
Relating the Smart-Satoh-Araki and Semaev approaches to the discrete

logarithm problem on anomalous elliptic curves
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Very recently it was announced that Semaev [Se], Smart [Sm] and Satoh and Araki

[SA] gave a solution of the discrete logarithm problem on elliptic curves over Fp with p

points, p a prime, the so-called anomalous curves. The discrete logarithm problem is to

find an procedure so that, given P,Q points on the curve, one finds an integer m with

Q = mP or shows that m does not exist. This brief note relates the Smart-Satoh-Araki

and Semaev approaches.

Let E/Fp be an elliptic curve with p points. We need to provide a map α : E(Fp)→

Z/pZ. Semaev (see also Rück [R]) proceeds as follows. Fix P ∈ E(Fp), P 6= 0 and let ω =

df/f , where (f) = p(P − 0), so ω is a holomorphic differential. Given Q ∈ E(Fp), Q 6= 0,

find likewise fQ with divisor p(Q − 0) and define α(Q) = dfQ/(fQω). The point of the

algorithm is that f, fQ can be computed quickly.

Smart and Satoh and Araki proceed differently. They take a lift E of E to Z/p2

and points P,Q lifting P,Q. They define α′(Q) = λ(pQ)/λ(pP), where λ is the elliptic

logarithm λ : E1 = ker(E → E) → pZ/p2, provided the expression makes sense (see

below). The definition of λ depends on a choice of holomorphic differential ωωω on E and

can be computed quickly. According to Tate [T], ωωω can be fixed so it lifts ω and so

that exp(λ) : E1 → (1 + pZ)/p2 is an isomorphism. With this choice of ωωω, Tate defines

q = exp(λ(pP)), which is the Serre-Tate parameter ([LST],[K]) in this special case. It

follows that q − 1 = λ(pP) ∈ pZ/p2 and that λ(pQ) = (q − 1)n if Q = nP. Therefore,

unless q = 1 ∈ Z/p2, α′ = α. This relates the two maps and shows that the method of

Smart and Satoh and Araki fails precisely when q = 1 ∈ Z/p2, that is, when E is the

canonical lift of E. In the unlikely event this happens they can run their algorithm on

another lift and still solve this instance of the discrete logarithm problem.
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