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José Felipe Voloch

Abstract: We study diophantine approximations to algebraic functions in characteris-

tic p. We precise a theorem of Osgood and give two classes of examples showing that this

result is nearly sharp. One of these classes exhibits a new phenomenon.

In this note we will be concerned about the approximation of functions, algebraic over

a global field K of positive characteristic by elements of K with respect to a valuation v of

K. We define, for y ∈ Kv \K (although we will consider only y algebraic over K in what

follows):

α(y) = lim sup
r∈K

v(y − r)/h(r),

where h(r) = [K : k(r)], where k is the constant field of K. We will give some examples

that exhibit pathological behaviour. Recall that 2 ≤ α(y) ≤ d(y) := [K(y) : K], which are

analogues of the classical theorems of Dirichlet and Liouville. Osgood [O] has shown that

α(y) ≤ [(d(y) + 3)/2] if y does not satisfy a Riccati equation and we will prove the same

bound if the cross ratio of any four conjugates of y over K is non constant. There are some

results on α(y) if y satisfies yq = (ay + b)/(cy + d) where a, b, c, d ∈ K, ad− bc 6= 0 and q

is a power of p, due to the author [V1] and others([BS],[dM],[MR]). One may conjecture

that these are actually the only functions not satisfying Osgood’s bound. We shall give

examples that show that Osgood’s bound is close to being best possible.

Take K = k(x) and y satisfying yp − y = x and z = y2 (y is a classical example

of Mahler’s). We have α(y) = d(y) = d(z) = p. Also, whenever v(y − r)/h(r) is near p

we have v(z − r2)/h(r2) near p/2. It follows (see below) that α(z) = p/2. Note that z

does not satisfy a Riccati equation. This example can be generalized as follows: Given

y and R(Y ) ∈ K(Y ) a rational function of degree d in Y , then d(R(y)) ≤ d(y) and

α(R(y)) ≥ α(y)/d. So if α(y) is large we get new examples of well approximated functions

which in general do not satisfy Riccati equations. We shall also produce a very different

class of examples with ”large” α(y).
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Define, for y as above and α a real number,

b(y, α) = lim sup
r∈K

v(y − r)− αh(r).

(Compare [dM], but note that our definitions are minus the logarithms of those there).

We have that b(y, α) = +∞ (resp. −∞) if α < α(y) (resp. > α(y)). For example, Osgood

actually showed that b(y, [(d(y) + 3)/2]) 6= +∞ if y does not satisfy a Riccati equation.

We need the following

Lemma 1. Let y ∈ Kv, y /∈ K. Suppose rn ∈ K satisfy

lim
n→∞

v(y − rn)/h(rn) = α, lim
n→∞

h(rn+1)/h(rn) = β,

where α > β1/2 + 1. Then α(y) = α and b(y, α) = lim supn v(y − rn)− αh(rn).

Proof: Except for the last statement, this is proposition 5 of [V1], and the last state-

ment also follows easily from the proof given there. All the results in [V1] are stated for

K = k(x) but they all immediately generalize with their proofs for general K.

We can now state

Theorem 1. Let y ∈ Kv satisfy yq = (ay + b)/(cy + d) where a, b, c, d ∈ K, ad − bc 6= 0

and q is a power of the characteristic of K. Let R(Y ) ∈ K(Y ) be a rational function of

degree d in Y . Assume that α(y) > d(q1/2 + 1), Then

α(R(y)) = α(y)/d

and b(R(y), α(R(y))) 6= ±∞.

Proof: If R(y) = y this is proved in [V1] and [dM]. We may then assume d > 1.

It follows from Theorems 1 and 2 of [V1] and the above lemma that there is a sequence

rn ∈ K as in the lemma with α(y) = α and β = q. If we consider the sequence R(rn),

then we can apply the lemma with α = α(y)/d and β = q. Finally, it is clear that

v(R(y)−R(rn))− (α(y)/d)h(R(rn)) = v(y − rn)− α(y)h(rn) +O(1).
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This completes the proof.

By taking y as in the theorem with α(y) = d(y) (see above or [V1] for specific exam-

ples) and R as in the theorem with d = 2, we get examples R(y) such that α(R(y)) = d(y)/2

and b(R(y), α(R(y))) 6= ±∞. In general, R(y) will not satisfy a Riccati equation which

shows that Osgood’s theorem is nearly sharp. Our next examples will also show that

Osgood’s theorem is nearly sharp but will be of a different nature.

Suppose that k is a finite field with q elements and let E be an elliptic curve defined

over k. Let K = k(E) be its function field. A point in E(K) corresponds to a rational

map E → E defined over k. Let P0 ∈ E(K) correspond to the identity I and Pn ∈ E(K)

correspond to the n-th iterate of the k-Frobenius map F . Note that Pn belong to the

subgroup of E(K) generated by P0 and P1, which is of finite index on E(K) if and only if

E is ordinary. For example P2 +aP1−qP0 = 0, where a = q+1−#E(k). The Néron-Tate

height of a point of E(K) is the degree of the corresponding map. For example, Pn − P0

correspond to Fn − I hence h(Pn − P0) = qn + 1− an = #E(kn), where [kn : k] = n and

|an| ≤ 2qn/2.

