Bounding the number of points by counting tangents: off the beaten track

Felipe Voloch

Curves over \mathbb{F}_q

May 2021

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Abstract

I will discuss some developments stemming from my old result, described in Serre's book, emphasizing those off the beaten track, and pose some open questions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The beaten track

Theorem 1 (Stöhr-V.) X/\mathbb{F}_q curve of genus g. If $X \to \mathbb{P}^n$, non-degenerate, degree d and Frobenius orders $0 = \nu_0 < \ldots < \nu_{n-1}$, then

$$\#X(\mathbb{F}_q) \leq \left(\left(\nu_0 + \cdots + \nu_{n-1} \right) \left(2g - 2 \right) + \left(q + n \right) d \right) / n.$$

Gives a new proof the Hasse-Weil bound and also improvements. Applications to maximal curves (Torres, Korchmaros,...), finite geometry, coding theory and other questions on finite fields.

Plane curves

 $X \subset \mathbb{P}^2$ of degree d > 1, $\Phi : X \to X$ the \mathbb{F}_q -Frobenius map. X is \mathbb{F}_q -Frobenius non-classical if $\Phi(P) \in T_P X$ for all $P \in X$. In terms of an affine equation f(x, y) = 0,

$$(x^q-x)f_x+(y^q-y)f_y$$

vanishes identically on X. Does not happen if d < p where p is the characteristic of \mathbb{F}_q .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Basic result

Theorem 2 If X is \mathbb{F}_q -Frobenius classical, then $\#X(\mathbb{F}_q) \leq (2g - 2 + d(q + 2))/2 \leq d(d + q - 1)/2$ If X is smooth and \mathbb{F}_q -Frobenius non-classical, then $\#X(\mathbb{F}_q) = d(q - 1) - (2g - 2) = d(q - d + 2)$. (Hefez, V.) Can we classify all (smooth?) Frobenius non-classical curves or at

least their degrees?

Double Frobenius non-classical curves

For $n > 2, m \ge 1, (m, n) = 1$, there exists a unique curve both $\mathbb{F}_{q^{n-1}}$ and \mathbb{F}_{q^m} -Frobenius non-classical. (Borges)

$$d = (q^{n} + q^{m}) - (q^{2} + q)$$
$$g = (q^{n-m} + q^{m}) \left(\frac{q^{n}}{2} - (1 + q + q^{2})\right) + (q + 1) (1 + q + q^{2})$$

(For q = 2, m = 1, n = 3 this already is in IV.1.2 of Serre's book)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Sharpness

What is the maximum number of rational points of a plane curve of degree d < q over \mathbb{F}_q ? Theorem 2 currently best known if q = p, p/15 < d < p. Bound is attained (when q = p) for: d = p - 1d = mk if p - 1 = (m + 2)k. (Rodríguez Villegas, V. and Zagier) d = (p - 3)/2, even. (Carlin, V.) d = (p-5)/2, (p-7)/2, even. (Borges, Cook, Coutinho) Any other cases where this bound is sharp? This could be explored numerically.

Surfaces

Theorem 3

Let S/\mathbb{F}_q be a smooth surface in \mathbb{P}^3 of degree d, q prime such that 2 < d < q. Let m be the number of lines contained in S. Then

$$\#S(\mathbb{F}_q) \leq d(d+q-1)(d+2q-2)/6 + m(q+1).$$

In particular,

$$\#S(\mathbb{F}_q) \leq d(d+q-1)(d+2q-2)/6 + d(11d-24)(q+1).$$

How sharp is this? Can this be extended to higher (co)dimensions? (No beaten track here!)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Idea of proof

Count $P \in S$ with $\Phi(P)$ in one of the asymptotic lines to S at P. (Lines L intersecting S at P with multiplicity 3.) This set of points consists of the points $(x_0 : x_1 : x_2 : x_3)$ with

$$f=\sum f_{x_i}x_i^q=\sum f_{x_ix_j}x_i^qx_j^q=0.$$

One-dimensional component of this set are the lines in S over \mathbb{F}_q and the rational points not on these lines appear with multiplicity at least 6 there.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

10

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

MERCI

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @