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Abstract. We study a new obstruction to the existence of integral and
rational points for algebraic varieties over function fields, the differential de-
scent obstruction. We prove that that is the only obstruction to the existence
of integral points in affine varieties in characteristic zero and also, in most
cases, for rational points on curves in arbitrary characteristic.

1. Introduction

Let K/k be a function field of characteristic p ≥ 0, that is: the function
field of a geometrically integral curve over a field k, where k is an arbitrary
field of characteristic p ≥ 0. We choose t ∈ K such that K/k(t) is finite and
separable. We denote by δ the k-derivation d/dt of K.

Let S be a non empty set of primes of K; we denote by OS ⊂ K the ring
of S-integers. Let X be an OS-scheme of finite type with generic fibre X
over K. For each prime of K, let Kv be the completion of K at v and let Ov
be the ring of integers of Kv. Notation like

∏
v ... means that the product is

taken over all places of K. We also extend δ to Kv in the natural way.
The goal of this note is to describe the set X (OS) inside the adelic space∏

v 6∈S X (Ov)×
∏

v∈S X(Kv) in terms of local conditions involving the coordi-
nates of points and their derivatives with respect to t. We call such conditions
differential obstructions.

When p > 0, Harari and the author gave in [6] a local obstruction for
integral points on affine varieties over K from covers given by Artin-Schreier
equations. Our first goal here will be to give an analogue of this result for
p = 0 using linear differential equations, Theorem 2.2.
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Our second goal is to use this result in characteristic p = 0 or the main
result of [6] in characteristic p > 0 combined with the first jet construction
(recalled below) to give differential obstructions to rational points on curves
over function fields of arbitrary characteristic. In addition, we will prove a
finiteness statement that will give, in particular, that only finitely many such
obstructions are necessary.

2. Obstructions associated to linear differen-

tial torsors

We want to define an obstruction which is analogous to the descent obstruc-
tion in the context of differential obstructions. Throughout this section we
assume that the characteristic p = 0.

Recall the definition of a descent obstruction. LetG be aK-group scheme.
Let Y → X be an X-torsor under G. We say that a point (xv) ∈

∏
vX(Kv) is

unobstructed by Y if the evaluation [Y ]((xv)) ∈
∏

vH
1(Kv, G) comes from a

global element a ∈ H1(K,G) by the diagonal map. Here all cohomology sets
are relative to fppf topology (if G is smooth, then étale topology can be used
as well). Note that obviously every family (xv) ∈

∏
vX(Kv) coming from

a rational point x ∈ X(K) is unobstructed. We could use the cohomology
theory defined in [5] Ch. VII, but we will take a more lowbrow approach,
which is consistent with that of [5], see e.g. VII.6 corollary 1, there. If Λ
is a linear differential operator, that is, a polynomial in δ with coefficients
in K, define H1(L,Λ) as L/ΛL, for any field L/K with an extension of δ
to a derivation of L. One thinks of an equation Λ(z) = a, for a ∈ L as
a torsor for Λ(z) = 0 and the class of a ∈ L/ΛL as the cohomology class
of this torsor. If F is a regular function on a variety X/K, we say that a
point (xv) ∈

∏
vX(Kv) is unobstructed by the torsor Λ(z) = F , if the class

F (xv) ∈
∏

vKv/Λ(Kv) comes from an element of K/Λ(K).
Consider the affine line A1

K over K and its integral model A1
OS

. Let
f ∈ K. We are interested in linear differential torsors Yf for Λ = δ over A1

K

given by the equation
Yf : δz = fx, x ∈ A1 (1)

Proposition 2.1 Assume that (xv) ∈
∏

v 6∈S A1(Ov) ×
∏

v∈S A1(Kv) is un-

obstructed by Yf for every f ∈ K. Then (xv) ∈ A1(OS).
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Proof Let ω 6= 0 be a differential form of K which we write as ω = fdt,
where f ∈ K and t is a separating variable of K. Let x be a coordinate on
A1 and consider the torsor Yf . The fact that (xv) is unobstructed means
that there is an a ∈ K and for all v there exists yv ∈ Kv, δyv = xvf + a.
It follows that Resv(xvω + adt) = Resv(δyv)dt = Resv(dyv) = 0. Thus,∑

v Resv(xvω) = −
∑

v Resvadt = 0. This being true for all ω implies that
(xv) is global, by the Riemann-Roch theorem.

We deduce from the previous proposition the following theorem:

Theorem 2.2 Let X be an affine OS-scheme of finite type with generic fibre
X. Let (xv) ∈

∏
v 6∈S X (Ov)×

∏
v∈S X(Kv). Assume that (xv) is unobstructed

by every linear differential torsor Y → X. Then (xv) ∈ X (OS).

Proof Embed X into the affine space An
OS

for some positive integer n. Let
(γv) ∈

∏
v A1(Kv) be any coordinate of the image of (xv) in

∏
v An(Kv). By

functoriality (xv) is unobstructed by every linear differential torsor over A1.
By proposition 2.1, the family (γv) comes from a global element γ ∈ A1(OS).
Since this is true for each coordinate, we obtain that (xv) ∈ X (OS).

Here is an example, completely parallel to one in [6], where a linear dif-
ferential obstruction is enough to describe integral points.