Fix now an integer m ≥ 2, (m, q) = 1 and assume that E(k) contains the m-torsion on

E. Then Pn−P0 = mQn, Qn ∈ E(K). Note that P0 is not divisible by m in E(K) but let

Q be the point on E defined over the algebraic closure of K which satisfies mQ = −P0 and

K(Q)/K corresponds to the isogeny multiplication by m. Choose a Weierstrass equation

for E and let s be the x-coordinate of Q. Let v be the place of K corresponding to the

point at infinity of E.

Theorem 2. Notation as above. The function s belongs to Kv and is algebraic of degree

d(s) = m2 over K. Moreover, ifm2 > 2(q1/2+1), then α(s) = d(s)/2 and b(s, α(s)) = +∞.

Proof: The first claim of the theorem is standard. Let rn be the x-coordinate of

Qn as above. Note that Pn → 0 v-adically so Qn → Q. Moreover, h(rn) = 2h(Qn) =

(2/m2)h(Pn − P0) and since multiplication by m is an étale map, it follows easily that

v(rn − s) = qn. The theorem now follows from lemma 1 and the (well-known) fact that
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an/2q
n/2 gets arbitrarily close to 1 as n→∞.

Note that the examples given by theorem 2 are genuinely different from those in

theorem 1, as attested by the behaviour of ”b”. The conditions above impose some re-

strictions on m, q, namely m2 ≤ q + 1 + 2q1/2,m2 > 2(q1/2 + 1),m|(q − 1) (see [V2])

but these conditions are satisfied by some values of q as soon as m > 2. For example

m = 3, q = 4, 7,m = 4, q = 9, 13, 17, 25, 29, 37, 41. Another interesting remark is that these

examples seem to be the only known algebraic functions s with b(s, α(s)) = ±∞. Finally

note that the above examples can be modified to work over k(x) as follows. If E has

equation Y 2 = f(X) (assume q odd), consider the elliptic curve E′ defined over k(x) by

the equation f(x)Y 2 = f(X). E′ is a twist of E and the K-rational points of E considered

above will give points on E′(k(x)) to which one can apply the same arguments and get the

examples over k(x). This trick already occurs in Manin’s elementary proof of the Riemann

hypothesis for elliptic curves over finite fields.

As for the promised improvement on Osgood’s result we have

Theorem 3. Suppose that y ∈ Kv is algebraic overK of degree d. If b(y, [(d+3)/2]) = +∞

then the cross ratio of any four conjugates of y lies in k.

By definition, the cross ratio of x1, . . . , x4 is

[x1, x2, x3, x4] = (x4 − x1)(x3 − x2)/(x4 − x2)(x3 − x1).

Proof: By Osgood’s theorem [O], y satisfies a Riccati differential equation dy/dx =

ay2 + by+ c where a, b, c, x ∈ K and x a separating variable (Osgood only states the result

for K = k(x) but it is true in general ). Let D(Y ) = dY/dx − (aY 2 + bY + c). Suppose

rn ∈ K are such that limn→∞ v(y − rn) − [(d + 3)/2]h(rn) = +∞. Then v(D(rn)) =

v(D(rn) − D(y)) = v(y − rn) + O(1) and h(D(rn)) ≤ 2h(rn) + O(1). On the other hand

v(D(rn)) ≤ h(D(rn)) unless D(rn) = 0. It follows that D(rn) = 0 for n sufficiently large.

We may assume that 1, 2, 3 are ”sufficiently large” after renumbering and it follows from

classical properties of Riccati equations that

d/dx[y, r1, r2, r3] = d/dx[rn, r1, r2, r3] = 0

4



for all n. [Y, r1, r2, r3] = γY is a fractional linear transformation with coefficients in K

and from the above we have that γy = yp2 , γrn = spn, y2 ∈ K(y), sn ∈ K, where p is the

characteristic of K. It follows readily that limn→∞ v(y2 − sn) − [(d + 3)/2]h(sn) = +∞

and it follows that y2 also satisfies a Riccati differential equation. We can then iterate this

procedure and find fractional linear transformations γn with coefficients in K such that

γny = yp
n

n , yn ∈ K(y). If y, y′, y′′, y′′′ are any four conjugates of y then

[y, y′, y′′, y′′′] = [γny, γny
′, γny

′′, γny
′′′] ∈ Kpn

and this implies the theorem.

Remark: Let D be the divisor on P1 formed by the conjugates of y over K, so D is of

degree d and is defined over K. Let X be the affine curve P1 \D. It can be checked that

y satisfies a Riccati equation if and only if the Kodaira-Spencer class of X, in the sense of

[K], vanishes. It can also be checked that the cross ratio of any four conjugates of y lies in

k if and only if X is isotrivial, that is, isomorphic to an affine curve defined over k perhaps

after field extension. It then follows from theorem 3 that, when X is non-isotrivial, it has

only finitely many integral points.
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