Bounding the number of points by counting tangents: off the beaten track

Felipe Voloch

Curves over \mathbb{F}_{q}
May 2021

Abstract

I will discuss some developments stemming from my old result, described in Serre's book, emphasizing those off the beaten track, and pose some open questions.

The beaten track

Theorem 1
(Stöhr-V.) X / \mathbb{F}_{q} curve of genus g. If $X \rightarrow \mathbb{P}^{n}$, non-degenerate, degree d and Frobenius orders $0=\nu_{0}<\ldots<\nu_{n-1}$, then

$$
\# X\left(\mathbb{F}_{q}\right) \leq\left(\left(\nu_{0}+\cdots+\nu_{n-1}\right)(2 g-2)+(q+n) d\right) / n .
$$

Gives a new proof the Hasse-Weil bound and also improvements. Applications to maximal curves (Torres, Korchmaros,...), finite geometry, coding theory and other questions on finite fields.

Plane curves

$X \subset \mathbb{P}^{2}$ of degree $d>1, \Phi: X \rightarrow X$ the \mathbb{F}_{q}-Frobenius map. X is \mathbb{F}_{q}-Frobenius non-classical if $\Phi(P) \in T_{P} X$ for all $P \in X$. In terms of an affine equation $f(x, y)=0$,

$$
\left(x^{q}-x\right) f_{x}+\left(y^{q}-y\right) f_{y}
$$

vanishes identically on X. Does not happen if $d<p$ where p is the characteristic of \mathbb{F}_{q}.

Basic result

Theorem 2
If X is \mathbb{F}_{q}-Frobenius classical, then

$$
\# X\left(\mathbb{F}_{q}\right) \leq(2 g-2+d(q+2)) / 2 \leq d(d+q-1) / 2
$$

If X is smooth and \mathbb{F}_{q}-Frobenius non-classical, then
$\# X\left(\mathbb{F}_{q}\right)=d(q-1)-(2 g-2)=d(q-d+2)$. (Hefez, V.)
Can we classify all (smooth?) Frobenius non-classical curves or at least their degrees?

Double Frobenius non-classical curves

For $n>2, m \geq 1,(m, n)=1$, there exists a unique curve both $\mathbb{F}_{q^{n-}}$ and $\mathbb{F}_{q^{m}-\text { Frobenius non-classical. (Borges) }}$

$$
\begin{gathered}
d=\left(q^{n}+q^{m}\right)-\left(q^{2}+q\right) \\
g=\left(q^{n-m}+q^{m}\right)\left(\frac{q^{n}}{2}-\left(1+q+q^{2}\right)\right)+(q+1)\left(1+q+q^{2}\right)
\end{gathered}
$$

(For $q=2, m=1, n=3$ this already is in IV.1.2 of Serre's book)

Sharpness

What is the maximum number of rational points of a plane curve of degree $d<q$ over \mathbb{F}_{q} ?

Theorem 2 currently best known if $q=p, p / 15<d<p$.
Bound is attained (when $q=p$) for: $d=p-1$
$d=m k$ if $p-1=(m+2) k$. (Rodríguez Villegas, V. and Zagier)
$d=(p-3) / 2$, even. (Carlin, V.)
$d=(p-5) / 2,(p-7) / 2$, even. (Borges, Cook, Coutinho)
Any other cases where this bound is sharp? This could be explored numerically.

Surfaces

Theorem 3
Let S / \mathbb{F}_{q} be a smooth surface in \mathbb{P}^{3} of degree d, q prime such that $2<d<q$. Let m be the number of lines contained in S. Then

$$
\# S\left(\mathbb{F}_{q}\right) \leq d(d+q-1)(d+2 q-2) / 6+m(q+1)
$$

In particular,

$$
\# S\left(\mathbb{F}_{q}\right) \leq d(d+q-1)(d+2 q-2) / 6+d(11 d-24)(q+1)
$$

How sharp is this? Can this be extended to higher (co)dimensions?
(No beaten track here!)

Idea of proof

Count $P \in S$ with $\Phi(P)$ in one of the asymptotic lines to S at P. (Lines L intersecting S at P with multiplicity 3.) This set of points consists of the points ($x_{0}: x_{1}: x_{2}: x_{3}$) with

$$
f=\sum f_{x_{i}} x_{i}^{q}=\sum f_{x_{i} x_{j}} x_{i}^{q} x_{j}^{q}=0
$$

One-dimensional component of this set are the lines in S over \mathbb{F}_{q} and the rational points not on these lines appear with multiplicity at least 6 there.

MERCI

