6= p is a prime is a functorial injection as long as

p 6 | (l2 − l) and if p = 2 or 3, I1(N) has genus zero if N < 4.

Lemma 5.7. Let y be a supersingular point on I and let v be a local parameter

at y. Then

Resy

(
v−(p+1) dq

q

)p−1

=
( v

vσ2 |〈−p〉−1
N

)
(y).

Note. the differential on the left hand side has a simple pole at y since N ≥ 4.

This is false for N < 3 or if N = 3 and j(y) = 0. If one replaces the exponents p+1

and p− 1 by ordy(dq/q) + 1 and (p2− 1)/(ordy(dq/q) + 1) the statement should be

still true for these levels. Also, 〈−p〉N acts like σ−2 on the supersingular points.

We will prove this by first interpreting both sides as values of modular forms on

SS, the supersingular locus on Y , at the image of y on Y .

Let x be a supersingular point on Y . Let ω be a non-zero section of ωx. Let w

be a local parameter at x such that dw|x corresponds to ω⊗2 via Kodaira-Spencer

(this is another manifestation of the Kodaira-Spencer map different from that used

elsewhere in the paper). Let v denote a parameter at the point y above x on I such

that vp−1 ≡ w modm2
x. Then set

r(x, ω) = Resy(v−(p+1) dq

q
)p−1

s(x, ω) = (
v

vσ2 |〈−p〉−1
N

)(y).
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Both r and s are both modular forms of weight 2(p+ 1) on SS. Of course, there

is another well known modular form of weight 2(p+1) on SS, namely B2 (see [S3]).

Proposition 5.8. Both r and s are equal to B2.

Proof. We will first use the second definition of B in [E, §7.2] which translates

using the above notation into: let w = A/ω⊗p−1, which is a parameter at x. Then

B(x, ω)ω⊗2 corresponds to dw under via Kodaira-Spencer. Let b = B(x, ω). Now,

let δp−1 = b and v = δ−1a/ω. Then,

Resy(v−(p+1) dq

q
) = δp+1Resy((

ω

a
)p+1 dq

q
)

= δ2bResy(
ωp+1

ap−1
)

= δ2bRes(
dw

bw
)) = −δ2.

This takes care of r and, in fact, can be used to give yet another definition of B

when p is odd.

Now

s(x, ω) = δp
2−1
( a/ω

(a/ω)σ2 |〈−p〉−1
N

)
(y)

= bp+1
(ωσ2 |〈−p〉−1

N

ω

)
(x).

If E denotes the canonical model of the supersingular elliptic curve corresponding

to x over Fp2 (i.e. with Frobenius endomorphism −p) and we think of ω as global

section of Ω1
E , then (ωσ2 |〈−p〉−1

N

ω

)
(x) = ωϕ/ω

where ϕ is σ2 on E. But this is b1−p by a theorem in Serre’s course [S3] . (I.e.

Bp−1(x) = (ωϕ/ω)ω⊗p
2−1).

Proof of Theorem 5.6.

Let h = ω
dq/q . Let v be a local parameter at a supersingular point y on I such

19



that v|〈d〉p = d−1v. We may expand dq/q and h in v, using (5.2) and (5.4), to get

dq

q
=
∞∑
n=1

cn(v)v2+n(p−1) dv

v

h =

∞∑
n=−1

bn(v)v−1+n(p−1)

at y. Then [Mω] is represented by the cocycle α := (ω, f) where f(v) = b0(v)v−1

for any v as above. But since dh = Mω, this class is also represented by β := (0, g)

where g(v) = −b−1(v)v−p. Finally, if φ is the Frobenius endomorphism of I,

σ−1Frob(M(ω)) is represented by φ∗α = (0, φ∗f) and φ∗f(v) = b0(vσ)v−p.

The fact that C(dq/q) = dq/q implies that c2(v) = 0. Hence,

ω = (c1(v)b−1(v)v + c1(v)b0(v)vp + higher terms)dv/v.

Since dq/q is defined over Fp, c1(vσ) = c1(v)p. Hence, (5.5) implies that

c1(v)pb0(vσ) = apc1(v)p
2

b−1(vσ
2

).

