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In this paper we investigate some plane curves with many points over

Q, finite fields and cyclotomic fields.

In a previous paper [4] the first two authors constructed a sequence of

absolutely irreducible polynomials Pd(x, y) ∈ Z[x, y] of degree d having low

height and many integral solutions to Pd(x, y) = 0. (The definition of these

polynomials will be recalled in §4.) Here we construct further examples of

polynomials of arbitrarily large degree d over Q with many rational zeros,

improving the known record for the maximal number of rational zeros of

a smooth polynomial in two variables over Q of given large degree. We

also construct examples of two variable polynomials having the maximal

theoretically possible number of zeros at roots of unity and over finite

fields. Finally, we return to the polynomials Pd and show that for certain

special values of d they have a few more zeros than were found there.

Here is a more precise statements of the results obtained, with a few

remarks about each one.

Theorem 1. For each natural number m, the plane projective curve of

degree m defined by the vanishing of the polynomial

Gm(x, y, z) =
∑

i, j, k≥0
i+j+k=m

xiyjzk (1)

is non-singular in characteristic 0 or characteristic p - (m + 1)(m + 2),

and has zeros at 2m2 points where the coordinates x, y and z are roots of

unity.

The polynomials Gm, which are in some sense the simplest imaginable

homogeneous polynomials of degree m (all coefficients are equal!), simul-

taneously achieve the optimum for two different problems relating to the

number of zeros of a polynomial in two variables: On the one hand, a

simple argument (given in §1) shows that no non-reciprocal plane curve of

degree m can vanish at more than 2m2 points whose coordinates are roots

of unity. On the other hand, Theorem 0.1 of [6] tells us that an absolutely
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irreducible plane curve of degree 1 < d < p defined over Fp has at most

d(d + p − 1)/2 points over Fp, and, as we will check in §1, Theorem 1

implies that the curve Gm(xk, yk, zk) = 0 with p − 1 = (m + 2)k attains

this bound.

Theorem 2. For any integer d divisible by 6 there exist infinitely many

polynomials F (x, y) ∈ Q[x, y] of degree d of the form Fd(x, y) = (f(h(x))−
f(h(y)))/(h(x) − h(y)) such that the curve Fd(x, y) = 0 is smooth and

contains at least d2 + 6d rational points.

These are, for large d, the smooth polynomials in two variables with

the largest number of points over Q known. We refer the reader to the

introduction of [4] for references to some speculations as to whether there is

a uniform bound on the number of rational points on a curve of fixed genus

(see also [2]). We note that there are constructions, due to Brumer, Harris

and Mestre (see [2] or [3]) which lead to curves with many points over

number fields. For instance, Harris obtains plane curves of degree d with

3d2 rational points over cyclotomic fields. Brumer and Mestre construct

hyperelliptic curves of any genus g with 16(g+ 1) rational points over the

field of (g + 1)-st roots of unity and 8g + 12 points over Q. The curves

of Brumer and Mestre all have big automorphism groups. Silverman has

suggested that one should measure the number of points divided by the

order of the automorphism group. From this point of view the curves

occurring in Theorem 2 are good, since they usually have the involution

(x, y) 7→ (y, x) as their only non-trivial automorphism, and the curves

constructed in [4] are still better, since they probably have no non-trivial

automorphisms at all. Here we will obtain:

Theorem 3. For infinitely many values of d, the equation Pd(x, y) = 0

of degree d has at least d2 + 2d+ 8 integral solutions.

This improves (for some d) the result of [4], where it was shown that

Pd = 0 has at least d2 + 2d+ 3 integral solutions for every d. We will also

show that the number “d2 + 2d+ 8” in Theorem 3 can be increased by 1 if

we allow rational zeros, and will give numerical evidence suggesting that

in general there are very few, if any, further rational zeros.

§1. Variations of a construction of Schaefer

A very simple construction of two-variable polynomials with many in-

tegral zeros was suggested by Ed Schaefer: if f(x) ∈ Z[x] has distinct

integer roots, say α1, . . . , αn, then the polynomial f(x) + λf(y), which

is irreducible for generic λ, has degree d = n and n2 integral roots at

(x, y) = (αi, αj). To improve this, we take λ = −1. The polynomial
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f(x)− f(y) now has the linear factor x− y. If we remove it, then the quo-

tient is usually irreducible, has degree d = n− 1, and has n2 − n = d2 + d

roots (x, y) = (αi, αj), αi 6= αj , which is slightly better in terms of the

degree. If f is also assumed to be even, then f(x) − f(y) is divisible by

x2 − y2 and the quotient has degree d = n − 2 and n(n − 2) = d2 + 2d

roots, very nearly as good as the number d2 + 2d + 3 found in [4] for the

polyomials Pd, and this can be improved still further in some cases, as we

will see below.

