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The purpose of this note is to relate the discrete logarithm problem (DLP) on elliptic

curves to descents and compare our approach to others in the literature. Let G be a group.

The DLP for G is to find an procedure so that, given P,Q ∈ G one finds an integer m

with Q = mP or shows that m does not exist. The name discrete logarithm problem

comes from the special case where G is the multiplicative group of a finite field. If the

DLP on a group is computationally hard then one can use this to construct a cryptosystem

([E],[Ko],[M]). Again the classical case is of the multiplicative group of a finite field but also

the group of points on an elliptic curve over a finite field has been considered. The latter

is supposed to be harder than the former. Basically there has been two developments in

trying to solve the DLP on elliptic curves. First Menezes, Okamoto and Vanstone [MOV]

showed that if E is an elliptic curve over Fq of characteristic p such that p doees not divide

N = #E(Fq), then DLP on E(Fq) can be reduced to the DLP on the multiplicative group

of an extension of Fq and, if this extension is of low degree then the DLP on E(Fq) is as

hard as the DLP on F∗q . This will happen if N has a large factor in common with qr − 1

for some small r. The approach of Menezes, Okamoto and Vanstone has been generalized

by Frey and Rück [FR] where it is cast in terms of Tate pairings, but for that they need to

lift the curve to a p-adic ring. We will show that this is not necessary and give a simplified

version of their approach. Very recently it was announced that Semaev [Se], Smart [S] and

Satoh and Araki [SA] gave a solution of the DLP on elliptic curves over Fp with p points,

p a prime. In this note we will recover these results using descents and extend it also to

the case where E(Fq) has a large subgroup of order a power of p, for arbitrary q. For the

prime to p case our approach is related to that of Menezes, Okamoto and Vanstone, for

the p-part it is related to Semaev’s (see also Rück [R]) but is very different from Smart’s

and Satoh and Araki’s, although we will study the relation between these approaches also.

The unifying theme of our approach is the old technique of descents on elliptic curves.
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Let φ : E′ → E be an isogeny of elliptic curves defined over a field k. The exact

sequence 0 → kerφ → E′ → E → 0 yields by taking flat (or Galois, if φ is separable)

cohomology, an injection E(k)/φ(E′(k)) → H1(k, kerφ). For instance we could take φ to

be 1 − F , F the Fq-Frobenius, if E = E′ is defined over Fq and we get an injection of

E(Fq) into H1(Fq, kerφ) and in theory we can reduce the problem to the DLP on the

latter group.

In practice, we need to be a bit more careful. Let us assume that E(Fq) is cyclic. This

is the most interesting case for cryptographic applications and also if E is any ordinary

elliptic curve then it is isogenous to one that has a cyclic group of rational points ([V1],

lemma 1). Let N be the number of rational points on E and let us write N = pmn

with (n, p) = 1. One can construct an isogeny φ : E′ → E, for some E′/Fq such that

E(Fq)/φ(E′(Fq)) is of order n and moreover we can assume that kerφ is cyclic of order

n. A similar construction is done in [V2]. If the points of kerφ are defined over Fqr then

the relevant cohomology group injects into F∗qr/(F
∗
qr )n. The latter group is isomorphic

to the n-th roots of unity by x 7→ x(q
r−1)/n and from this isomorphism one recovers

the original approach of [MOV]. A similar calculation is done in [H]. Whether working

on F∗qr/(F
∗
qr )n or the n-th roots of unity is better computationally is unclear. The map

E(Fq)/φ(E′(Fq)) → F∗qr/(F
∗
qr )n can be given explicitly as P 7→ f(P ) (mod(F∗qr )n) for a

suitable function f on E (see e.g. [Si], thm. X.1.1 and ex. 10.9). Computing f can be

done following Miller’s algorithm described on [MOV], appendix A. As mentioned above

this is essentially the approach of [MOV] for the prime-to-p part. We turn to the p-part.

Again let N be the number of rational points on E and let us write N = pmn with

(n, p) = 1. We assume that m > 0, so E is ordinary. Let E(pm) be the image of E under

the m-th power of the Frobenius map Fm and Vm : E(pm) → E the dual isogeny, the

m-th order Verschiebung, which is separable since E is ordinary. By our assumption, the

pm-torsion points on E are defined over Fq, so the same is true for E(pm). We thus get an

injective descent map α : E(Fq)/Vm(E(pm)(Fq)) → Wm(Fq)/℘(Wm(Fq)), where Wm(Fq)

is the ring of Witt vectors of lenght m over Fq, ℘ is the map x 7→ Fx− x, where F is the
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Frobenius on Wm(Fq) and the cohomology group is as stated because of Artin-Schreier-

Witt theory. Also, if we denote by T : Wm(Fq) → Wm(Fp) ∼= Z/pmZ the trace map,

then Wm(Fq)/℘(Wm(Fq)) is mapped isomorphically onto Wm(Fp) ∼= Z/pmZ by T , by the

additive form of Hilbert’s theorem 90. We have thus reduced the DLP on the p-part of

E(Fq) to the DLP on Z/pmZ which is, of course, trivial. The only remaining question in

this case is the explicit calculation of the map α above.

Let us look at a special case corresponding to the work by Smart et al. mentioned

above. Assume then that q = p = N so we need to provide a map α : E(Fp) → Z/pZ.

Assume p 6= 2. Choose a Weierstrass equation y2 = x3 + a2x
2 + a4x + a6 = f(x) for E.

Define polynomials U,M , with degU ≤ p − 2 by yp−1 = f(x)(p−1)/2 = U(x) + Axp−1 +

xpM(x). (Note that A is the Hasse invariant and, in our case, in fact A = 1.) Then

α(x, y) is simply yM(x) ([V3], proposition 1.3). More generally, if m = 1 above, the map

is α(x, y) = T (yM(x)), which also follows from the same result on [V3]. For the case of

general m we have:

Theorem. Let E/Fq be an elliptic curve given by a generalized Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. There exists r0, . . . , rm−1 ∈ Fq[x, y] sat-

isfying deg ri ≤ 2ipi+1 such that T ◦ α : E(Fq) → Wm(Fp) = Z/pmZ is given by

P 7→ T ((r0(P ), . . . , rm−1(P ))).

Proof: The elliptic curve E has a canonical lifting to an elliptic curve E over Wm(Fq)

for which the Frobenius E → E(p) also lifts. This is a special case of the Serre-Tate theory

(see [LST] or [K]). There is also an injective homomorphism τ : E(F̄q) → E(Wm(F̄q))

compatible with the action of Frobenius, which we will call the elliptic Teichmüller lift (see

[Bu] or [VW]). In fact, a characterization of the canonical lift is the existence of such a

homomorphism. Likewise E(pm) has a lift E′ which is the image of E by the m-th power

of the lift of Frobenius. Fix a holomorphic differential ω on E′.

There exists an unique function ζ on E′/Wm(Fq) which is odd, has simple poles at

the points of G = τ(kerVm) and no others and res(ζω) = 1 at these points. This uniquely
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characterizes ζ. This implies that if P1 is in G then ζ(P + P1) = ζ(P ) + c(P1) where

c(P1) ∈ Wm(Fq) and this gives a homomorphism c : G→ Wm(Fq). We can write ζ(t(P ))

as a Witt vector (z0(P ), ..., zn−1(P )) where the zi are functions on E(pm). It follows from

the above that Z = (z0, ..., zm−1) satisfies an equation F (Z)−AZ = R ∈ Wm(Fq(E)) for

some A ∈ Wm(Fq). Since Fq(E(pn))/Fq(E) is an Artin-Schreier-Witt extension, we must

have A = 1 after scaling. It follows then that P 7→ R(P ) gives the descent map, just as in

the case m = 1. To get the bound on the degrees of the coordinates of R, we use theorem

4.1 of [VW]. Since ζ has degree pm, it implies that the zi have degree at most (2p)ipm as

functions on E(pn). So the ri have degree at most (2p)ipm+1 as functions on E(pn) but

this means that they have degree at most (2p)ip as functions on E, since Vm has degree

pm. This completes the proof.

We will now compare our approach to the other approaches. Let E/Fp be an elliptic

curve with p points. We need to provide a map α : E(Fp)→ Z/pZ. Semaev (see also Rück

[R]) proceeds as follows. Fix P ∈ E(Fp), P 6= 0 and let ω = df/f , where (f) = p(P − 0),

so ω is a holomorphic differential. Given Q ∈ E(Fp), Q 6= 0, find likewise fQ with divisor

p(Q − 0) and define α(Q) = dfQ/(fQω). The point of the algorithm is that f, fQ can be

computed quickly.

To relate Semaev’s map to the one we defined previously, consider the function ζ = z0

from the proof of the theorem when m = 1. As proved in ([V4],pg. 4), Semaev’s α satisfies

α(Q) = −η(Q), where η(Q) = ζ(R + Q) − ζ(R), for generic R. Now, as in the proof of

the theorem, ζp − ζ = yM(x) ◦ V1. Choose now a point T on E with V1(T ) = Q then,

for our previously defined α, α(Q) = yM(x)(Q) = z(T )p − z(T ) = z(F (T )) − F (T ) =

z(T + F (T ) − T ) − z(T ) = η(F (T ) − T ), where F is the Frobenius. It is enough now to

show that F (T )− T = −Q. Notice however that, since E has p points over Fp, F satsifies

the equation F 2 − F + p = 0 and F ≡ 1 (mod p). This implies that F ≡ 1 − p (mod p2)

and, since p2T = 0 we get F (T )−T = (1−p)T −T = −pT = −F (V1(T )) = −F (Q) = −Q.

Smart and Satoh and Araki proceed differently. They take a lift E of E to Z/p2

and points P,Q lifting P,Q. They define α′(Q) = l(pQ)/l(pP), where l is the elliptic
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logarithm l : E1 = ker(E → E) → pZ/p2, provided the expression makes sense (see

below). The definition of l depends on a choice of holomorphic differential ω on E and

can be computed quickly. According to Tate [T], ω can be fixed so it lifts ω and so

that exp(l) : E1 → (1 + pZ)/p2 is an isomorphism. With this choice of ω, Tate defines

q = exp(l(pP)), which is the Serre-Tate parameter ([LST],[K]) in this special case. It

follows that q − 1 = l(pP) ∈ pZ/p2 and that l(pQ) = (q − 1)n if Q = nP. Therefore,

unless q = 1 ∈ Z/p2, α′ = α. This relates the two maps and shows that the method of

Smart and Satoh and Araki fails precisely when q = 1 ∈ Z/p2, that is, when E is the

canonical lift of E. In the unlikely event this happens they can run their algorithm on

another lift and still solve this instance of the discrete logarithm problem.
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