And (5.3) combined with (5.1) implies that

b−1(vσ
2

) = −ε(p)−1b−1(v)
(vσ2 |〈−p〉−1

v

)p
(y).

Hence

b0(vσ) = − ap
ε(p)

b−1(v)
(
c1(v)p−1

(vσ2 |〈−p〉−1

v

)
(y)
)p

= − ap
ε(p)

b−1(v),

by the above lemma as c1(v) = Resy(v−(p+1)dq/q). Hence, φ∗α = (ap/ε(p))β

which completes the proof.

Corollary 5.9. Suppose ap 6= 0. Then ([M jω], ν)I = 0 for all ν ∈ H0(I,Ω1
I/F) if

and only if [M jω] = 0.

Proof. Theorem 5.6 implies [M jω] lies in the unit root subspace of H1
DR(I/F ). The

corollary follows since this subspace intersects trivially with the subspace spanned

by the classes of global differentials on I.
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6. End of the proof.

Let f =
∑∞
n=1 anq

n be a normalized ordinary cuspidal eigenform on X1(N)

of weight 2 < k ≤ p and nebentypus ε defined over F, the residue field of

R . Let E =:Ef denote the field generated by the coefficients of f . Let

ρf :Gal(Q̄/Q) → Gl2(Ef ) be the representation attached to f as in [G, Propo-

sition 11.1].

Let χ denote the cyclotomic character and if a ∈ F let λ(a) denote the character

on Gal(Q̄p/Qp) → F∗ which takes an element whose restriction to K is σ to the

element a of F∗. As in [G, Proposition 12.1], ρf,p in matrix form with respect to

some basis is (
χk−1 · λ(ε(p)/ap) ∗

0 λ(ap)

)
. (6.1)

Let m =: mf denote the maximal ideal of H associated to f as in [G, Proposition

12.4] and m′ = Ros(m). It follows from [G, Prop. 12.9 4)] that over Qp(ζp)

B =:Bf =:G′[m′] has the structure of an E-vector space scheme and sits in a short

exact sequence of E-vector space schemes

0→ B0 → B → Be → 0. (6.2)

where B0 is the maximal connected subgroup of B and Be is the maximal étale

quotient group of B. Moreover, the vector space schemes in (6.2) all have canonical

flat extensions to Zp[ζp]. The group Gal(Q̄p/Qp) acts on the semi-simplification

of B0(Q̄p) which has dimension at least one by λ(ε(p)/ap) · χk−1 and on Be(Q̄p)

which has dimension one by λ(ap). From now on we will regard (6.2) as a sequence

over R. As such we get an E-bilinear pairing as in [G, §13]

qf : (tB)e(F)×Be(F)→ (R∗/R∗p)⊗Fp
E∨.

Here tB is the Cartier dual of B. It is canonically isomorphic to G[p]/mG[p]. By

[BLR, Theorem 1] (See also [BLR, Theorem 2]), if ρf is irreducible B(Q̄) is a direct

sum of copies of ρf . By [E, Thm. 9.2] if the number of copies is strictly greater

than one, i.e. the multiplicity of ρf is greater than one, ρf is unramified.
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Lemma 6.1. The image of qf lies in the χk
′
-eigenspace of (R∗/R∗p)⊗ E∨.

Proof. If the multiplicity of ρf is one this follows as in [G, 13.5 2)]. If the multiplicity

is greater than one this follows from the facts that ρf is unramified and B(Q̄) is a

direct sum of copies of ρf .

Let tr∨ denote the linear map from E∨ to Fp, h 7→ h(1). Let d log qf denote the

pairing

(tB)e(F)×Be(F)⊗Fp F⊗Fp F→ ΩR/Zp

obtained from d log⊗tr∨ by extension of scalars.

Proposition 6.2. Suppose ρf is irreducible and k > 2. Then, the following are equivalent:

(i) The representation ρf is tamely ramified above p.

(ii) The pairing d log qf modπk
′
ΩR/Zp

is trivial.

(iii) The pairing d log qf modπk
′
ΩR/Zp

is degenerate.

First we prove the following:

Lemma 6.3. Suppose 2 ≤ k ≤ p and ρf is irreducible.