First, however, we look at a generalization of this construction, replac-

ing “even” by “invariant under multiplying x or y by ζ, where ζ is a kth

root of unity.” This of course requires working over a field K which con-

tains the kth roots of unity, so no longer applies to Q, but will be of interest

in the cases of cyclotomic and of finite fields. Let K be such a field and set

f(x) =
∏

(xk−αki ), where α1, . . . , αr are elements of K× whose kth pow-

ers are distinct. Then the polynomial P (x, y) = (f(x) − f(y))/(xk − yk)

has degree d = k(r − 1) and vanishes on the k2r(r − 1) points (ζαi, ζ
′αj),

where ζ, ζ ′ are k-th roots of unity and i 6= j. Thus we get polynomials

of degree d with d2 + kd points over any number field containing the k-th

roots of unity, though it is unclear how good these examples really are.

More interesting is what the construction gives in the case of finite

fields. Let p be a prime and k a divisor of p − 1, k < (p − 1)/2. Let

r + 1 = (p − 1)/k. We then get polynomials of degree d = p − 1 − 2k

with d2 + kd = d(d+ p− 1)/2 points over Fp, and this achieves the upper

bound from [6] mentioned in the introduction, provided we know that

our polynomials are absolutely irreducible. This information is given by

Theorem 1 in the case of the polynomial f(x) = (x(m+2)k − 1)/(xk − 1),

since then P (x, y) = Gm(xk, yk, 1), with Gm(x, y, z) as in equation (1),

so that in this case we indeed achieve the theoretical upper bound (with

d = mk and zeros at all x, y, z ∈ F×p with xk, yk and zk distinct).

As was also mentioned in the introduction, the same polynomials Gm
also achieve the maximum for the number of zeros at roots of unity of a

non-reciprocal polynomial of degree m over Q, or indeed even over R. To

see this, let h(x, y) = 0 be such a polynomial. If we have a solution of

h(ζ, ζ ′) = 0 with ζ and ζ ′ roots of unity, then taking complex congugates

we get 0 = h(ζ̄, ζ̄ ′) = h(ζ−1, ζ ′
−1

). Thus (ζ, ζ ′) is also a point on the curve

(xy)mh(x−1, y−1), of degree 2m. If those two curves have no component

in common, there can be only 2m2 points in their intersection; we call such

polynomials h or the curves that they define non-reciprocal. For example,

if h is smooth and does not go through the origin then h is non-reciprocal.

(For bounds for general curves see [5]).
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§2. Construction of curves with many points over Q

Returning to the case of Q and to P (x, y) of the form (f(x)−f(y))/(x2−
y2) where f is an even polynomial of degree d + 2 with distinct integral

roots, we can try to improve our lower bound d2 + 2d on the number of

zeros of P by looking for solutions of the equation f(x) = f(y) 6= 0. We

list only some first attempts in that direction; looking for better examples

is an amusing game and the reader may want to play.

The idea is that if f(x) has one or several blocks of zeros in arithmetic

progression, then for certain small values of δ the difference f(x)− f(x+

δ) already has so many known zeros (corresponding to x where f(x) =

f(x + δ) = 0) that the remaining ones are the roots of a polynomial of

small degree which may then split completely over Q. There are many

possible variants. For instance, if we take f to have its positive roots at

a, a + 1, . . . , a + n − 1 for some a and n, then f(x + 1) = f(x) has only

the obvious roots but

f(x+ 1)

f(x− 1)
= 1 + 4nx

x2 − a2 − (n− 1)(a− 1
2 )

(x+ a)(x+ a− 1)(x− a− n)(x− a− n+ 1)
,

so if we arrange for κ := a2 + (n− 1)(a− 1
2 ) to be a perfect square, which

is easy to do, then we get eight additional roots (±
√
κ − 1,±

√
κ + 1),

(±
√
κ + 1,±

√
κ − 1) of the polynomial (f(x) − f(y))/(x2 − y2). (Here

a can even be a rational number, since we can always rescale x and y

to get integral roots.) If we take instead f with its positive roots at

1, 3, . . . , 2k−1 and 2b+1, 2b+3, . . . , 2b+2l−1 for some positive integers

k, l and some integer or rational number b, then we find

f(2x+ 1)

f(2x− 1)
= 1 + 2

(k + l)x2 − kb(b+ l)

(x− k)(x− b− l)(x+ b)
,

so whenever kb(b+ l)/(k+ l) is a perfect square we again get 8 extra roots.

Finally, if we choose f with its positive roots at 1, 3, . . . , 2̂r − 1, . . . , 2n−1

for some 0 < r < n, then the non-trivial roots of f(x + 1) = f(x − 1)

and of f(x + 2) = f(x − 2) are given by (n − 1)x2 = 4nr(r − 1) and

(n − 1)x2 = 4n2 + (4r2 − 4r − 3)n − 1, respectively, and there are many

pairs (n, r) for which one of these two equations has rational solutions,

although unfortunately (at least up to n = 1000) none where they both

do.

Summarizing, we have the following result. For each degree d there are

infinitely many two-variable polynomials of degree d of the form (f(x) −
f(y))/(x2 − y2) having at least d2 + 2d+ 8 integral zeros.

It is easy to check that for generic even polynomials f which split com-

pletely over Q, the curve defined by (f(x)−f(y))/(x2−y2) = 0 is smooth.
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Thus we can guarantee that polynomials in the above result are smooth

at the expense of reducing the number of points to d2 + 2d.

We can construct polynomials with at least d2 + 3d integral zeros, for

all d divisible by 3, as follows. Let h(x) = x3 − x2. It can easily be shown

that there exist infinitely many rational numbers α such that h(x) + α

splits completely in Q. Let α1, . . . , αn be distinct rational numbers such

that h(x) + αi splits into three distinct linear factors in Q. Let f(x) =∏
(h(x) + αi) and F (x, y) = (f(x) − f(y))/(h(x) − h(y)), d = 3n − 3. If

βij , j = 1, 2, 3 are the roots of h(x)+αi = 0, i = 1, . . . , n, then F (x, y) = 0

contains the rational points (βij , βi′j′), i, i
′ = 1, . . . , n, i′ 6= i, j, j′ = 1, 2, 3.

These points number 9n(n− 1) = d2 + 3d, as claimed.

A slight modification of the same idea gives Theorem 2, which we now

proceed to prove.

Proof of Theorem 2. Set h(x) = x6 − 2x4 + x2 and

C(λ) =
(λ(λ− 1)(λ+ 1)(2λ− 1)(λ− 2))2

(λ2 − λ+ 1)6
.

Then the polynomial h(x)− C(λ) splits as
∏
α∈S(λ)(x− α) with

S(λ) =

{
± λ2 − 1

λ2 − λ+ 1
, ± λ2 − 2λ

λ2 − λ+ 1
, ± 2λ− 1

λ2 − λ+ 1

}
.

Now let λ1, . . . , λn be rational numbers such that the numbers C(λi) are

all distinct and set f(X) =
∏
i(X − C(λi)) and F (x, y) = (f(h(x)) −

f(h(y)))/(h(x)−h(y)). This polynomial has degree d = 6n−6 and vanishes

for x ∈ S(λi), y ∈ S(λj) with 1 ≤ i 6= j ≤ n, i.e., at 36n(n− 1) = d2 + 6d

rational points. Finally, the curve defined by F (x, y) = 0 is smooth for

almost all (λ1, . . . , λn) ∈ Qn because, as is easily seen, the set of (complex)

n-tuples (λ1, . . . , λn) for which this curve is smooth is Zariski open.

§3. Proof of Theorem 1

Let m be a natural number and consider the homogeneous polynomial

Gm(x, y, z) defined in the introduction. By summing a geometric series,

we can write it in the form

Gm(x, y, z) =
1

x− y

(
xm+2 − zm+2

x− z
− ym+2 − zm+2

y − z

)
, (2)

which is the form which was used in §1. Writing it this way makes it clear

that we have not merely the m2 + m roots of Gm(ζ, ζ ′, 1) = 0 given by

taking ζ and ζ ′ to be distinct (m + 2)nd roots of unity different from 1,
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but also the m2 − m roots of Gm(ζ, ζ ′, 1) = 0 given by taking ζ and ζ ′

to be distinct (m + 1)st roots of unity different from 1. This proves the

second assertion of the theorem.

To prove the first, we note that (2) can be rewritten as Gm = Dm+2/D2,

where

Dn = Dn(x, y, z) =

∣∣∣∣∣∣
1 1 1
1 x y
1 xn yn

∣∣∣∣∣∣ . (3)

From now on we fix m and write simply G for Gm(x, y, 1) and D for

Dm+2(x, y, 1). Our first claim is that

Resx(G,
∂G

∂y
) = g(y)m−1 , (4)

where Resx denotes the resultant as polynomials in x and g(y) = G(y, y) =∑m
j=0(j + 1)yj . To prove this, we have to look at the simultaneous zeros

of G and Gy = ∂G/∂y. It is easy to deal with the points where D2 = 0.

Ignoring them, we have that the equations G = Gy = 0 are equivalent

to D = Dy = 0. The polynomial D is the determinant of the matrix

with columns v(1), v(x) and v(y), where v(x) := (1, x, xm+2)t, and sim-

ilarly Dy is the determinant of the matrix with columns v(1), v(x), and

v′(y) = (0, 1, (m+2)ym+1)t. If both vanish, then all four vectors v(1), v(x),

v(y) and v′(y) must lie in the same two-dimensional space. (It cannot be

one-dimensional since v(y) is never proportional to v(1) for y 6= 1.) In par-

ticular this holds for v(1), v(y) and v′(y), so the determinant they define is

zero, and this determinant is simply g(y). Hence any zero of G = Gy = 0

has y-coordinate equal to one of the roots y1, . . . , ym of g(y) = 0, and

conversely each of these roots occurs as the y-coordinate of precisely m−1

zeros of G = Gy = 0. (Up to a scalar, the unique vector orthogonal

to v(1), v(yi) and v′(yi) is w(yi) = ((m + 1)ym+2
i , −(m + 2)ym+1

i , 1),

so the roots of G(x, yi) = Gy(x, yi) = 0 are the roots of the polynomial

(xm+2− (m+ 2)ym+1
i x+ (m+ 1)ym+2

i )/(x− 1)(x− yi)2 of degree m− 1.)

This proves equation (4) up to a constant, which can then be shown to be

1 by looking at the terms of highest degree.

Now to find the possible singular points of the projective curve C, we

must look for the common zeros of G, Gx, and Gy and hence, by (4), of

Gx and g. Again we can ignore the zeros of D2 and the points at infinity,

which are easily dealt with. Then G = Gx = Gy = 0 is equivalent to

D = Dx = Dy = 0. At a simultaneous zero of G, Gx, and Gy, all five

vectors v(1), v(x), v′(x), v(y) and v′(y) must be in the same 2-dimensional

space. By the argument already given, the orthogonal complement of this

space is spanned by the vector w(y), and by symmetry it is also spanned by
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w(x), so these two vectors must be equal. Subtracting them, we find that

(m+ 1)(xm+2− ym+2) and (m+ 2)(xm+1− ym+1) both vanish, and this is

clearly impossible if m+ 1 and m+ 2 are non-zero. Therefore singularities

can only occur in characteristics dividing (m+ 1)(m+ 2), as claimed.

Remarks. 1. We have observed numerically the following identity, which

would also imply the statement about non-singularity in Theorem 1, but

were unable to prove it:

Resy(Resx(G,
∂G

∂x
), g) = 2−m(m+ 1)m

2−2m+2(m+ 2)m
2−m .

2. In our previous example over finite fields we only considered the points

on G(xk, yk) = 0 above the (m + 2)nd roots of unity, but we can also

consider the (m+1)st by, for example taking p−1 = k(m+1). Incidentally,

G(0, ζ, 1) = 0 if ζ 6= 1 is an (m + 1)st root of unity and there are similar

points also on the lines y = 0 and z = 0. So G(xk, yk) = 0 in this case has

k2m(m− 1) + 3km rational points over Fp. This again attains the bound

of Thm. 0.1 of [5] if k = 2, and comes fairly close for other small k. It also

has the feature that we can obtain curves of odd degree, which we could

not do in the previous example. One can also try to use simultaneously at

least some of the (m+ 1)st and (m+ 2)nd roots of unity, but we did not

obtain interesting examples this way.

§4. Integral points on the curve Pd(x, y) = 0

In [4], certain polynomials Pd(x, y) ∈ Z[x, y] of degree d were con-

structed and it was shown that Pd for every d is absolutely irreducible

and has at least d2 + 2d + 3 integral solutions to Pd(x, y) = 0. In his re-

view [1] of [4] for Math. Reviews, A. Bremner pointed out that in fact one

family of integral solutions had been missed and that in fact the equation

Pd(x, y) = 0 has at least d2 + 2d + 4 integral solutions when d is odd.

This prompted us to look again for patterns in the extra points we found

experimentally which might occur for infinitely many, but not all, d. This

section reports our findings.

The polynomials Pd can be defined by the formula Pd(−X,Y 2) =

T2d(X,Y ), where the Tk[X,Y ] ∈ Z[X,Y ] (k = 0, 1, . . . ) are given by

the generating function

H(t) := (1− t)r(1 + t)s =

∞∑
k=0

Tk(−r − s,−r + s)
tk

k!
(5)

or—expanding by the binomial theorem—more explicitly by

Tk(−r − s,−r + s) = k!

k∑
n=0

(−1)n
(
r

n

)(
s

k − n

)
. (6)
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We now describe ten constructions of infinite families of integer solutions

of the equation Pd(x, y) = 0. The first four are the ones already given in

[4], but we re-prove them here for completeness and also because the proofs

here, based on the generating function (5), are in some cases shorter than

those in [4]. The fifth family gives the extra solution for odd d observed by

Bremner, and the first seven together give (for suitable d) the conclusion

of Theorem 2.

(I) r and s small

If r and s are nonnegative integers, then H(t) is a polynomial of degree

r+s, so Tk(−r−s,−r+s) vanishes for k > r+s. This gives us the d(d+1)

integral zeros (x, y) = (n,m2) of Pd(x, y) = 0, where 0 ≤ m ≤ n ≤ 2d− 1,

m ≡ n (mod 2).

(II) x = 4d

If r and s are positive odd integers with sum 2k, then the coefficients

of the polynomial H(t) are anti-symmetric (i.e. t2kH(1/t) = −H(t)), so

its middle coefficient vanishes. For Pd this gives the d additional zeros

Pd(4d, 4n
2) = 0 for 0 < n < 2d, n odd.

(III) y = 9

A further zero Pd(8d+ 1, 32) = 0 can be seen as follows. Take r = 4d− 1,

s = 4d+ 2 in (5). Then H(t) = (1 + t)3(1− t2)4d−1, and the coefficient of

t2d in this is, up to sign, equal to
(
4d−1
d

)
−3
(
4d−1
d−1

)
, which indeed vanishes.

(IV) x = 2d− 3 or 2d− 4

The generating function identity (5) and the obvious differential equation

H ′(t)

H(t)
= − r

1− t
+

s

1 + t

imply the recursion Tk+1 = Y Tk +k(X + k − 1)Tk−1 for the polynomi-

als Tk(X,Y ). (This recursion, with suitable initial conditions, was in

fact taken as the definition of Tk in [4].) For the subfamily Pd(x, y) =

T2d(−x,
√
y) this leads to the recursion

Pd+1 = [y−(4d+1)x+8d2]Pd− [2d(2d−1)(x−2d+1)(x−2d+2)]Pd−1 .

The two coefficients in square brackets vanish if x equals 2d− 1 or 2d− 2

and y = (4d+ 1)x− 8d2, giving two additional integer zeros.

(V) x = 4d− 3

For d odd we have a further solution Pd(4d − 3, (2d − 1)2) = 0. (These

are the points noticed by Bremner.) To prove this we must show that the

coefficient of t2d in H(t) is zero when r = d−1, s = 3d−2. For these values
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of r and s, H(t) = (1− t2)d−1(1 + t)2d−1, so the coefficient in question is∑d−1
n=1(−1)d−n

(
d−1
d−n
)(

2d−1
2n

)
, which vanishes if d is odd because the terms

for n and d− n cancel.

(VI) r = 2

For r = 2 the function H(t) in (5) equals (1 + t)s+2 − 4t(1 + t)s, so

Tk(− s− 2, s− 2) = k!

[(
s+ 2

k

)
− 4

(
s

k − 1

)]
=

1

4
s(s− 1) · · · (s− k + 3)

[
(2s− 4k + 3)2 − (8k + 1)

]
.

The zeros at s = 0, 1, . . . , k − 3 correspond to construction (I), but if

k = 2d and 16d + 1 = a2 for some integer a then we get a new integral

point x =
(
a+1
2

)2
, y =

(
a+5
2

)2(a−3
2

)2
on Pd(x, y) = 0. In fact we get two

new solutions, since we can replace a by its negative.

(VII) r = 3, 4, 5

More generally, if r is a fixed positive integer then for k ≥ r the sum in

(6) terminates at n = r and can be rewritten as
(
k
r

)−1( s
k−r
)
Qr(k, s) with

Qr(k, s) = r!
r∑

n=0

(−1)n
(
k

n

)(
r + s− k
r − n

)
∈ Z[k, s] ,

a polynomial of degree r. For r odd, we set Q̃r(k, s) = Qr(k, s)/(r+s−2k)

to remove the factor corresponding to (II) above. Then for r = 3 we find

4 Q̃3(k, s) = (2s− 4k + 3)2 − (24k + 1)

and hence two further integral solutions of Pd = 0 whenever 48d + 1 is a

square. (This case is very similar to (VI), but has been listed separately

for convenience in counting solutions below.) For r = 4 or 5, we find

Q4(k, t+ 2k − 4) = 3 (2k − t2 + t− 1)2 − (2t4 − 2t2 + 3) ,

3 Q̃5(k, t+ 2k − 5) = 5 (6k − t2 + 3t− 5)2 − (2t4 − 10t2 + 53) ,

each giving only a finite number of further solutions corresponding to the

integral points on an elliptic curve of positive rank over Q.

(VIII) x = 2d+ 2

Another infinite family of integral zeros of Pd(x, y) = 0 for special d is

given by d = 2c2 − 1, x = y = 4c2 with c ∈ N. This solution is found

by going back to the argument for construction (I) and considering the

coefficient of tr+s−2 in H(t).
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(IX) x = 2d+ 3

Similarly, if we look at the coefficient of tr+s−3 inH(t), then after removing

from it the factor r − s we find a quadratic equation, giving the further

integral point Pd(2d+ 3, 6d+ 7) = 0 if 6d+ 7 is a square. Looking at the

coefficients of tr+s−ν for larger values of ν leads to curves of higher degree

(in fact, because of a hidden symmetry of H(t), to the same ones as in

(VII) above) and therefore to no new infinite families.

(X) x = 2d− 5 or 2d− 6

We could also have obtained the solutions (IV) by observing that for x =

2d − 2ν − 1 and x = 2d − 2ν − 2 construction (I) gives all but ν of the

roots of Pd(x, ·) = 0. The case ν = 1 corresponds to (IV), while for ν = 2

we are left with a quadratic polynomial and find

6d2 − 9d+ 4 = e2 ⇒ Pd(2d− 5, 5− 6d± 2e) = 0

10d2 − 15d+ 9 = f2 ⇒ Pd(2d− 6, 10− 10d± 2f) = 0

The conditions on d are in each case Pell-type equations having infin-

itely many solutions, the first being d = 4, 33, 320, 3161, . . . and d =

8, 33, 144, 637, . . . , respectively. Here again, larger ν no longer give infi-

nite families of solutions.

We summarize the above constructions (excluding (X) and the elliptic

curves in (VII)) and the numbers of solutions they yield by the table

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

d2 + d d 1 2 [odd] 2ε16d+1 2ε48d+1 ε2d+2 ε6d+7

where “[odd]” means 1 if d is odd and 0 otherwise and εn denotes 1 if n is

a square and 0 otherwise. To get the constructions (VI) and (VII) to work

simultaneously we need 16d+ 1 = a2 and 48d+ 1 = b2 for some integers a

and b, so 3a2−b2 = 2. This is a Pell-type equation whose positive solutions

are given by (b + a
√

3)n = (1 +
√

3)(2 +
√

3)n with n ≥ 0. The common

value of (a2−1)/16 and (b2−1)/48 is then integral if n is congruent to 0 or

3 (mod 4) and odd if n is congruent to 3 or 4 (mod 8), so for n satisfying

the latter congruence all seven constructions (I)–(VII) apply and we get

d2+2d+8 integral solutions of Pd(x, y) = 0. The set of values of d obtained

in this way is not very dense (its only elements less than 1020 are d = 105,

1463, 148772396955, and 2072132179845), but it is still infinite, proving

Theorem 2. We can also combine either (V) or (VII) with (VIII) or (IX)

instead of with each other to produce other infinite Pell-like families, but
10



this gives (for d odd) only d2+2d+7 rather than d2+2d+8 solutions, and

we cannot combine three of these constructions because this corresponds

to finding integral points on an elliptic curve over Q and there are only

finitely many.

Remarks.

1. It is very striking that in all of the above constructions except for (IV)

and (X) the values of y are perfect squares, and that the same holds for

most (all but 3) of the “sporadic” solutions listed in [4]. From a Diophan-

tine point of view, replacing the equation Pd(x, y) = 0 by Pd(x, y
2) = 0

makes the problem incomparably harder to solve (for instance, already

for d = 2 the original equation is easy and has infinitely many solutions,

while the latter has only finitely many and the problem of finding them

is difficult), so that it is downright perverse to throw away the extra in-

formation and list the solutions found merely as solutions of the easier

problem. The reason that this was nevertheless done in [4] and here is not

so much in order to capture the two extra zeros in (IV), but because we

are looking for examples of polynomials with many zeros relative to their

degree, and replacing y by y2 in Pd(x, y) doubles the degree. In other

words, in general there are fewer and fewer rational or integral points on

curves as the degree (or genus) goes up, but for these special polynomials

the opposite is happening and it is therefore advantageous to forget that y

is usually a square. Nevertheless, it seemed reasonable to supplement the

search described in [4] (which found all solutions with d ≤ 12, |x| ≤ 1000)

by a systematic search for integral zeros of Pd(x, y
2) = 0. A search for all

zeros in the range d ≤ 50, 0 ≤ y ≤ 1000 led to the discoveries of some of

the above families and produced the following zeros which do not belong

to any of the families (I)–(IX):

(d,
√
y, x) = (2, 6, 66), (2, 91, 1521), (2, 91, 15043), (3, 5, 67),

(3, 35, 345), (7, 4, 98), (17, 6, 514), (18, 21, 67),

(18, 55, 67), (22, 5, 67), (22, 5, 465), (31, 6, 66),

(31, 6, 932), (31, 11, 67), (31, 23, 67), (31, 94, 132),

(35, 94, 132), (42, 4, 98), (42, 4, 576), (43, 55, 177)

with no further discernible patterns.

2. Both in [4] and in the introduction to this paper, the emphasis has

been on integral solutions of Pd(x, y) = 0 or other polynomial equations

in two variables. Actually, there is no real distinction in this context be-

tween rational and integral solutions, if we not quantify things by putting
11



some restriction on the heights of the polynomials, because if an equation

P (x, y) = 0 of degree d has ≥ C rational solutions, then the rescaled equa-

tion NdP (x/N, y/N) = 0, where N is any common denominator of these

solutions, clearly has ≥ C integral solutions. For the particular family of

polynomials Pd, the large number of integral solutions was so striking that

it seemed a pity to throw away this information by replacing “integral” by

“rational” in the statement of the theorems, especially as these polynomi-

als have relatively small height and this property would be destroyed by

too vigorous a rescaling. Nevertheless, for the sake of completeness and to

have a clear conscience we should also look for rational solutions. A small

computer search (specifically, a search for all solutions of Pd(x, a/b) = 0

or Pd(x, a
2/b2) = 0 with 3 < d ≤ 12, 2 ≤ b ≤ 20, and |a| ≤ 1000, the

equations P2 = 0 and P3 = 0 with infinitely many solutions being omitted)

yielded only one additional family,

(X) Pd
(
d− 3

4 ,
1
4

)
= 0 for d odd

(whose proof by residue calculus we omit), together with the handful of

sporadic solutions:

d = 4 : (x, y) =
(
5
3 , −

1
3

)
,
(
− 10

11 , −
76
11

)
,
(
71
11 ,

71
11

)
,
(
505
121 ,

25
121

)
,

d = 5 : (x, y) =
(

7
17 , −

43
17

)
,
(
− 5

19 , −
81
19

)
,
(
124
19 ,

124
19

)
.

Two of these are easy to explain and do not generalize (the polynomial

Pd(x, x) vanishes at x = 0, 1, 4, . . . , [
√

2d− 1]2, and for d = 4 or 5 this

leaves room for only one further root, which must then be rational) and

all of them have d ≤ 5, so this data suggests that the special equations

Pd(x, y) = 0 indeed have almost no non-integral rational solutions. Never-

theless, by using the new family (X) we can present the following minuscule

improvement of the previous results:

Theorem 4. The equation Pd(x/4, y/4) = 0 has at least d2 + 2d + 5

integral solutions for any odd d and at least d2 + 2d+ 9 integral solutions

for infinitely many values of d.
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