Proposition 2.3 Let A,B ∈ k[t] with degA = 3, degB = 1. Consider the
affine scheme over OS = k[t]

X : x2 + Ay2 = B

Assume that A,B are chosen so that the generic fibre X of X (defined over
K = k(t)) has a K-point. Then every point in

∏
v 6=∞X (Ov) × X(K∞) is

obstructed by the torsor Y : δz = y. In particular X has no k[t]-point.

Proof Suppose that there exists a global twist δz = y+ c with local points
everywhere. That is, there exists zv ∈ Kv, δzv = yv + c, for all v. The condi-
tions at v 6= ∞ give that the polar parts of c at finite places are integrable,
(as yv ∈ Ov and p = 0), so we change zv and assume, without loss of gener-
ality, that c is a polynomial. Looking at the equation for X , we see that the
component y∞ has valuation equal to 1 at infinity hence a term in t−1, but
neither δz∞ nor c can have such a term, contradiction.
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3. Projective curves

Theorem 3.1 Let X/K be a projective curve over a function field K/k,
with k finite if k has positive characteristic. Assume that X/K has non-
zero Kodaira- Spencer class. Then X(K) is described by differential descent
obstructions.

Proof In order to prove the Theorem we use a construction from [1]. For
any K−scheme X one defines the “first jet scheme along δ” as

X1 := Spec(S(ΩX/k)/I)

where I is the ideal generated by sections of the form df−δf (f ∈ OX). This
object was analyzed in [2, 3] in characteristic zero and in [4] in positive char-
acteristic. If X is a smooth variety over K, then ([1], p.1396) X1 identifies
with the torsor for the tangent bundle TX := Spec(S(ΩX/K)) corresponding
to the Kodaira Spencer class

ρ(δ) ∈ H1(X,TX/K)

(where ρ : DerkK → H1(X,TX/K) is the Kodaira Spencer map.) We have
the following result ([3] if p = 0 and [4] if p > 0).

Lemma 3.2 If X/K is a smooth projective curve of genus ≥ 2 with non
zero Kodaira Spencer class then X1 is an affine surface.

We fix an embedding X1 ⊂ An with coordinates x1, . . . , xn. Since δ lifts
to a derivation of Kv, there is a “lifting map”

∇ : X(Kv)→ X1(Kv).

We will prove that ∇(X(Kv)) is a bounded subset of An(Kv) and that, for
all but finitely many places v, ∇(X(Kv)) ⊂ X1(Ov) and therefore we get a
map of adelic points ∇ : X(AK)→ X1(AK). First of all, ∇ is continuous for
the v-adic topology. This will be made clear in the course of the argument.
Without loss of generality, we can extend K so that X(K) 6= ∅ and we
fix P ∈ X(K). If Q ∈ X(Kv) is v-adically sufficiently close to P then
min{v(xi(Q))} = min{v(xi(P ))}. The other points of X(Kv) are v-integral
points of U = X − {P} in a suitable system of coordinates u1, . . . , um of
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an embedding of the affine variety U in Am. If U is cut out by equations
fj = 0, then U1 ⊂ A2m, in coordinates u1, . . . , um, v1, . . . , vm is cut out by
the equations

∑
i vi∂fj/∂ui + f δj = 0, where f δj is the polynomial obtained

by applying δ to the coefficients of fj. Moreover

∇(u1, . . . , um) = (u1, . . . , um, δu1, . . . , δum)

(so the continuity of ∇ is clear). It is also clear that, for integral points Q of
U(Kv), the coordinates of ∇(Q) ∈ A2m are bounded and the same holds for
the coordinates in An. Finally, if S is a sufficiently large set of places of K
for which all the constant elements of K appearing in the above argument
are S-units, then for v /∈ S, ∇(X(Kv)) ⊂ X1(Ov).

We are then all set to apply Theorem 2.2 if p = 0 or the main result of
[6], if p > 0, to complete the proof.

We remark that, since we showed that ∇(X(Kv)) ⊂ X1(Kv) is bounded
for all v, one only needs to use finitely many differential forms as in the proof
of Theorem 2.2 if p = 0 or the main result of [6], if p > 0, to obstruct the
points, leading to an algorithm to decide whether or not X(K) is empty.
A local-global obstruction for curves over function fields was previously ob-
tained in [7] but, in positive characteristic, the hypotheses there are different
from the ones here, so there are cases where one result can be applied when
the other cannot.

Acknowledgements. I would like to thank the Simons Foundation (grant
#234591) and the Centre Bernoulli at EPFL for financial support.

References

[1] A.Buium, Intersections in jet spaces and a conjecture of S.Lang, Annals
of Math. 136 (1992), 557-567.

[2] A.Buium, Geometry of differential polynomial functions I: algebraic
groups, Amer. J. Math. 115, 6 (1993), 1385-1444.

[3] A.Buium, Geometry of differential polynomial functions II: algebraic
curves, Amer. J. Math.,

5



[4] A.Buium, J. F. Voloch, Lang’s conjecture in characteristic p: an explicit
bound, Compositio Math., 103 (1996) 1-6.

[5] E. Kolchin, Differential algebra and algebraic groups. Pure and Applied
Mathematics, Vol. 54. Academic Press, New York-London, 1973

[6] D. Harari, J. F. Voloch, Descent obstructions and Brauer-
Manin obstruction in positive characteristic Journal de l’Institut de
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