Then, the following are equivalent:

(i) The representation ρf is tamely ramified above p.

(ii) The restriction of ρf to Gal(Q̄p/K) is trivial.

(iii) The action of Gal(Q̄p/K) on B(Q̄p) is trivial.

(iv) The sequence (6.2) splits over K.

(v) The sequence (6.2) splits over R.

(vi) The pairing qf is trivial.

(vii) The pairing qf is degenerate.

Proof. By (6.1) the restriction of ρf to Gal(Q̄p/K) takes the form(
1 ∗
0 1

)
. (6.4)

Thus ρf is tamely ramified above p if and only if ∗ is zero. This proves the

equivalence of (i) and (ii). The equivalence of (ii) and (iii) follows from the result

of [BLR] mentioned above. Since finite group schemes over K are determined by
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their associated Galois representation (iii) implies (iv) . The sequence splits over R

if and only if qf is trivial by the definition of qf . The equivalence of (iv)-(vi) follows

because the sequence splits over K if and only if the composition of qf with the

natural map from R∗/R∗p⊗E∨ into K∗/K∗p⊗E∨ is trivial and R∗/R∗p → K∗/K∗p

is an injection. Obviously (vi) implies (vii). If, on the other hand, qf is degenerate

and the multiplicity is one then it is trivial since in this case it is an E-linear pairing

of two one-dimensional E-vector spaces so (6.1) splits over K and so because ρf has

multiplicity one ρf is tamely ramified. If, on the other hand, the multiplicity of ρf

is not one, as we stated above, ρf is unramified above p. Thus (vii) implies (i)-(vi)

and this completes the proof.

The proposition now follows from:

Lemma 6.4. If k > 2 then qf is a non-degenerate (resp. trivial) pairing of E-

vector spaces if and only if d log qf modπk
′
ΩR/Zp

is a non-degenerate (resp. trivial)

pairing of F-vector spaces.

Proof. First we observe that qf is non-degenerate (resp. trivial) if and only if it

is non-degenerate (resp. trivial) modulo 1 + πk
′+1R ⊗ E∨ since the natural map

from the χk
′
-eigenspace of R∗/R∗p to (1 + πR)/(1 + πk

′+1R) is an isomorphism.

Second the map d log yields an isomorphism from (1 + πR)/(1 + πk
′+1R) onto

ΩR/Zp
/πk

′
ΩR/Zp

since k′ < p−1. This together with the fact that tr∨ is a surjective

linear map implies the lemma.

The pairing q induces a pairing G[p](F)×G′[p](F)→ R∗/R∗p (note G[p](F) is

naturally isomorphic to Ḡe[p](F)) and it follows from the defining properties of q

and qf that

Lemma 6.5. Suppose α ∈ G[p](F) and β ∈ B(F). Then

(1⊗ tr∨)qf (α modm,β) = q(α, β) modR∗p.
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Lemma 6.6. Suppose l is a prime, l 6= p and d ∈ (Z/pNZ)∗. Then,

[f ′]|Tl = al[f
′], [f ′]|〈d〉N = ε(d)[f ′] and [f ′]|〈d〉p = d2−k[f ′] .

Moreover, σ−1Frob[f ′] = (ap/ε(p))[f
′].

Proof. Observe that ωf satisfies all the hypotheses of Theorem 5.6 with j = k′ and,

in this case, M jωf = ωf ′ . The lemma then follows from this theorem together with

the commutation relations of θ and the generators of H (see [G, §4]).

The composition

T (G′
e
)→ H0(X,Ω1

X/R)→ H0(I,Ω1
I/F)

induces an isomorphism from Be(Q̄p)⊗Fp
F onto the f -eigenspace of

H0(I,Ω1
I/F) (this map can also be described in terms of the Cartier-Serre isomor-

phism). The following generalizes [G, Prop. 13.14 4)]. We note however that the

the proof in [G] is incomplete.

Proposition 6.7. Let βf be the element of Be(Q̄p)⊗Fp F which corresponds to ωf

via the above map. Then a companion form exists if and only if d log qf (α, βf ) = 0

for all α ∈ (tB)e(Q̄p)⊗Fp
F.

Proof. Let ξ be a primitive N -th root of unity. First note that H0(I,Ω1
I/F)

breaks into a direct sum of isotypic components corresponding to maximal ideals of

wξHw
−1
ξ . Next, if rosI is the Rosati involution attached to I,

rosI(Tl) = 〈l〉−1
p wξTlw

−1
ξ

if l 6= p and

rosI(σ
−1Frob) = Up = 〈p〉−1

N wξUpw
−1
ξ .

It follows from Lemma 6.6, that [f ′] is orthogonal to the isotypic components corre-

sponding to maximal ideals other than wξmw
−1
ξ . On the other hand, the image of

the m-adic completion of TG′ in H0(I,Ω1
I/F) via the map γ 7→

(
(w−1

ζ )∗ωγ
)
|I is the
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wξmw
−1
ξ -isotypic component. Moreover, it follows from Theorem 4.4 and Lemma

6.5 that for γ ∈ Ḡ[p](F)

d log qf (γ modm,βf ) = (ε(p)/ap)
(
(w∗ζωγ)|I , [f ′]

)
I
k′!πk

′−1dπ + . . .

Hence, d log qf (α, βf ) = 0 for all α ∈ (tB)e(Q̄p)⊗Fp
F if and only if (δ, [f ′])I = 0 for

all δ ∈ (wξmw
−1
ξ )∗H0(I,Ω1

I/F)if and only if (η, [f ′])I = 0 for all η ∈ H0(I,Ω1
I/F).

Thus, by Corollary 5.9, d log qf (α, βf ) = 0 for all α ∈ (tB)e(Q̄p)⊗Fp
F if and only if

[f ′] = 0. Finally, by [G, Theorem 13.14 1)], [f ′] = 0 if and only if f has a companion

form. This completes the proof.

We will now complete the proof of the Theorem 0.1. If ρf is reducible the result

follows from the theory of Eisenstein series as in [G]. Therefore, we will suppose ρf

is irreducible. Suppose ρf is tamely ramified. Then, by Proposition 6.2, qf is trivial.

By the previous proposition, this means a companion form exists. If, on the other

hand, a companion form exists then by the same proposition d log qf mod 1 + πk
′
R

is degenerate, as ωf 6= 0. Proposition 6.2 then implies that ρf is tamely ramified.

Proof of Corollary 0.2.

Let A and Vp be as in [G, §4]. Let W be the space of forms of weight p spanned

by g1 = Af and g2 = f |Vp. The elements in W are eigenforms for Tl, l 6= p, with

eigenvalue al and they all have nebentypus ε. Now by [G, (4.7)] and the q-expansion

principle,

g1|Up = apg1 − ε(p)g2

g2|Up = g1 .

It follows that Up restricts to an automorphism ofW . If g is a normalized eigenvector

for Up in W , g is an eigenform with nebentypus ε and f is a companion form of g.

As ρf = ρg the corollary follows immediately from Theorem 0.1.

Remarks. The pairing q takes values in 1+πk
′
R and our proof required knowledge

of the leading term of q − 1. This is contained in knowledge of dq/q so long as

k′ < p− 1. The most patent reason our proof fails for k = 2 is that db/b = 0 when

b ∈ 1 + πp−1R. However, in [C2] a formula for this leading term in the spirit of
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Theorem 4.4 valid even for k = 2 will be given. Unfortunately, at present, it is only

proven for p > 2.
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Errata to [G].

I would like to thank Coleman and Voloch for giving me this opportunity to correct

some errors in [G].

pg.462, line 10. I1(N) should be I1(N)h.

pg.486, line -11. 2 ≤ k ≤ p should be 3 ≤ k ≤ p.

pg.500. Proposition 13.14 4). The statement is only correct when ε = 1, and

the proof is incomplete. In general, one must replace the differential νf by νf |wN

to get a non-zero cup product with νf ′ . A complete proof is given by Coleman and

Voloch in Proposition 6.7 of this paper.

pg.514, lines 15-16. The statement that “the local action on pn-torsion is diago-

nalizable if and only if jE ≡ j0 mod 2pn+1” requires the additional hypothesis that

j0 6≡ 0, 1728 mod p.

Benedict H. Gross
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